JPH0993791A - Ac deltai type failure selection method - Google Patents

Ac deltai type failure selection method

Info

Publication number
JPH0993791A
JPH0993791A JP7252098A JP25209895A JPH0993791A JP H0993791 A JPH0993791 A JP H0993791A JP 7252098 A JP7252098 A JP 7252098A JP 25209895 A JP25209895 A JP 25209895A JP H0993791 A JPH0993791 A JP H0993791A
Authority
JP
Japan
Prior art keywords
failure
vector
current
fault
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7252098A
Other languages
Japanese (ja)
Inventor
Yoshifumi Mochinaga
芳文 持永
Taiji Hisamizu
泰司 久水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP7252098A priority Critical patent/JPH0993791A/en
Publication of JPH0993791A publication Critical patent/JPH0993791A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To open the circuit breaker by executing particular vector difference calculation between a failure current vector and an electric train load current vector to judge a failure if an amplitude of vector difference exceededs the predetermined value. SOLUTION: An AC ΔI type failure selection apparatus 1 converts, when a failure is generated, a feed current of an electric train 4 into a low voltage and small current and also calculates a difference between an input load current IL of electric train and a failure current IS in terms of vector. Failure selection is performed depending on this vector difference. That is, when an electric train load current vector is defined as [IL] and a failure current when a failure is generated as [IS], vector difference [ΔI] for failure detection is obtained from the expression, [ΔI]=[IS]-[IL ]. If a value of the vector difference [ΔI] has exceeded a value preset by the AC ΔI type failure selection apparatus 1, such event is selected as 'failure'. In this case, a protection output is output to a circuit breaker to open the circuit breaker.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、交流き電を行う鉄
道におけるき電回路保護用の交流ΔI形故障選択装置に
関するものであり、特に、PWM(Pulse Width Modula
tion:パルス幅変調)制御車両の走行中に電車線で故障
が発生した場合に容易に故障検出が行なえる交流ΔI形
故障選択方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC ΔI type fault selecting device for feeding circuit protection in railways that perform AC feeding, and more particularly to a PWM (Pulse Width Modula).
tion: pulse width modulation) The present invention relates to a method for selecting an AC ΔI type failure that enables easy failure detection when a failure occurs in a train line while a controlled vehicle is running.

【0002】[0002]

【従来の技術】交流電気鉄道では、変電所からの特別高
圧単相交流電力を、電車線路を通して電気車へ供給(き
電)している。この場合、電車線路に地絡等の故障が発
生すると、故障電流が急激に流れ、変電所の交流ΔI形
故障選択装置が故障を検出する。
2. Description of the Related Art In an AC electric railway, extra-high voltage single-phase AC power from a substation is supplied (powered) to an electric car through a train line. In this case, when a fault such as a ground fault occurs on the train line, a fault current flows rapidly, and the AC ΔI type fault selection device at the substation detects the fault.

【0003】電気車としてダイオード整流器車又はサイ
リスタ位相制御車を採用していた場合の従来の交流ΔI
形故障選択装置の原理を図4及び図5に示す。図4に示
すように、電車線路に故障が発生すると、故障電流IS
は、交流ΔI形故障選択装置の設定値ΔI0 を超えて急
激に立ち上がる。この場合、故障電流IS の立上りの値
をΔI11とすると、交流ΔI形故障選択装置は、下式 ΔI11>ΔI0 ………(1) の条件が成立した場合に、「故障」と選択し、保護出力
を出力する。これにより遮断器が開放され、故障点及び
各種設備機器等の破損事故が未然に防止される。
Conventional alternating current ΔI when a diode rectifier vehicle or a thyristor phase control vehicle is adopted as an electric vehicle.
The principle of the type fault selection device is shown in FIGS. As shown in FIG. 4, when a failure occurs in the train track, a failure current I S
Rapidly rises above the set value ΔI 0 of the AC ΔI type failure selection device. In this case, assuming that the rising value of the fault current I S is ΔI 11 , the AC ΔI type fault selecting device indicates “fault” when the condition of the following equation ΔI 11 > ΔI 0 (1) is satisfied. Select and output protected output. As a result, the circuit breaker is opened, and damage points and damage accidents of various equipment are prevented.

【0004】次に、電車線路に電気車負荷電流が流れて
いる場合に故障電流が流れた場合の電流のベクトル図を
図5に示す。図に示すように、電気車負荷電流IL が流
れている場合に故障電流IS が同時に重なると、故障時
に立ち上がる電流のスカラー値ΔI12は小さく、上式
(1)による故障検出が困難となる。このため、従来
は、電気車負荷電流が流れている場合に、き電電流に1
5〜20%程度の第3高調波が含まれていることを利用
して、故障検出の基本電流である電気車負荷電流I L
アナログ的に抑制し、IL ' を生成していた。この処理
により、故障時に立ち上がる電流値ΔI13は、処理を行
わない場合の立上り電流値ΔI12に比べ見かけ上大きく
なり、上式(1)による故障検出を容易にしていた。
Next, an electric car load current flows on the train track.
If a fault current flows when
As shown in FIG. As shown in the figure, the electric vehicle load current ILFlow
Fault current ISIf the two overlap at the same time,
Scalar value ΔI of current12Is small,
Failure detection by (1) becomes difficult. For this reason,
Is 1 when the electric vehicle load current is flowing.
Utilizes that the third harmonic of about 5 to 20% is included
Then, the electric vehicle load current I, which is the basic current for failure detection, LTo
Suppress analogly, IL 'Was being generated. This process
Causes the current value ΔI to rise at the time of failure13The process
Rising current value ΔI12Apparently larger than
Therefore, the failure detection by the above formula (1) is facilitated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、今後増
加すると考えられるPWM制御車両の場合は、高力率
で、第3高調波の含有率が従来のダイオード整流器車又
はサイリスタ位相制御車に比べて1/3以下と少ないた
め、上記のような第3高調波による基本電流の抑制は期
待できず、力行時の故障検出が困難となる。また、回生
時においても故障検出が困難になる。
However, in the case of PWM controlled vehicles, which are expected to increase in the future, the power factor is high and the content ratio of the third harmonic is 1 compared with the conventional diode rectifier vehicle or thyristor phase controlled vehicle. Since it is as small as / 3 or less, suppression of the basic current due to the third harmonic as described above cannot be expected, and it becomes difficult to detect a failure during powering. Further, it becomes difficult to detect a failure even during regeneration.

【0006】本発明は、このような問題を解決するため
になされたものであり、本発明の解決しようとする課題
は、PWM制御車両の場合においても容易に故障検出を
行うことができる交流ΔI形故障選択方法を提供するこ
とである。
The present invention has been made in order to solve such a problem, and the problem to be solved by the present invention is an alternating current ΔI which can easily detect a failure even in the case of a PWM control vehicle. The purpose is to provide a method for selecting a fault.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、変電所から電車線路を通して電気車に交
流電力を供給する交流電気鉄道において、前記電気車の
負荷電流のベクトルを〔IL 〕とし、前記電車線路に故
障が発生した場合の故障電流のベクトルを〔I S 〕とし
たとき、下式 〔ΔI〕=〔IS 〕−〔IL 〕 により演算される差ベクトル〔ΔI〕の大きさが所定値
を越えた場合に故障と選択することを特徴とする。
Means for Solving the Problems To solve the above problems,
Therefore, the present invention applies to electric vehicles from substations through train tracks.
In an AC electric railway that supplies current power,
The load current vector is [IL] And because of the train line
The vector of the fault current when a failure occurs is [I S〕age
Then, the following formula [ΔI] = [IS]-[IL] The magnitude of the difference vector [ΔI] calculated by
It is characterized in that it is selected as a failure when the value exceeds.

【0008】[0008]

【発明の実施の形態】以下、図面等を参照しながら、実
施の形態をあげて、本発明を詳細に説明する。 図1
は、本発明に係る交流ΔI形故障選択方法を採用した交
流ΔI形故障選択装置1及びこの装置を備えたき電シス
テムの基本構成を示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings and the like. FIG.
FIG. 1 is a diagram showing a basic configuration of an AC ΔI type fault selecting device 1 adopting an AC ΔI type fault selecting method according to the present invention and a feeding system including this device.

【0009】図に示すように、このき電システムにおい
ては、電気鉄道用変電所内に、交流ΔI形故障選択装置
1と、計器用変圧器(PT)2と、計器用変流器(C
T)3を備えている。計器用変圧器2は、電車線路5の
き電電圧V1 を低電圧V2 に変換し、かつ計器用変流器
3は、電気車4のき電電流I1 を小電流I2 に変換し、
これらの電圧と電流とを交流ΔI形故障選択装置1に入
力している。
As shown in the figure, in this feeder system, an AC ΔI type fault selecting device 1, an instrument transformer (PT) 2, and an instrument current transformer (C) are installed in an electric railway substation.
T) 3. The instrument transformer 2 converts the feeding voltage V 1 of the train line 5 into a low voltage V 2 , and the instrument current transformer 3 transforms the feeding current I 1 of the electric vehicle 4 into a small current I 2 . Then
These voltages and currents are input to the AC ΔI type fault selection device 1.

【0010】交流ΔI形故障選択装置1は、故障発生時
には、上記のように低電圧V2および小電流I2 に変換
し入力された電気車負荷電流ILと故障電流ISとの差を
ベクトル量で演算し、この差ベクトルにより故障選択を
行なう。すなわち、電気車負荷電流ベクトルを〔IL
とし、故障発生時の故障電流ベクトルを〔IS 〕とする
と、故障検出用差ベクトル〔ΔI〕を、下式 〔ΔI〕=〔IS 〕−〔IL 〕 ………(2) により求める。上記の差ベクトル〔ΔI〕の大きさが交
流ΔI形故障選択装置1に設定された所定値を越えた場
合に、「故障」と選択され、図示しない遮断器へ保護出
力が出力される。これにより図示しない遮断器が開放さ
れ、故障点及び各種設備機器等の破損事故が未然に防止
される。したがって、故障の拡大を最小限におさえるこ
とができる。
When a failure occurs, the AC ΔI type failure selecting apparatus 1 converts the difference between the electric vehicle load current I L and the failure current I S which are converted into the low voltage V 2 and the small current I 2 as described above and input. The calculation is performed with a vector amount, and the fault is selected based on this difference vector. That is, the electric vehicle load current vector is [ IL ]
And the fault current vector at the time of fault occurrence is [I S ], the fault detection difference vector [ΔI] is obtained by the following formula [ΔI] = [I S ] − [I L ] ... (2) . When the magnitude of the above difference vector [ΔI] exceeds the predetermined value set in the AC ΔI type fault selecting device 1, “fault” is selected and the protective output is output to the circuit breaker (not shown). As a result, the circuit breaker (not shown) is opened, and a failure point and damage accidents of various equipments and the like are prevented. Therefore, the spread of failures can be minimized.

【0011】図2は、PWM制御車両が力行中に電車線
路5で故障が発生した場合の故障検出用差ベクトルの検
出方法を説明するベクトル図であり、図3は、PWM制
御車両が回生中に電車線路5で故障が発生した場合の故
障検出用差ベクトルの検出方法を説明するベクトル図で
ある。
FIG. 2 is a vector diagram for explaining a method of detecting a difference vector for failure detection when a failure occurs on the train track 5 while the PWM control vehicle is powering, and FIG. 3 is during regeneration of the PWM control vehicle. It is a vector diagram explaining the detection method of the difference vector for failure detection when a failure occurs in the train track 5.

【0012】PWM制御車両の負荷力率角は、力行時に
は0°であり、回生時には180°であるから、PWM
制御車両の力行時の電気車負荷電流ベクトルは
〔IL1〕、PWM制御車両の回生時の電気車負荷電流ベ
クトルは〔IL2〕となり、力行時においても回生時にお
いても、電圧に対して約70°をなす故障電流ベクトル
〔IS1〕,〔IS2〕と比べてベクトル量が大幅に異な
る。このため、以下のベクトル演算 〔ΔI1 〕=〔IS1〕−〔IL1〕 ………(3) 〔ΔI2 〕=〔IS2〕−〔IL2〕 ………(4) を行ない、力行時には差ベクトル〔ΔI1 〕を、回生時
には差ベクトル〔ΔI2〕を求め、この差ベクトルの大
きさを故障検出用電流値とすると、力行時及び回生時の
いずれの場合においても、故障検出用電流値を従来方法
に比べて非常に大きくとることができ、PWM制御車両
の走行時においても故障電流に十分に追随でき、容易に
故障検出を行なうことができる。
Since the load power factor angle of the PWM control vehicle is 0 ° during power running and 180 ° during regeneration, the PWM
The electric vehicle load current vector during power running of the control vehicle is [I L1 ] and the electric vehicle load current vector during regeneration of the PWM control vehicle is [I L2 ], which is about the voltage during power running and during regeneration. The vector amount is significantly different from the fault current vectors [I S1 ] and [I S2 ] forming 70 °. For this reason, the following vector operation [ΔI 1 ] = [I S1 ] − [I L1 ] ... (3) [ΔI 2 ] = [I S2 ]-[I L2 ] ... (4) When the difference vector [ΔI 1 ] is calculated during power running and the difference vector [ΔI 2 ] is calculated during regeneration, and the magnitude of this difference vector is taken as the current value for failure detection, failure detection is performed both during power running and during regeneration. The current value for use can be made much larger than that of the conventional method, the fault current can be sufficiently followed even when the PWM control vehicle is running, and the fault can be easily detected.

【0013】なお、電車線路に故障が発生した場合には
き電電圧が低下し、一般にはただちにPWM制御車両の
コンバータが停止する。したがって、故障電流中には電
気車負荷電流は含まれず保護継電器による故障検出に影
響を与えない。
When a failure occurs in the train track, the feeding voltage drops, and generally the converter of the PWM control vehicle immediately stops. Therefore, the fault current does not include the electric vehicle load current and does not affect the fault detection by the protective relay.

【0014】また、仮に故障時にPWM制御車両のコン
バータが停止しない場合は、回生車両において負荷電流
を受けない場合の故障電流ベクトルすなわち図3におけ
るベクトル〔IS3〕の差ベクトルを検出することができ
る。
Further, if the converter of the PWM control vehicle does not stop at the time of failure, the failure current vector when the regenerative vehicle does not receive the load current, that is, the difference vector of the vector [I S3 ] in FIG. 3 can be detected. .

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
故障電流ベクトルと電気車負荷電流ベクトルのベクトル
差演算を行ない、差ベクトルの大きさによって故障検出
を行なうので、高力率で低次高調波の含有率が非常に低
く、従来車両とは負荷体系がまったく異なるPWM制御
車両の場合においても、故障検出用電流値を従来の故障
選択方法よりも大きくとることができ、支障なく故障検
出を行なうことができる。したがって、PWM制御車両
の走行時における故障点及び各種設備機器等の破損事故
が未然に防止され、故障の拡大を最小限におさえること
ができる。
As described above, according to the present invention,
Since the vector difference between the fault current vector and the electric vehicle load current vector is calculated and the fault is detected based on the magnitude of the difference vector, the power factor is high and the content of low-order harmonics is very low. Even in the case of a PWM control vehicle that is completely different from the above, the failure detection current value can be made larger than that in the conventional failure selection method, and failure detection can be performed without any trouble. Therefore, it is possible to prevent failure points and damage accidents of various equipments and the like when the PWM control vehicle is running, and it is possible to minimize the spread of failures.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る交流ΔI形故障選択方法を採用し
た交流ΔI形故障選択装置1及びこの装置を備えたき電
システムの基本構成を示す図である。
FIG. 1 is a diagram showing a basic configuration of an AC ΔI type fault selecting apparatus 1 adopting an AC ΔI type fault selecting method according to the present invention and a feeding system including the apparatus.

【図2】PWM制御車両が力行中に図1に示す電車線路
で故障が発生した場合の故障検出用差ベクトルの検出方
法を説明するベクトル図である。
FIG. 2 is a vector diagram illustrating a method of detecting a difference vector for failure detection when a failure occurs in the train track shown in FIG. 1 while the PWM control vehicle is powering.

【図3】PWM制御車両が回生中に図1に示す電車線路
で故障が発生した場合の故障検出用差ベクトルの検出方
法を説明するベクトル図である。
FIG. 3 is a vector diagram illustrating a method of detecting a difference vector for failure detection when a failure occurs on the train track shown in FIG. 1 during regeneration of a PWM control vehicle.

【図4】従来の交流ΔI形故障選択装置における交流Δ
I形故障選択方法の原理を説明する図である。
FIG. 4 is an alternating current Δ in a conventional alternating current ΔI type fault selecting device.
It is a figure explaining the principle of an I type failure selection method.

【図5】従来の交流ΔI形故障選択方法において、負荷
電流と故障電流が重なった場合の故障検出方法を説明す
るベクトル図である。
FIG. 5 is a vector diagram for explaining a failure detection method when a load current and a failure current overlap in a conventional AC ΔI type failure selection method.

【符号の説明】[Explanation of symbols]

1 交流ΔI形故障選択装置 2 計器用変圧器 3 計器用変流器 4 電気車 5 電車線路 6 レール 〔IL 〕 電気車負荷電流ベクトル 〔IS 〕 故障電流ベクトル 〔ΔI〕 故障検出用差ベクトル1 AC ΔI type failure selection unit 2 potential transformer 3 current transformer 4 electric vehicle 5 railroad track 6 Rail [I L] electric vehicle load current vector [I S] fault current vector [ΔI] failure detecting difference vector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 変電所から電車線路を通して電気車に交
流電力を供給する交流電気鉄道において、前記電気車の
負荷電流のベクトルを〔IL 〕とし、前記電車線路に故
障が発生した場合の故障電流のベクトルを〔IS 〕とし
たとき、下式 〔ΔI〕=〔IS 〕−〔IL 〕 により演算される差ベクトル〔ΔI〕の大きさが所定値
を越えた場合に故障と選択することを特徴とする交流Δ
I形故障選択方法。
1. An AC electric railway for supplying AC power to an electric car from a substation through a train line, wherein a vector of a load current of the electric car is [ IL ], and a fault occurs when the train line fails. when the vector of current and [I S], the following formula [ΔI] = [I S] - select a malfunction when the magnitude of the difference vector is calculated by [I L] [ΔI] exceeds a predetermined value AC that is characterized by
Type I fault selection method.
JP7252098A 1995-09-29 1995-09-29 Ac deltai type failure selection method Pending JPH0993791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7252098A JPH0993791A (en) 1995-09-29 1995-09-29 Ac deltai type failure selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7252098A JPH0993791A (en) 1995-09-29 1995-09-29 Ac deltai type failure selection method

Publications (1)

Publication Number Publication Date
JPH0993791A true JPH0993791A (en) 1997-04-04

Family

ID=17232501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7252098A Pending JPH0993791A (en) 1995-09-29 1995-09-29 Ac deltai type failure selection method

Country Status (1)

Country Link
JP (1) JPH0993791A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6763314B2 (en) 2001-09-28 2004-07-13 International Business Machines Corporation AC defect detection and failure avoidance power up and diagnostic system
JP2010057219A (en) * 2008-08-26 2010-03-11 Fuji Electric Systems Co Ltd AC DeltaI-TYPE FAILURE DETECTION METHOD AND FAILURE DETECTING APPARATUS
US20150191086A1 (en) * 2012-06-29 2015-07-09 Mitsubishi Electric Corporation Controller of ac electric vehicle
CN107656516A (en) * 2017-09-12 2018-02-02 北京新能源汽车股份有限公司 Forward engine room Intelligent electrical box and its control method
JP2018518140A (en) * 2015-04-29 2018-07-05 エヌアール エレクトリック カンパニー リミテッドNr Electric Co., Ltd Method and apparatus for identifying circuit breaker phase failure based on voltage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6763314B2 (en) 2001-09-28 2004-07-13 International Business Machines Corporation AC defect detection and failure avoidance power up and diagnostic system
JP2010057219A (en) * 2008-08-26 2010-03-11 Fuji Electric Systems Co Ltd AC DeltaI-TYPE FAILURE DETECTION METHOD AND FAILURE DETECTING APPARATUS
US20150191086A1 (en) * 2012-06-29 2015-07-09 Mitsubishi Electric Corporation Controller of ac electric vehicle
US9845013B2 (en) * 2012-06-29 2017-12-19 Mitsubishi Electric Corporation Controller of AC electric vehicle
JP2018518140A (en) * 2015-04-29 2018-07-05 エヌアール エレクトリック カンパニー リミテッドNr Electric Co., Ltd Method and apparatus for identifying circuit breaker phase failure based on voltage
CN107656516A (en) * 2017-09-12 2018-02-02 北京新能源汽车股份有限公司 Forward engine room Intelligent electrical box and its control method

Similar Documents

Publication Publication Date Title
JP2009219208A (en) Electric vehicle drive
KR100310714B1 (en) Single Phase Overhead Contact Wire Active Filter for Electric Vehicles
JPH0993791A (en) Ac deltai type failure selection method
JP4082033B2 (en) AC electric railway power supply equipment
JP3186281B2 (en) AC electric vehicle control device
JPH02219401A (en) Controller for electric car
JP5353068B2 (en) Regenerative power absorber
JPS63103745A (en) Protecting system for regenerative electric power absorbing device
JP3186495B2 (en) Power converter for AC electric vehicles
Ikeda et al. Development of power supply system for Yamanashi Maglev Test Line
JP4078217B2 (en) Power system protection device
JP2528123B2 (en) Power regeneration device
JPS59172902A (en) Controller for electric rolling stock
JPH059941Y2 (en)
Yuki et al. Development of uninterruptible auxiliary power supply through main transformer in dead section of AC feeding system
JPS6311001A (en) Controller for electric rolling stock
KR100491864B1 (en) dirct current(D.C)power supply system used of revivable 2-level PWM converter, for electromotive car
JPH0739005A (en) Power converter for electric car
JP3833593B2 (en) Protection device for power converter
JPH01252172A (en) Power converter
Beaud System control and intelligent protection in a DC traction substation
JP2683183B2 (en) How to prevent unnecessary operation of protective relay for AC feeding
Bailey et al. A Modern Chopper Propulsion System or Rapid Transit Application with High Regeneration Capability
JPS59185102A (en) Controlling method of ac electric railcar
JPH0260402A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Effective date: 20060628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060803