JPS63291698A - Biological denitrification of waste water - Google Patents

Biological denitrification of waste water

Info

Publication number
JPS63291698A
JPS63291698A JP12896387A JP12896387A JPS63291698A JP S63291698 A JPS63291698 A JP S63291698A JP 12896387 A JP12896387 A JP 12896387A JP 12896387 A JP12896387 A JP 12896387A JP S63291698 A JPS63291698 A JP S63291698A
Authority
JP
Japan
Prior art keywords
tank
sludge
aerobic
anaerobic
anaerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12896387A
Other languages
Japanese (ja)
Inventor
Muneharu Ueno
植野 宗治
Kazuo Kimoto
和雄 木本
Koichi Miyazaki
浩一 宮崎
Masamitsu Torigoe
鳥越 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP12896387A priority Critical patent/JPS63291698A/en
Publication of JPS63291698A publication Critical patent/JPS63291698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To effectively remove a BOD component and nitrogen in waste water by maintaining the concentration of sludge in an aerobic tank at high level and also keeping the high concentration of dissolved oxygen in the aerobic tank by means of high concentration oxygen aeration. CONSTITUTION:Raw water 3 is permitted to flow into an anaerobic tank 1 and concentrated sludge solution containing nitric acid and nitrogen nitrite is introduced from an aerobic tank 2 to the anaerobic tank 1 so that said solution may be stirred and mixed with raw water, and this mixture be denitrified with adsorption of a BOC component into sludge. Next, the mixture in the anaerobic tank 1 is introduced into a precipitation tank 4 to be precipitated and separated into treated water 5 and concentrated sludge, and to permit treated water to flow out. In the meantime, the concentrated sludge is returned to the aerobic tank 2 and its is aerated with high-concentration oxygen 8 at high sludge concentration to decompose the BOD component adsorbed in said sludge and the nitrogen component of the mixed liquid into nitric acid and nitrogen nitrite through oxidation. Then the mixed liquid is again permitted into the anaerobic tank 1. Subsequently, the activity of nitration bacteria is increased and thereby effective waste water treatment is achieved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はBODおよび窒素成分を含む廃水の処理方法、
更に詳しくは都市下水、団地廃水および工場廃水等の処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for treating wastewater containing BOD and nitrogen components;
More specifically, the present invention relates to a method for treating urban sewage, housing complex wastewater, factory wastewater, and the like.

従来技術および問題点 従来より、活性汚泥法が各種廃水の浄化に広く採用され
ており、BODおよび窒素成分の処理にも活性汚泥法が
採用されている。しかし、従来の活性汚泥法による処理
は廃水中の窒素の除去率が低く、また、硝化、脱窒に際
して水素供与体等を必要とするなどの問題があり、必ず
しも満足し得るものではない。
Prior Art and Problems Activated sludge methods have been widely used to purify various wastewaters, and have also been used to treat BOD and nitrogen components. However, the treatment using the conventional activated sludge method has problems such as a low removal rate of nitrogen from wastewater and the need for a hydrogen donor during nitrification and denitrification, and is not necessarily satisfactory.

このような活性汚泥法の改良として、特公昭56−11
58号は活性汚泥中の細菌の硝化、脱窒作用を利用し、
廃水中から高効率でしかも水素供与体としての有機化合
物を添加することを要せず窒素を連続的に効率よく除去
し得る廃水処理法を開示している。
As an improvement of this activated sludge method,
No. 58 utilizes the nitrification and denitrification effects of bacteria in activated sludge,
Disclosed is a wastewater treatment method that can continuously and efficiently remove nitrogen from wastewater without requiring the addition of an organic compound as a hydrogen donor.

本発明者らは、活性汚泥法における接触安定化法を応用
して、好気槽の汚泥濃度を高濃度に維持し、かつ、高濃
度酸素曝気による好気槽の溶存酸素濃度を高く維持すれ
ば廃水処理における、さらに効果的な窒素の除去ができ
ることを見出し、本発明を完成するに至った。
The present inventors applied the contact stabilization method in the activated sludge method to maintain the sludge concentration in the aerobic tank at a high concentration, and to maintain the dissolved oxygen concentration in the aerobic tank at a high concentration by high-concentration oxygen aeration. The present inventors have discovered that nitrogen can be removed even more effectively in wastewater treatment, and have completed the present invention.

問題点を解決するための手段 本発明は、活性汚泥により廃水中のBOD成分および窒
素を除去する生物学的脱窒方法において、好気槽、嫌気
槽および沈降槽を設け、原水を嫌気槽に流入させ、好気
槽から硝酸および亜硝酸性窒素を含有する濃縮汚泥液を
嫌気槽に導入して該原水とを撹拌混合して脱窒とBOD
成分の汚泥への吸着を行ない、ついで、嫌気槽内の混合
液を沈降槽に導入して処理水および濃縮汚泥に沈降分離
し、処理水を流出させる一方、該濃縮汚泥を好気槽に返
送して高汚泥農度のまま高濃度酸素により曝気して該汚
泥に吸着したBOD成分および混合液中の窒素成分を硝
酸および亜硝酸性窒素に酸化分解し、再び面記嫌気槽に
流入させることを特徴とする廃水の生物学的脱窒方法を
提供するものである。
Means for Solving the Problems The present invention provides a biological denitrification method for removing BOD components and nitrogen from wastewater using activated sludge. The concentrated sludge liquid containing nitric acid and nitrite nitrogen is introduced from the aerobic tank into the anaerobic tank and mixed with the raw water to denitrify and BOD.
The components are adsorbed into the sludge, and then the mixed liquid in the anaerobic tank is introduced into the settling tank where it is sedimented and separated into treated water and thickened sludge, and while the treated water is discharged, the thickened sludge is returned to the aerobic tank. The sludge is then aerated with high-concentration oxygen while the sludge remains at a high agricultural concentration to oxidize and decompose the BOD components adsorbed to the sludge and the nitrogen components in the mixed solution into nitric acid and nitrite nitrogen, which are then allowed to flow into the anaerobic tank again. The present invention provides a biological denitrification method for wastewater characterized by the following.

本発明の方法によれば、さらに、該嫌気槽と該沈降槽と
の間に再曝気槽またはこれと、該好気槽と嫌気槽との間
に酸素消費槽を設けてもよく、該酸素消費槽で液中の溶
存酸素を完全に消費した後に嫌気槽に流入し、また再曝
気槽で嫌気槽から流出した汚泥を好気状態にした後に沈
降分離してもよい。
According to the method of the present invention, a reaeration tank may be provided between the anaerobic tank and the settling tank, or an oxygen consumption tank may be provided between the aerobic tank and the anaerobic tank, After the dissolved oxygen in the liquid is completely consumed in the consumption tank, the sludge flows into the anaerobic tank, and the sludge flowing out from the anaerobic tank may be brought into an aerobic state in the reaeration tank and then subjected to sedimentation separation.

本発明の方法はN/B ODが1/20以上の割合でB
OD成分と窒素成分を含有しかつpHが6〜8または、
この範囲に調整した都市下水、団地廃水および工場廃水
を処理するのに好適であり、例えば、BOD成分250
 R9/(l以下、窒素成分6019/(l以下の都市
下水処理に好適である。該処理原水のpg(の調整は、
例えば調整槽を設けて常法により酸またはアルカリを用
いてp)[調整を行なう。
In the method of the present invention, N/B OD is 1/20 or more.
Contains an OD component and a nitrogen component and has a pH of 6 to 8, or
It is suitable for treating urban sewage, housing complex wastewater, and factory wastewater adjusted to this range, for example, BOD component 250
Suitable for urban sewage treatment with R9/(l or less, nitrogen content of 6019/(l or less). Adjustment of pg (of the treated raw water)
For example, an adjustment tank is provided, and p) [adjustment is carried out using an acid or an alkali in a conventional manner.

本発明における嫌気槽は通常1槽であり、槽内の液が溶
存酸素を含有しない嫌気性の状態に保たれるものであれ
ば良いが、好気槽で酸素曝気を行なうために嫌気槽に導
入される循環液の溶存酸素濃度が高い場合には、嫌気槽
で溶存酸素に上り脱窒反応が抑制されて効果的に行なわ
れない。このような場合、嫌気槽を2槽以上、または2
段以上に分割し、液中の溶存酸素を第1の嫌気槽で完全
に消費することもできる。
The anaerobic tank in the present invention is usually one tank, and it is sufficient if the liquid in the tank can be maintained in an anaerobic state containing no dissolved oxygen, but in order to perform oxygen aeration in the aerobic tank, If the dissolved oxygen concentration in the circulating fluid introduced is high, dissolved oxygen will rise in the anaerobic tank and the denitrification reaction will be suppressed and will not be carried out effectively. In such cases, two or more anaerobic tanks or two
It is also possible to divide the tank into more than one stage and completely consume the dissolved oxygen in the liquid in the first anaerobic tank.

嫌気槽には、BOD成分とアンモニア性窒素(NH;−
N)を含む処理原水および硝酸、亜硝酸性窒素(N O
s  N −N O;−N )を含む活性汚泥の濃縮液
が流入する。嫌気槽は通常の機械的撹拌により槽内の汚
泥濃度が均一となるように撹拌し、槽上部の気相部に酸
素がないようにする。嫌気槽では前記のごとく、好気槽
からの混合液および原水により持ち込まれる溶存酸素が
消費されると共に硝酸、亜硝酸性窒素が窒素(Nt)に
還元され、また原水中のBOD成分が汚泥に吸着されて
液中より除去される。
The anaerobic tank contains BOD components and ammonia nitrogen (NH;-
Treated raw water containing nitrogen (N) and nitric acid, nitrite nitrogen (N
A concentrated activated sludge containing s N -N O; -N flows in. The anaerobic tank is stirred using normal mechanical agitation so that the sludge concentration in the tank is uniform, and there is no oxygen in the gas phase at the top of the tank. As mentioned above, in the anaerobic tank, dissolved oxygen brought in by the mixed liquid and raw water from the aerobic tank is consumed, and nitrate and nitrite nitrogen are reduced to nitrogen (Nt), and BOD components in the raw water are converted to sludge. It is adsorbed and removed from the liquid.

嫌気槽での滞留時間は、原水中の窒素濃度、水温、返送
汚泥の循環量およびpH等により変動するが、一般的な
下水の場合、水温15℃(硝化反応が最も低下する冬期
)で通常、原水基準で3時間以内である。
The residence time in the anaerobic tank varies depending on the nitrogen concentration in the raw water, water temperature, circulation amount of returned sludge, pH, etc., but in the case of general sewage, it is usually at a water temperature of 15°C (in winter when the nitrification reaction is the lowest). , within 3 hours based on raw water.

嫌気槽の汚泥濃度(MLSS)は、通常4.000〜1
5,000H/Q、好ましくは5,000〜10.00
(IMg/ρ程度である。
The sludge concentration (MLSS) of the anaerobic tank is usually 4.000 to 1.
5,000H/Q, preferably 5,000 to 10.00
(It is about IMg/ρ.

嫌気槽から流出した混合液は通常の場合、直接沈降槽に
流入させるが、BOD成分を吸着した活性汚泥が沈降槽
内で腐敗する恐れのある場合、或いは原水中のBOD成
分のうち溶解性BOD成分の割合が高く、嫌気槽での汚
泥の吸着が充分にできない場合、嫌気槽と好気槽との間
に再曝気槽を設け、該再曝気槽を通すこと1どよって溶
解性BOD成分の分解お上びその汚泥への吸着を促進す
ることが好ましい。
Normally, the mixed liquid that flows out of the anaerobic tank is directly flowed into the settling tank, but in cases where the activated sludge that has absorbed BOD components is likely to rot in the settling tank, or when soluble BOD among the BOD components in the raw water is If the proportion of sludge is high and the sludge cannot be adsorbed sufficiently in the anaerobic tank, install a reaeration tank between the anaerobic tank and the aerobic tank and pass the sludge through the reaeration tank 1. It is preferable to promote decomposition and its adsorption to sludge.

再曝気槽は密閉型であり、槽上部の気相部に酸素濃度4
0%以上の高濃度酸素ガスを供給して槽内を酸素濃度3
5%以上のガスで曝気を行い、溶解性濃度を2 mgI
Q以上に維持することが好ましい。
The reaeration tank is a closed type, with an oxygen concentration of 4 in the gas phase at the top of the tank.
By supplying high concentration oxygen gas of 0% or more, the oxygen concentration inside the tank is 3.
Aerate with 5% or more gas to reduce the soluble concentration to 2 mgI
It is preferable to maintain it at or above Q.

なお、再曝気槽は空気曝気でもよい。Note that the reaeration tank may be an air aeration tank.

曝気は表面曝気、ガス循環曝気等の通常用いられる曝気
手段を用いることができる。
For aeration, commonly used aeration means such as surface aeration and gas circulation aeration can be used.

再曝気槽内での滞留時間は(エアレーション時間として
)通常15分以上、1時間以内が好ましい。
The residence time in the reaeration tank (as aeration time) is usually 15 minutes or more and preferably 1 hour or less.

次いで、液を沈降槽に流入させ、重力沈降により固液分
離を行ない、上澄水は処理水として流出させ、沈降した
汚泥は汚泥返送ラインを介して好気槽に返送する。この
返送汚泥量は、流入原水量に対して1〜5倍、好ましく
は1〜3倍であるが、汚泥の量が過剰となった場合は余
剰汚泥として系外に排出することが好ましい。
Next, the liquid flows into a settling tank, where solid-liquid separation is performed by gravity settling, the supernatant water is discharged as treated water, and the settled sludge is returned to the aerobic tank via the sludge return line. The amount of returned sludge is 1 to 5 times, preferably 1 to 3 times, the amount of inflow raw water, but if the amount of sludge becomes excessive, it is preferable to discharge it to the outside of the system as surplus sludge.

好気槽は通常l槽であるが、酸素の利用効率を高めるた
め、前記嫌気槽と同様に、好気槽を2)!以上または2
段以上分割しても良い。好気槽は、上部気相部が密閉さ
れており、気相部の高濃度酸素の循環曝気や機械的表面
曝気により酸素の供給と液の撹拌を行ない、混合液中の
窒素成分を酸化分解する。本発明の方法では酸素の他に
炭酸ガスや窒素を含む排ガスは適宜系外へ排出される。
The aerobic tank is usually a 1 tank, but in order to increase oxygen utilization efficiency, an aerobic tank is used in the same way as the anaerobic tank 2)! or more or 2
It may be divided into more than one stage. The upper gas phase of an aerobic tank is sealed, and the nitrogen components in the mixed liquid are oxidized and decomposed by supplying oxygen and stirring the liquid through circulating aeration of high-concentration oxygen in the gas phase and mechanical surface aeration. do. In the method of the present invention, exhaust gas containing carbon dioxide and nitrogen in addition to oxygen is appropriately discharged to the outside of the system.

好気槽中に導入する酸素のa度は90%以上とすること
が好ましく、該酸素ガス流の好気槽内液の流れに対する
方向は並流および向流のいずれでも良い。
The a degree of oxygen introduced into the aerobic tank is preferably 90% or more, and the direction of the oxygen gas flow relative to the flow of the liquid in the aerobic tank may be either cocurrent or countercurrent.

好気槽内の汚泥濃度(MLSS)はs、o o o〜2
0.000x9/121好ましくはI O,000〜1
5.00019/+2である。
The sludge concentration (MLSS) in the aerobic tank is s, o o o~2
0.000x9/121 preferably IO,000~1
It is 5.00019/+2.

また、好気槽内液中の溶存酸素濃度は硝化反応の重要な
操作因子であり、2J+97σ以上、好ましくは4〜1
0119/I2となるようにする。
In addition, the dissolved oxygen concentration in the aerobic tank solution is an important operating factor for the nitrification reaction, and is 2J + 97σ or more, preferably 4 to 1
0119/I2.

好気槽での滞留時間は、嫌気槽での場合と同様に各種因
子により異なるが、一般的な下水の場合、水温15℃(
硝化反応が最も低下する冬期)で通常、原水基準で4時
間以内、また窒素濃度60xg/Q、水温15℃で原水
基準として最高6時間程度が好ましい。
The residence time in an aerobic tank varies depending on various factors, as in the case of an anaerobic tank, but in the case of general sewage, the water temperature is 15℃ (
(winter season, when the nitrification reaction is the lowest), it is usually within 4 hours based on raw water, and preferably about 6 hours at maximum at a nitrogen concentration of 60 x g/Q and a water temperature of 15°C based on raw water.

好気槽からの流出液は通常そのままの状態で再び嫌気槽
に送られるが、液中に最高10o/Q程度の溶存酸素濃
度を含む場合があり、このような場合、溶存酸素が好気
的に酸化分解し、BOD成分を消費するため脱窒反応に
必要なりOD酸成分欠乏することになる結果、該反応か
遅延するという問題が生ずる。かかる不具合を防止する
ため、好気槽と嫌気槽との間に酸素消費槽を設け、汚泥
の呼吸作用により液中の溶存酸素を完全に消費してO究
9/Qにした後、嫌気槽に流入させる。
The effluent from the aerobic tank is normally sent as is to the anaerobic tank, but it may contain a dissolved oxygen concentration of up to 10o/Q. Since the oxidative decomposition occurs and the BOD component is consumed, the OD acid component required for the denitrification reaction becomes depleted, resulting in a problem that the reaction is delayed. In order to prevent such problems, an oxygen consumption tank is installed between the aerobic tank and the anaerobic tank, and after the dissolved oxygen in the liquid is completely consumed by the breathing action of the sludge and the temperature reaches 9/Q, the anaerobic tank is opened. to flow into.

酸素消費槽は、気相部がないかまたは気相部があっても
酸素が存在しなければ良い。また核種は特に撹拌装置を
必要としないが、槽内に汚泥が蓄積することのない構造
になっている。この酸素消費槽での滞留時間は15分以
内が好ましい。
The oxygen consumption tank may have no gas phase, or may have a gas phase but no oxygen. Furthermore, although the nuclide does not require a particular stirring device, the structure is designed to prevent sludge from accumulating in the tank. The residence time in this oxygen consumption tank is preferably 15 minutes or less.

前記のごとく、本発明においては、再曝気槽、酸素消費
槽は必ずしも設ける必要はなく、また、いずれか一方、
または両方を設けてもよい。
As mentioned above, in the present invention, it is not necessary to provide a reaeration tank and an oxygen consumption tank, and either one of them,
Or both may be provided.

以下、添付の図面を用いて本発明の方法を具体的に説明
する。
Hereinafter, the method of the present invention will be specifically explained using the accompanying drawings.

図面中、第1図は本発明方法の1具体例のフロー・ンー
トである。この具体例は、嫌気槽11好気槽2および沈
降槽4を設けて行なうもので、嫌気[1は第1嫌気槽1
′および第2嫌気槽ビ、好気槽2は第1好気槽2′およ
び第2好気槽2″に分割されている。原水3はpH%整
槽9でp)19整後、第1嫌気槽1′に導入され、ここ
で第2好気槽2″からの硝酸および亜硝酸性窒素を含有
する濃縮汚泥液と混合され、脱窒とBODの汚泥への吸
着が行なわれる。第2嫌気槽1″で脱窒とBODの汚泥
への吸着が完了する。ついで、嫌気槽l内の混合液は沈
降槽4で汚泥と処理水に分離され、処理水5は系外へ流
出する。一方、沈降した汚泥は、汚泥返送ライン6を介
して第1好気槽2′に返送され、余剰汚泥はライン12
を介して系外へ排出される。第1好気槽2′ではライン
8より高濃度酸素が密閉槽上部の気相部へ供給され、そ
の循環曝気による硝化が行なわれ、かつ、生じた排ガス
がライン7より糸外へ排出される。第2好気槽で硝化が
完了した混合液は第1嫌気槽1′へ導入され、処理原水
3と混合され、以下同様に処理が進行する。
In the drawings, FIG. 1 is a flow chart of one specific example of the method of the present invention. In this specific example, an anaerobic tank 11, an aerobic tank 2, and a sedimentation tank 4 are provided.
' and the second anaerobic tank 2, and the aerobic tank 2 is divided into the first aerobic tank 2' and the second aerobic tank 2''.The raw water 3 is pH% adjusted tank 9. The sludge is introduced into the first anaerobic tank 1', where it is mixed with the concentrated sludge liquid containing nitric acid and nitrite nitrogen from the second aerobic tank 2'', and denitrification and BOD adsorption to the sludge are performed. Denitrification and adsorption of BOD to the sludge are completed in the second anaerobic tank 1''.Then, the mixed liquid in the anaerobic tank 1 is separated into sludge and treated water in the sedimentation tank 4, and the treated water 5 flows out of the system. On the other hand, the settled sludge is returned to the first aerobic tank 2' via the sludge return line 6, and excess sludge is returned to the first aerobic tank 2' via the sludge return line 6.
is discharged from the system via the In the first aerobic tank 2', highly concentrated oxygen is supplied from line 8 to the gas phase in the upper part of the closed tank, nitrification is performed by circulating aeration, and the generated exhaust gas is discharged from line 7 to the outside of the yarn. The mixed liquid that has been nitrified in the second aerobic tank is introduced into the first anaerobic tank 1', mixed with the treated raw water 3, and the treatment proceeds in the same manner.

第2図は本発明方法のもう1つの具体例のフロー・シー
トで、好気槽2と嫌気槽1の間に酸素消費槽lO1嫌気
槽lと沈降槽4との間に再曝気槽11を設け、好気槽に
おける酸素を再曝気槽に導入し、再曝気槽から排気する
点が第1図のフローと異なる。前記のごとく、酸素消費
槽10では溶存酸素を消費させて脱室反応の遅延を防止
する。
FIG. 2 is a flow sheet of another specific example of the method of the present invention, in which an oxygen consumption tank 1O1 is provided between the aerobic tank 2 and the anaerobic tank 1, and a reaeration tank 11 is provided between the anaerobic tank 1 and the sedimentation tank 4. The flow differs from the flow shown in FIG. 1 in that the oxygen in the aerobic tank is introduced into the reaeration tank, and the air is exhausted from the reaeration tank. As described above, dissolved oxygen is consumed in the oxygen consumption tank 10 to prevent a delay in the escape reaction.

また、再曝気槽では溶解性BOD成分の分解、汚泥への
吸着が促進される。
Further, in the reaeration tank, decomposition of soluble BOD components and adsorption to sludge are promoted.

第3図は比較のための、従来の活性汚泥法の1例を示す
フロー・シートで、嫌気槽lと好気槽2との間に廃水−
汚泥混合液の循環ライン6′を設けている点で本発明方
法のフローと基本的に異なり、また、好気槽では空気を
用いて酸化を行なう。
Figure 3 is a flow sheet showing an example of the conventional activated sludge method for comparison.
The flow is fundamentally different from that of the method of the present invention in that a circulation line 6' for the sludge mixture is provided, and oxidation is carried out using air in the aerobic tank.

このため、好気槽での溶存酵素濃度を高めることができ
ず、また、硝化速度ら遅くなる。
For this reason, it is not possible to increase the dissolved enzyme concentration in the aerobic tank, and the nitrification rate becomes slow.

第4図は、もうtつの従来の活性汚泥法の1例を示すフ
ロー・シートで、嫌気槽lと沈降槽4の間に好気槽2を
設け、また、廃水−汚泥混合液の循環ライン6′を嫌気
槽lと好気槽2の間に設けている点で本発明方法のフロ
ーと基本的に異なり、第3図のフローと同様、効果的な
窒素の除去が困難である。
Figure 4 is a flow sheet showing an example of another conventional activated sludge method, in which an aerobic tank 2 is provided between an anaerobic tank 1 and a sedimentation tank 4, and a circulation line for the wastewater-sludge mixture is installed. 6' is provided between the anaerobic tank 1 and the aerobic tank 2, which is fundamentally different from the flow of the method of the present invention, and similar to the flow of FIG. 3, it is difficult to effectively remove nitrogen.

寒鼻鯉 以下に実施例を挙げて本発明をさらに詳しく説明する。cold nose carp The present invention will be explained in more detail with reference to Examples below.

実施例1 都市下水(pH7、5、BOD l 50xtt/σ、
全窒素1度40s+s+/Q)を第1図に示すような装
置(ただし、pH!lli整槽なし)で廃水処理した。
Example 1 Urban sewage (pH 7.5, BOD l 50xtt/σ,
Total nitrogen (1 degree 40s+s+/Q) was treated as wastewater using an apparatus as shown in FIG. 1 (however, without a pH adjustment tank).

用いた硬質塩化ビニル製のパイロットプラトン規模の装
置は、第1嫌気槽1′の容積200Q、第2嫌気槽ビの
容積が400Q、第1好気槽2′が4009゜第2好気
槽2″が400Q、沈降槽4が1.200Qであった。
The pilot Plato scale device made of hard vinyl chloride used had a first anaerobic tank 1' with a volume of 200Q, a second anaerobic tank with a volume of 400Q, a first aerobic tank 2' with a volume of 4009°, and a second aerobic tank 2 with a volume of 400Q. '' was 400Q, and sedimentation tank 4 was 1.200Q.

処理条件は以下のとおりであった。The processing conditions were as follows.

水温=       15℃ 汚泥濃度: 好気槽    to、0OON?#! 第1嫌気槽  6.67QR9/12 第2嫌気槽  6.?0O19#! 返送汚泥濃度:  to、000ff9#!原水流M 
:      20Of/hr返送汚泥量:     
400g/hr溶存酸素濃度: 第1好気槽   3.5u#!(酸素濃度4o容量%の
酸素含有 ガスにより曝気) 第2好気槽   6.5mg#(酸素濃度70容量%の
酸素含有 ガスにより曝気) 滞留時間: 第1、第2好気槽合計4時間(流入原水基l1l)第1
嫌気槽      1時間(〃) 第2嫌気槽      2時間(〃) 処理操作中、48%のNaOH溶液を用いて第2好気槽
内液のpHを6.5に維持した。なお、第1好気槽内液
のpi−1は7.0であった。
Water temperature = 15℃ Sludge concentration: Aerobic tank to, 0OOON? #! 1st anaerobic tank 6.67QR9/12 2nd anaerobic tank 6. ? 0O19#! Returned sludge concentration: to, 000ff9#! Raw water flow M
: 20Of/hr return sludge amount:
400g/hr Dissolved oxygen concentration: 1st aerobic tank 3.5u#! (Aerated with an oxygen-containing gas with an oxygen concentration of 40% by volume) 2nd aerobic tank 6.5 mg # (Aerated with an oxygen-containing gas with an oxygen concentration of 70% by volume) Residence time: Total of 4 hours in the 1st and 2nd aerobic tanks ( Inflow raw water base l1l) 1st
Anaerobic tank 1 hour (〃) Second anaerobic tank 2 hours (〃) During the treatment operation, the pH of the liquid in the second aerobic tank was maintained at 6.5 using a 48% NaOH solution. In addition, pi-1 of the liquid in the first aerobic tank was 7.0.

曝気に用いる酸素は、酸素ボンベにより第2好気槽に供
給し、第1好気槽を経て排ガスとして排出した。
Oxygen used for aeration was supplied to the second aerobic tank by an oxygen cylinder, and was discharged as exhaust gas through the first aerobic tank.

以上の操作中、第1嫌気槽のpHは7,0,0RP(酸
化還元電位)は−50a+V、溶存酵素濃度はθ19/
I2および第2嫌気槽内のpi(は7.7、ORPは一
150mV、溶存酸素濃度はOmg/Qであった。
During the above operations, the pH of the first anaerobic tank was 7.0.0RP (redox potential) was -50a+V, and the dissolved enzyme concentration was θ19/
The pi (pi) in I2 and the second anaerobic tank was 7.7, the ORP was -150 mV, and the dissolved oxygen concentration was Omg/Q.

また最終処理水中のpH1!7.5、BODは19x9
/(!、SSはl 019/12.アンモニア性窒素は
13 、811F/Q。
In addition, the pH of the final treated water is 1!7.5, and the BOD is 19x9.
/(!, SS is l 019/12. Ammonia nitrogen is 13, 811F/Q.

硝酸性N1gは0 、519IQであった。Nitric acid N1g was 0.519IQ.

実施例2 都市下水(pH7,6、BOD 120*9/Q、アン
モニア性窒素35 my/(1)を第2図に示すような
装置で廃水処理した。用いた装置は、第1嫌気槽1′の
容積が30012.第2嫌気槽1″の容積が30012
、第1好気槽2′が40(021第2好気槽2″が40
012、酸素消費槽lOが80Q、再曝気槽11がto
oQ、沈降槽4が1,200Qであった。
Example 2 Urban sewage (pH 7.6, BOD 120*9/Q, ammonia nitrogen 35 my/(1) was treated with a device as shown in Fig. 2.The device used was the first anaerobic tank 1. The volume of ' is 30012.The volume of the second anaerobic tank 1'' is 30012
, the first aerobic tank 2' is 40 (021 the second aerobic tank 2'' is 40
012, oxygen consumption tank lO is 80Q, reaeration tank 11 is to
oQ, sedimentation tank 4 was 1,200Q.

処理条件は以下の通りであった。The processing conditions were as follows.

水温=       15℃ 汚泥濃度; 好気槽    L2.00019/Q 酸素消費槽  12,000R9/(1嫌気槽    
8.00019/+2 返送汚泥農度:  12,0OOu/Q原水流量+  
    250C/hr返送汚泥量:     500
(!/hr溶存酸素濃度: 第1好気槽   419/Q (酸素濃度85容量%の
酸素含有ガス により曝気) 第2好気IIF1.5mg/QC酸素濃度65容量%の
酸素含有ガ スにより曝気) 酸素消費槽    0肩9/Q 再曝気槽     3 J!1?/12(酸素濃度40
容量%の酸素含有 ガスにより曝気) 滞留時間: 第1、第2好気槽合計3.2時間(流入原水基準)酸素
消費槽     9.6分 第1、第2嫌気槽合計2.4時間(流入原水基準)再曝
気槽      12分 処理操作中、曝気に用いる酸素ガスは、酸素ボンベによ
り第1好気槽に供給し、第2好気槽を経て再曝気槽に送
った。
Water temperature = 15℃ Sludge concentration; Aerobic tank L2.00019/Q Oxygen consumption tank 12,000R9/(1 anaerobic tank
8.00019/+2 Return sludge agricultural rate: 12,0OOu/Q raw water flow rate +
250C/hr return sludge amount: 500
(!/hr Dissolved oxygen concentration: 1st aerobic tank 419/Q (Aeration with oxygen-containing gas with oxygen concentration of 85% by volume) 2nd aerobic IIF 1.5 mg/QC Aeration with oxygen-containing gas with oxygen concentration of 65% by volume) Oxygen consumption tank 0 shoulder 9/Q Reaeration tank 3 J! 1? /12 (oxygen concentration 40
Residence time: 1st and 2nd aerobic tank total 3.2 hours (based on inflow raw water) Oxygen consumption tank 9.6 minutes 1st and 2nd anaerobic tank total 2.4 hours ( Inflow raw water standard) Re-aeration tank During the 12-minute treatment operation, oxygen gas used for aeration was supplied to the first aerobic tank from an oxygen cylinder and sent to the reaeration tank via the second aerobic tank.

以上の操作中、第1嫌気槽内のpHは7.1、ORPは
一70mV、溶存酸素蟲度let OxlJ/gj、;
 ヨび第2嫌気槽内のpHは7.8、ORPは一180
mV、溶存酸素濃度はOmg/Qであった。また最終の
処理水中のpi−1は7.5.130Dは17 j!9
IQ、アンモニア性窒素は9 、5 ytg/(1、硝
酸性窒素はl 、 OR9/Qであった。
During the above operations, the pH in the first anaerobic tank was 7.1, the ORP was -70 mV, and the dissolved oxygen level was OxlJ/gj;
The pH in the second anaerobic tank is 7.8, and the ORP is -180.
mV, and the dissolved oxygen concentration was Omg/Q. Also, pi-1 in the final treated water is 7.5.130D is 17 j! 9
IQ, ammonia nitrogen was 9.5 ytg/(1, nitrate nitrogen was 1, OR9/Q.

比較例1 第4図に示すごとく、好気槽と嫌気槽の配置が異なり、
両槽の間に廃水−汚泥混合液の循環ライン6′を設け、
かつ、好気槽2の滞留時間を9゜1時間、嫌気槽lの滞
留時間を3.4時間とする以外、前記実施例1と同一条
件で都市下水を処理した。得られた結果を以下に示す。
Comparative Example 1 As shown in Figure 4, the arrangement of the aerobic tank and anaerobic tank was different.
A circulation line 6' for the wastewater-sludge mixture is installed between both tanks.
Urban sewage was treated under the same conditions as in Example 1 except that the residence time in the aerobic tank 2 was 9.1 hours and the residence time in the anaerobic tank 1 was 3.4 hours. The results obtained are shown below.

最終の処理水中の BOD:        17  x9/Qアンモニア
性窒゛素:     0 、7 mg/Q硝酸性窒素 
     13.6x9/(2比較例2 好気槽内での曝気を空気を用いて行ないかつ好気槽の滞
留時間を30.1時間、嫌気槽の滞留時間を7.3時間
とする以外、前記比較例1と同一条件で都市下水を処理
した。
BOD in final treated water: 17 x 9/Q ammonia nitrogen: 0, 7 mg/Q nitrate nitrogen
13.6x9/(2 Comparative Example 2 The above-mentioned except that aeration in the aerobic tank was performed using air and the residence time in the aerobic tank was 30.1 hours and the residence time in the anaerobic tank was 7.3 hours. Urban sewage was treated under the same conditions as Comparative Example 1.

得られた結果を以下に示す。The results obtained are shown below.

最終の処理水中の BOD:         1 B 、  R9/Qア
ンモニア性窒素=   0.7肩g/12硝酸性窒素 
     13.619/12発明の効果 以上記載したごとく、本発明によれば、好気槽の汚泥濃
度を高濃度に維持し、高濃度酸素曝気により好気槽の溶
存酸素を高濃度に維持できるので硝化菌の活性が高く効
果的な廃水処理ができる。
BOD in final treated water: 1 B, R9/Q ammonia nitrogen = 0.7 shoulder g/12 nitrate nitrogen
13.619/12 Effects of the Invention As described above, according to the present invention, the sludge concentration in the aerobic tank can be maintained at a high concentration, and the dissolved oxygen in the aerobic tank can be maintained at a high concentration by high-concentration oxygen aeration. The nitrifying bacteria have high activity, allowing for effective wastewater treatment.

また、沈降槽で脱窒が起こらないので汚泥、スカムの浮
上がなく、多量の廃ガス発生等による2次公害も生じな
い。しかも、硝化速度を速くし、高濃度の汚泥を使用で
きるので、処理装置をコンパクトにできる利点もある。
Furthermore, since denitrification does not occur in the sedimentation tank, there is no floating of sludge or scum, and no secondary pollution due to the generation of large amounts of waste gas. Moreover, since the nitrification rate can be increased and sludge of high concentration can be used, there is also the advantage that the treatment equipment can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明方法の1具体例を示すフ
ロー・シート、第3図および第4図は、本発明の比較例
を示すフロー・シートである。 図面中の主な符号は次のものを意味する。 1・・・嫌気槽、2・・・好気槽、3・・・原水、4・
・・沈降槽、5・・・処理水、8・・・高濃度酸素、I
O・・・酸素消費槽、11・・・再曝気槽。
1 and 2 are flow sheets showing one specific example of the method of the present invention, and FIGS. 3 and 4 are flow sheets showing a comparative example of the present invention. The main symbols in the drawings mean the following: 1...Anaerobic tank, 2...Aerobic tank, 3...Raw water, 4.
... Sedimentation tank, 5... Treated water, 8... High concentration oxygen, I
O...Oxygen consumption tank, 11...Reaeration tank.

Claims (4)

【特許請求の範囲】[Claims] (1)活性汚泥により廃水中のBOD成分および窒素を
除去する生物学的脱窒方法において、好気槽、嫌気槽お
よび沈降槽を設け、原水を嫌気槽に流入させ、好気槽か
ら硝酸および亜硝酸性窒素を含有する濃縮汚泥液を嫌気
槽に導入して該原水と撹拌混合して脱窒とBOD成分の
汚泥への吸着を行い、ついで、嫌気槽内の混合液を沈降
槽に導入して処理水および濃縮汚泥に沈降分離し、処理
水を流出させる一方、該濃縮汚泥を該好気槽に返送して
高汚泥濃度のまま高濃度酸素により曝気して該汚泥に吸
着したBOD成分および混合液中の窒素成分を硝酸およ
び亜硝酸性窒素に酸化分解し、再び前記嫌気槽に流入さ
せることを特徴とする廃水の生物学的脱窒方法。
(1) In a biological denitrification method that removes BOD components and nitrogen from wastewater using activated sludge, an aerobic tank, an anaerobic tank, and a sedimentation tank are provided, raw water flows into the anaerobic tank, and nitric acid and nitrogen are removed from the aerobic tank. The concentrated sludge liquid containing nitrite nitrogen is introduced into the anaerobic tank and stirred and mixed with the raw water to perform denitrification and adsorption of BOD components to the sludge, and then the mixed liquid in the anaerobic tank is introduced into the settling tank. The treated water is separated by sedimentation into treated water and thickened sludge, and while the treated water is discharged, the thickened sludge is returned to the aerobic tank and aerated with high concentration oxygen to remove the BOD components adsorbed to the sludge. and a biological denitrification method for wastewater, which comprises oxidatively decomposing nitrogen components in the mixed liquid into nitric acid and nitrite nitrogen, and causing the mixture to flow into the anaerobic tank again.
(2)該嫌気槽と該沈降槽との間に再曝気槽を設け、該
嫌気槽からの流出液中の汚泥を好気状態にした後、沈降
分離する前記第(1)項の方法。
(2) The method according to item (1) above, wherein a reaeration tank is provided between the anaerobic tank and the settling tank, and the sludge in the effluent from the anaerobic tank is brought into an aerobic state and then sedimented and separated.
(3)該好気槽と該嫌気槽との間に酸素消費槽を設け、
好気槽からの液中の溶存酸素を完全に消費した後に嫌気
槽に流入させる前記第(1)項の方法。
(3) providing an oxygen consumption tank between the aerobic tank and the anaerobic tank;
The method according to item (1) above, wherein the dissolved oxygen in the liquid from the aerobic tank is completely consumed and then flows into the anaerobic tank.
(4)該好気槽と該嫌気槽との間に酸素消費槽を設け、
好気槽からの液中の溶存酸素を完全に消費した後に嫌気
槽に流入させ、さらに該嫌気槽と該沈降槽との間に再曝
気槽を設けて嫌気槽からの流出液中の汚泥を好気状態に
した後に沈降分離する前記第(1)項の方法。
(4) providing an oxygen consumption tank between the aerobic tank and the anaerobic tank;
After the dissolved oxygen in the liquid from the aerobic tank is completely consumed, it flows into the anaerobic tank, and a re-aeration tank is provided between the anaerobic tank and the settling tank to remove the sludge from the effluent from the anaerobic tank. The method according to item (1) above, in which sedimentation separation is performed after aerobic conditions.
JP12896387A 1987-05-25 1987-05-25 Biological denitrification of waste water Pending JPS63291698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12896387A JPS63291698A (en) 1987-05-25 1987-05-25 Biological denitrification of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12896387A JPS63291698A (en) 1987-05-25 1987-05-25 Biological denitrification of waste water

Publications (1)

Publication Number Publication Date
JPS63291698A true JPS63291698A (en) 1988-11-29

Family

ID=14997745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12896387A Pending JPS63291698A (en) 1987-05-25 1987-05-25 Biological denitrification of waste water

Country Status (1)

Country Link
JP (1) JPS63291698A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus

Similar Documents

Publication Publication Date Title
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JPS637839B2 (en)
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP2003126887A (en) Method and device for treating water containing phosphorus and ammonia
JP4867098B2 (en) Biological denitrification method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JPS5881491A (en) Purification of filthy water with activated sludge
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JPS585118B2 (en) Yuukiseihaisuino
JPH08318292A (en) Waste water treatment method and apparatus
JP3837757B2 (en) Method for treating selenium-containing water
JP3358388B2 (en) Treatment method for selenium-containing water
JP3769772B2 (en) Method for treating selenium-containing water
JPS63291698A (en) Biological denitrification of waste water
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JP3815977B2 (en) Treatment method for wastewater containing high concentration nitrogen
JP2006088057A (en) Method for treating ammonia-containing water
JPS6222678B2 (en)
JP3837763B2 (en) Method for treating selenium-containing water
KR20010054865A (en) A treatment method of sewage and wastewater using ozone and oxygen
JPS586558B2 (en) Sewage treatment method
JPH0938694A (en) Treatment of waste water of flue gas desulfurization
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
JPS5939199B2 (en) Biological denitrification method of wastewater
JPH0324280B2 (en)