JPS59185102A - Controlling method of ac electric railcar - Google Patents

Controlling method of ac electric railcar

Info

Publication number
JPS59185102A
JPS59185102A JP58058203A JP5820383A JPS59185102A JP S59185102 A JPS59185102 A JP S59185102A JP 58058203 A JP58058203 A JP 58058203A JP 5820383 A JP5820383 A JP 5820383A JP S59185102 A JPS59185102 A JP S59185102A
Authority
JP
Japan
Prior art keywords
current
output
transformer
rectifier
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58058203A
Other languages
Japanese (ja)
Inventor
Yukio Ueda
植田 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58058203A priority Critical patent/JPS59185102A/en
Publication of JPS59185102A publication Critical patent/JPS59185102A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To eliminate DC magnetic deviation of a transformer, to facilitate the operation and to improve the running speed of an electric railcar by forcibly energizing an SCR in conductive state when a trolley wire is deenergized or interrupted. CONSTITUTION:A current controller 12 has a comparator 12a for comparing a current limiting vlaue instructed from a master controller 10 or the like with the output of a current detector 7 for detecting the current flowed to a motor, a phase unit 12b for deciding the control phase angle of an SCR by using the output of the comarator 12a and the output of a synchronizing power source 9, and a firing circuit 12c for applying a firing signal to the SCR of a rectifier 3, and the output of a trolley wire voltage detector 11 is applied to the circit 12c. Accordingly, the all SCRs 3a-3d of the rectifier 3 become conductive by the firing angle from the circuit 12c, the current flowed to a transformer 2 becomes zero, and it can prevent the application of a DC magnetic deviation.

Description

【発明の詳細な説明】 この発明は、サイリスクの純ブリッジで構成される整流
器を用いて位相制御を行う交流電気車の制御方法、特に
架線の無加圧区間(交々セイション)を通過する時ある
いは架線停電時等の架線が急に無加圧になった時の制御
方法に関するものである。
[Detailed Description of the Invention] This invention relates to a control method for an AC electric train that performs phase control using a rectifier composed of a pure Sirisk bridge, particularly when passing through an unpressurized section (alternate section) of an overhead wire. Alternatively, it relates to a control method when the overhead line suddenly becomes unpressurized, such as during a power outage.

まず、第1図に従来の代表的な交流電気車の主回路構成
図を示す。第1図において、パンタグラフlを通して供
給される高電圧は、変圧器−で適当な電圧に降圧され、
整流器3に与えられる。回生ブレーキの適用が可能なよ
うに、整流器3をよりつのサイリスタJa 、、7b 
、3cおよび3 d Kよって構成されたサイリスタの
純ブリッジからなる。
First, FIG. 1 shows a main circuit configuration diagram of a typical conventional AC electric vehicle. In Fig. 1, the high voltage supplied through the pantograph l is stepped down to an appropriate voltage by a transformer.
rectifier 3. Thyristors Ja, 7b are connected to the rectifier 3 so that regenerative braking can be applied.
, 3c and 3d K.

整流器3の出力側には、平滑りアクドルφを介して電機
子りおよび界磁巻線乙からなる電動機が接続されている
。通常、整流器3のサイリスタ3aないし3dは、電動
機に流れる電流が一定の値になるように順次位相制御さ
れる。そこで、電動機電流Idを検出するための電流検
出器7が電動機と直列に接続されており、また整流器3
のサイ1ノスタ3aないし3dにそれぞれ点弧信号G3
aな(・しG3(1(第1図に示す点線の矢印)を与え
る電流制御器9が設けられており、更に架線電圧と同期
した位相制御をするためにノ々ンタグラフ/と電流制御
器9の間に同期電源gが接続されて(・る。また、主幹
制御器10はノツチ信号や限流値を指令するものであり
、これも同様に電流制御器7に接続されている。また、
第2図には、通常の位相溜;]御を行っている状態での
第1図の各部の波形を示す。第2図において、ESは変
圧器コの2次側巻線の交流電圧、G3.ないしG3dは
それぞれ整流器3を構成するサイリスタ3aないし3d
の点弧信号を示す。さらに、Edは整流器3の出力電圧
すなわち電動機に印加させる電圧、Idは電動機に流れ
る電流、イして■sは変圧器λのλ次側巻線の交流If
流を示す。また、時刻T/およびTJは、変圧器コの3
2次側の霜7圧の方向が変わる時刻であり、時刻TIで
は点弧信号G3oとG3aが切り替わり時刻T3では点
弧信号G3(1と031)が切り替わる。
A motor consisting of an armature and a field winding B is connected to the output side of the rectifier 3 via a flat sliding axle φ. Normally, the thyristors 3a to 3d of the rectifier 3 are sequentially phase-controlled so that the current flowing through the motor has a constant value. Therefore, a current detector 7 for detecting the motor current Id is connected in series with the motor, and a rectifier 3
An ignition signal G3 is applied to each of Sai 1 Nostars 3a to 3d.
A current controller 9 is provided to provide a(・shiG3(1) (dotted line arrow shown in FIG. A synchronous power supply g is connected between the terminals 9 and 9. Also, the main controller 10 instructs the notch signal and the current limit value, and is also connected to the current controller 7. ,
FIG. 2 shows waveforms at various parts in FIG. 1 when normal phase accumulation control is being performed. In FIG. 2, ES is the AC voltage of the secondary winding of the transformer, G3. to G3d are thyristors 3a to 3d constituting the rectifier 3, respectively.
ignition signal is shown. Furthermore, Ed is the output voltage of the rectifier 3, that is, the voltage applied to the motor, Id is the current flowing to the motor, and s is the AC If of the λ secondary winding of the transformer λ.
Show flow. Also, time T/ and TJ are 3 of the transformer.
This is the time when the direction of the frost 7 pressure on the secondary side changes; at time TI, the ignition signals G3o and G3a switch, and at time T3, the ignition signal G3 (1 and 031) switches.

また一時刻T2は点弧信号GjbとG3dが切り替わる
時刻、時刻TFは点弧信号G3aとG3oが切り替わる
時刻である。
Further, one time T2 is the time when the firing signals Gjb and G3d switch, and the time TF is the time when the firing signals G3a and G3o switch.

次に第1し1および第ニレlによって動作を説明する。Next, the operation will be explained using the first and second parts.

まず1時刻TIから時刻’rxまでの間変圧器λ交流電
圧Esが第1図に示す椅性で加えられるとする。すると
一時刻T/で点弧信号G3aおよび()、ybが印加さ
れ、これによってサイリスク3aおよび3bはオンの状
態になり、3a→3b→9−)S→ル→7→3aの回路
が形成される。この時、電動機への印加電圧Edは零で
ある。次に時刻Tlから制御角αプの点である時刻Tλ
で、点弧信号G、7bが切れその代りG3(1が入り、
サイリスタ3bから3dへの転流作用が行なわれるので
、コ→3d→グ→S−+6→7→、? a −+ 2の
回路が形成され、電動機に電圧Edが与えられる。次に
時刻T3では、交流電圧gsの極性が逆になる。そして
点弧信号G3dが切れて代りにG、7bが入り、サイリ
スタ3dから3bへの転流作用が行なわれるので、時刻
TIからTJの期間と同様に3a→3b→グ→5→6→
7→3aの回路が形成され、電動機の印加電圧Edは零
となる。そして時刻Tぐでは点弧信号Gjaが切れて代
りにG3oが入り、サイリスタ3aから30へ転流作用
が行なわれるので、;→3b→q→S→6→7→Jc−
+コの回路が形成され、印加電圧Edが時刻TjからT
Jの期間と同じ方向に加えられ、以下同様な動作が繰り
返される。
First, it is assumed that the transformer λ AC voltage Es is applied at the rate shown in FIG. 1 from time TI to time 'rx. Then, at one time T/, ignition signals G3a, (), and yb are applied, which turns Cyrisks 3a and 3b on, forming a circuit of 3a→3b→9−)S→ru→7→3a. be done. At this time, the voltage Ed applied to the motor is zero. Next, time Tλ which is the point of control angle α from time Tl
Then, the ignition signal G, 7b is cut off, and instead, G3 (1 is entered,
Since the commutation action is performed from thyristor 3b to 3d, Ko→3d→G→S-+6→7→,? A −+ 2 circuit is formed and voltage Ed is applied to the motor. Next, at time T3, the polarity of the AC voltage gs is reversed. Then, the ignition signal G3d is cut off and G and 7b are turned on instead, and the commutation action from thyristor 3d to 3b is performed, so 3a → 3b → G → 5 → 6 →
A circuit 7→3a is formed, and the voltage Ed applied to the motor becomes zero. Then, at time T, the ignition signal Gja is cut off and G3o is turned on instead, and the commutation action is performed from the thyristor 3a to 30, so that; → 3b → q → S → 6 → 7 → Jc-
+ circuit is formed, and the applied voltage Ed changes from time Tj to T
It is applied in the same direction as the period J, and the same operation is repeated thereafter.

すなわち、作用はサイリスタとダイオードから構成され
る混合ブリッジと同じである。また、この時電動機に流
れる電流Idは平滑コイルダによって第2図のIdに示
すよ5に平滑される。
In other words, the operation is the same as that of a mixed bridge composed of a thyristor and a diode. Further, the current Id flowing through the motor at this time is smoothed to 5 by the smoothing coiler as shown by Id in FIG.

ところで、交流き電の場合、変電所相互の電圧や位相が
異なるためIC1同一の架線に2つ以上の7#電所から
給電を行う、いわゆる並列き電ができないので、隣接の
き電区間との間゛には交々セクシ円ンと呼はれる無電圧
区間が設けである。このよつな所では サイリスタに加
わる転流電圧がないために、転流作用ができなくなり、
通常の位相制御か行えないことになる。そこで第3(a
)図に、位相制御の途中で架線が無加圧になった場合の
各部の波形を示した。第3(a)図において、時刻TI
から91制御角αlの点でk)る時刻TJ′において架
a!電圧がなくなり、これにより変圧器ユの2次側の交
流型出E8が零になったとする。すると、これと同時に
同期電源gひいては電流制御器ワがオフになるので各ゲ
ント信号もオフになってしまい、その後は位相制御が不
可能となる。そして通常であねば交流■、圧E8が反転
する時刻T、7では、サイリスク3dから、3b”、の
転流作用が行なわれ、サイ1jスイ・、?aと一17□
 、l ll スタ、?bを、jして電動機電流■dを
継続するが、無加圧状態ではサイリスク3bが通流状態
にならないので、電動m直流Idは第3(b)図の破線
で示すように3a→コ→3dを通って流れる。つまりサ
イリスタの位相制御を架線電圧に同期させるために同期
電源tを用いているが、この同期電係γしこかかる電圧
も制御角α/すなわち時刻TJ’で無くなるので、それ
以後のサイリスタへの点弧信号GJaないしl)J、1
が発生できなくなる。そこで第3(b)図に示すような
電流Id(工。と同じ)が流れると、変圧器コに直流偏
磁が加えられることになり、交々セクンヨン通過後の架
線再加圧時に変圧器2に大きな励硼突流電、流が流れて
、保護装置を動作させたり、機器に損傷を与えることに
なる。
By the way, in the case of AC feeding, since the voltage and phase of each substation are different, so-called parallel feeding, in which power is fed from two or more 7# power stations to the same IC1 overhead line, is not possible, so it is not possible to perform so-called parallel feeding. A voltage-free section, sometimes called a sexy circle, is provided in between. In these types of places, there is no commutation voltage applied to the thyristor, so commutation is no longer possible.
Only normal phase control can be performed. Therefore, the third (a)
) The figure shows the waveforms of various parts when the overhead wire becomes unpressurized during phase control. In FIG. 3(a), time TI
At a time TJ' at a point of 91 control angle αl from k), the frame a! Assume that the voltage disappears, and as a result, the AC type output E8 on the secondary side of the transformer U becomes zero. Then, at the same time, the synchronous power supply g and, by extension, the current controller w are turned off, so that each of the gent signals is also turned off, and phase control becomes impossible thereafter. At time T, 7, when the AC ■ and the pressure E8 are reversed, the commutation action from Sai risk 3d to 3b'' is performed, and Sai 1j Sui...?a and -117□
, l ll star,? b, j and the motor current d continues, but in the non-pressurized state, the cyrisk 3b does not become a conductive state, so the motor m DC Id changes from 3a to the motor as shown by the broken line in Fig. 3(b). →Flows through 3d. In other words, a synchronous power supply t is used to synchronize the phase control of the thyristor with the overhead line voltage, but since the voltage applied to this synchronous voltage γ also disappears at the control angle α/that is, at time TJ', the thyristor is subsequently Firing signal GJa to l) J, 1
cannot occur. Therefore, when a current Id (same as d) as shown in Fig. 3(b) flows, DC biased magnetization is applied to the transformer, and when the overhead wire is repressurized after passing through Saekung Yong, the transformer 2. A large rush current will flow through the device, activating the protective device or damaging the equipment.

このような現象が生じるので、従来は交々セクションの
手前で運転士が予め主幹制御器の7ソチをメツにして、
主回路を開放した状態で通過していた。また、これは交
々セクションのみならず、架線停電の際にも生じ、直流
偏磁を発生させる電流は平滑11アクドルのf[用と札
まって数秒間継続することがあった。
Because such a phenomenon occurs, conventionally, the driver sets the main controller's 7 sochi in advance before each section.
It was passing through with the main circuit open. In addition, this problem occurred not only at the alternating sections but also during a power outage in the overhead line, and the current that caused the DC bias current could continue for several seconds as if it was due to the f[f] of the smoothing 11 axle.

このように、従来の方法では運転士が予めノツチオフを
行なうということから、運転士に負担が掛かる。セクン
ヨン付近で減速する必要がある等の問題がよ)つた。
As described above, in the conventional method, the driver performs the notch-off in advance, which places a burden on the driver. There were some problems, such as the need to slow down near Sekunyong.

この発明は、従来の方法の問題点に鑑みてなされ7こも
のQ、架線が無卯圧になると直ちにサイリスクを強制的
にポl流状態にして、変圧器の直流側イーが生じないよ
うにした交流電気車の制御方法を提供″1−ることを目
的としている。
This invention was made in view of the problems of the conventional method, and as soon as the overhead line becomes unloaded, the current is forcibly brought into the current state, so that the direct current side E of the transformer does not occur. The purpose of this invention is to provide a control method for an AC electric vehicle.

そこで、第1ンII/(この発明に基づく主回路の構成
図を示す。第9図において第1図に示した従来例と異な
るところは、同期電源りの他((、架線電圧を検出する
プこめの架線電圧検知器/lがパンタグラフ/に直接接
続されていることと、電流制御器/コの!1・¥厩が第
1図に示した従来例のものと顆なることである、。
Therefore, a configuration diagram of the main circuit based on the present invention is shown in Fig. 9. The difference from the conventional example shown in Fig. 1 in Fig. 9 is that in addition to the synchronous power supply, The main points are that the overhead wire voltage detector/l is directly connected to the pantograph/, and that the current controller/co's !1/m is the same as that of the conventional example shown in Fig. .

そこ″(゛、乃↓3[21に、宵流jK、j御器lコを
中心にした;Ttll iJI系のイ1イ成【71を示
し/こ。7は電流検出器、9は同1111箱、曽そし“
L / 0−王幹111]御器であり、これらは第1図
のものと同じである。また、l/は架線電圧検知器そし
て/2は電流制御器である。電流制御器12は、主幹制
御器lθなどから指令される限流値と電動機に流れる電
流を検出する電流積ガB7の出力九比較する比較器/2
a、この比較器/2aの出力と同期電源?の出力を用い
てサイリスタの制御位相角を決定する位相器/2b、な
らびに位相器/2bの出力を増巾して整流器3のサイリ
スタに点弧信号を与える点弧回路talcより構成され
る。架線電圧検知器//の出力は。
There''(゛、ノ↓3[21 shows the 11 construction of the Ttll iJI system, centered on Yoiri jK and jgoki l. 7 is the current detector, and 9 is the same. 1111 boxes, Sososhi”
L/0-Ogan 111] Imperial vessels, and these are the same as those in Figure 1. Also, l/ is an overhead wire voltage detector and /2 is a current controller. The current controller 12 includes a comparator/2 that compares the current limit value commanded from the master controller lθ etc. with the output of the current generator B7 that detects the current flowing through the motor.
a. Output of this comparator/2a and synchronous power supply? It is composed of a phase shifter/2b which determines the control phase angle of the thyristor using the output of the phase shifter/2b, and an ignition circuit talc which amplifies the output of the phase shifter/2b and provides an ignition signal to the thyristor of the rectifier 3. The output of the overhead line voltage detector // is.

点弧回路/2Cに与えられる。なお、制御系の構成によ
っては、架線電圧検知器llの出力は位相器/:lbに
与えられることもある。また、第6図(a)には、位相
制御の途中で架線が無加圧になった場合の、第9図に示
した装置の各部の波形を示した。第6図、(a)中の記
号は第3図(a)の場合と同じである。
Applied to ignition circuit /2C. Note that depending on the configuration of the control system, the output of the overhead line voltage detector ll may be given to the phase shifter /:lb. Further, FIG. 6(a) shows waveforms of various parts of the apparatus shown in FIG. 9 when the overhead wire becomes unpressurized during phase control. The symbols in FIG. 6(a) are the same as in FIG. 3(a).

そこで、架線が無加圧になった時の動作について説明す
る。第6(a)図において時刻Ttから制御角α/の点
である時刻TJ’において架線が無加圧になり、変圧器
λの一次側の交流電圧Esが零になる。そこで、架線電
圧検知器//が電流制御器/、2の点弧回路/、2cに
架線が無加圧になったことを知らせる信号を送り、この
信号によって点弧回路/2cは整流器3の全てのサイリ
スク3aないし3dに点弧信号を与える。従って全ての
サイリスタ3aないし、?dは通流状態となり、電動機
電流Idは第6(b)図に示すように流れる。サイリス
タが通流状態になった時点で変圧器コに流れる支流電流
工。は零となり、直流偏磁を与えることはない。そして
、交々セクションを通過して架線電圧が復帰すると 通
常の位相制御を再び開始する。尚、サイリスタの点弧信
号は架線が無加圧になった状態で発生できるようにバッ
テリー(図示しtCい)から供給することになる。また
、架線電圧検知器//の検出レベルは、架線電圧の変動
範囲等を考慮して決定される。
Therefore, the operation when the overhead wire is not pressurized will be explained. In FIG. 6(a), at time TJ', which is a point at a control angle α/ from time Tt, the overhead wire becomes unpressurized, and the AC voltage Es on the primary side of transformer λ becomes zero. Therefore, the overhead wire voltage detector // sends a signal to the current controller /, 2's ignition circuit /, 2c to inform that the overhead wire is no longer pressurized, and this signal causes the ignition circuit /2c to switch to the rectifier 3's ignition circuit /, 2c. An ignition signal is given to all the scissors 3a to 3d. Therefore, all thyristors 3a are not? d becomes a conductive state, and the motor current Id flows as shown in FIG. 6(b). A tributary current flows to the transformer when the thyristor becomes conductive. becomes zero and does not give any direct current bias. Then, when the overhead line voltage returns after passing through several sections, normal phase control resumes. Incidentally, the ignition signal for the thyristor is supplied from a battery (tC in the figure) so that it can be generated in a state where the overhead wire is not pressurized. Further, the detection level of the overhead line voltage detector // is determined in consideration of the fluctuation range of the overhead line voltage, etc.

尚、上述した実施例では、架線電圧が無くなった際にサ
イリスタ3aないし3dのqつのサイリスク全てを点弧
して通流状態にしたが、サイリスタ3aおよび3bだけ
であってもよい。すなわちこれはブリッジの片側アーム
のみの通流でも、陶じ効果が得られるということである
。たとえば、第9図の整流器3が、サイリスタとダイオ
ードより構成される混合ブリッジであって、サイリスタ
3aおよび3bの部分がダイオードで構成されていれば
、サイリスタ3cあるいはサイリスタ3dの点弧信号が
無くなると自然にダイオード側に電流が移るので、変圧
器に直流偏磁を加えることはなく、問題にはならない。
In the above-described embodiment, when the overhead line voltage disappears, all the q thyristors 3a to 3d are turned on to conduct electricity, but only the thyristors 3a and 3b may be turned on. In other words, this means that even if only one arm of the bridge is allowed to flow, the same effect can be obtained. For example, if the rectifier 3 in FIG. 9 is a mixed bridge composed of a thyristor and a diode, and the thyristors 3a and 3b are composed of diodes, when the firing signal of the thyristor 3c or thyristor 3d disappears, Since the current naturally transfers to the diode side, there is no direct current bias applied to the transformer, so there is no problem.

また、架線電圧検知器は、変圧器の1次側のみならず、
2次側等、他の巻線の検知器とすることも可能である。
In addition, the overhead line voltage detector is used not only on the primary side of the transformer, but also on the primary side of the transformer.
It is also possible to use a detector for other windings such as the secondary side.

さらにこの方法は、変圧器の2次側巻線が多分割されて
いて整流器が複数段縦続されている場合にも、容易に適
用できる。
Furthermore, this method can be easily applied even when the secondary winding of the transformer is multi-divided and multiple stages of rectifiers are connected in cascade.

以上のように、この発明による制御方法の適用によって
、従来のように架線の無加圧区間において、その都度、
主幹制御器のノツチをオフすることが不必要となり、運
転操作が容易となり、走行速度の向上にもつながるとい
う効果が得られる。
As described above, by applying the control method according to the present invention, in the unpressurized section of the overhead wire, as in the conventional case,
It is no longer necessary to turn off the notch of the main controller, which facilitates driving operation and improves running speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の代表的な交流車気車の主回路の構成図、
第2図は第1図の回路中の各部の波形図、第3(a)図
は位相制御中に架線が無加圧になった場合の各部の波形
図、第3(b)図は架線が無加圧忙なった場合の整流器
中の電流路図、第q図はこの発明に基づく主回路の構成
図、第S図は主回路の制御系の構成図、第A (a1図
は位相制御中に架線が無加圧になった場合の各部の波形
図、第6(b)図は架線が無加圧になった場合の整流器
中の電流路図である。 3・・整流器、3 a 、 J b 、 、? cおよ
び、7d−・サイリスタ、7・・電流検出器、?・・同
期電源、10・・主幹制御器、/ ・・架線電圧検知器
、/コ・・電流制御器、/2e1・・比較器、/、2b
・・位相器、/コC・・点弧回路。 なお1図中、同一符号は同一、又は相当部分を示す。 代理人    葛  野  信  −
Figure 1 is a configuration diagram of the main circuit of a typical conventional AC train.
Figure 2 is a waveform diagram of each part in the circuit of Figure 1, Figure 3(a) is a waveform diagram of each part when the overhead wire is not pressurized during phase control, and Figure 3(b) is a waveform diagram of each part of the overhead wire. Figure q is a block diagram of the main circuit based on this invention, Figure S is a block diagram of the control system of the main circuit, and Figure A is a diagram of the current path in the rectifier when no pressure is applied. A waveform diagram of each part when the overhead wire becomes non-pressurized during control, and Figure 6(b) is a current path diagram in the rectifier when the overhead wire becomes non-pressurized. 3. Rectifier, 3 a, Jb, ?c and 7d--thyristor, 7--current detector, ?--synchronous power supply, 10--master controller, /...overhead line voltage detector, /co--current controller , /2e1... comparator, /, 2b
・・Phase shifter, /C・・Ignition circuit. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] サイリスクの純ブリッジで構成された整流器を備える交
流電気車において、前記交流電気車が架線の無加圧区間
を通過する時または架線停電時に、前記サイリスタを強
制的に通流状態にすることを特徴とした交流電気車の制
御方法。
An AC electric car equipped with a rectifier configured with a pure bridge of Cyrisk, characterized in that the thyristor is forced into a conducting state when the AC electric car passes through an unpressurized section of an overhead wire or during a power outage. A control method for an AC electric car.
JP58058203A 1983-03-31 1983-03-31 Controlling method of ac electric railcar Pending JPS59185102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58058203A JPS59185102A (en) 1983-03-31 1983-03-31 Controlling method of ac electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58058203A JPS59185102A (en) 1983-03-31 1983-03-31 Controlling method of ac electric railcar

Publications (1)

Publication Number Publication Date
JPS59185102A true JPS59185102A (en) 1984-10-20

Family

ID=13077470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58058203A Pending JPS59185102A (en) 1983-03-31 1983-03-31 Controlling method of ac electric railcar

Country Status (1)

Country Link
JP (1) JPS59185102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114903U (en) * 1984-12-27 1986-07-21
KR100629429B1 (en) 2004-12-24 2006-09-27 한국철도기술연구원 Railway System and Method for Sustaining Feeding Voltage of Overhead Wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114903U (en) * 1984-12-27 1986-07-21
KR100629429B1 (en) 2004-12-24 2006-09-27 한국철도기술연구원 Railway System and Method for Sustaining Feeding Voltage of Overhead Wire

Similar Documents

Publication Publication Date Title
US5451846A (en) Low current compensation control for thyristor armature power supply
US4471421A (en) Means for controlling a forced commutated hybrid a-c to d-c electric rectifying bridge to avoid reverse recovery overvoltage in the diode leg
US4092577A (en) Dynamic braking of direct current motors
US1911356A (en) Motor control system
US4321478A (en) Auxiliary power supply with kinetic energy storage
US4380724A (en) Shunt field control apparatus and method
JPS59185102A (en) Controlling method of ac electric railcar
US4467408A (en) Means for controlling a forced commutated ac-to-dc electric rectifying circuit to avoid commutation failure
US4454455A (en) Fault responsive means for changing control sequence of a multiple-bridge electric power converter
JP3186281B2 (en) AC electric vehicle control device
US2818542A (en) Braking control systems for direct current motors
JPS59159602A (en) Thyristor firing angle controller for ac electric rolling stock
JPS6426380A (en) Method and apparatus for controlling cage-type motor
US4420713A (en) Turn-off control means for an ac-to-dc electric power converter
JPH0114818B2 (en)
US4136305A (en) Power converter control apparatus
JPH0993791A (en) Ac deltai type failure selection method
JP2672885B2 (en) Power failure detection device for AC electric vehicles
JPH056402B2 (en)
JP2766584B2 (en) AC electric vehicle control device
JP2509890B2 (en) Pulse width modulation control method for AC / DC converter
CA1201516A (en) Fault responsive means for changing control sequence of a multiple-bridge electric power converter
JPS5843999B2 (en) Regenerative motor control device with improved ignition circuit
SU1017146A1 (en) DEVICE FOR PROTECTION OF ALTERNATING CURRENT GENERATOR FROM A SHORT CIRCUIT
JPH0750962B2 (en) AC electric vehicle control device