JPS5939199B2 - Biological denitrification method of wastewater - Google Patents

Biological denitrification method of wastewater

Info

Publication number
JPS5939199B2
JPS5939199B2 JP1743777A JP1743777A JPS5939199B2 JP S5939199 B2 JPS5939199 B2 JP S5939199B2 JP 1743777 A JP1743777 A JP 1743777A JP 1743777 A JP1743777 A JP 1743777A JP S5939199 B2 JPS5939199 B2 JP S5939199B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
nitrogen
activated sludge
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1743777A
Other languages
Japanese (ja)
Other versions
JPS53103654A (en
Inventor
幸雄 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Industry Co Ltd
Original Assignee
Yamada Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Industry Co Ltd filed Critical Yamada Industry Co Ltd
Priority to JP1743777A priority Critical patent/JPS5939199B2/en
Publication of JPS53103654A publication Critical patent/JPS53103654A/en
Publication of JPS5939199B2 publication Critical patent/JPS5939199B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、汚水の生物学的脱窒素法に関するものであっ
て、し尿系汚水の生物学的脱窒素プロセスに特に好適に
適用される処理方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biological denitrification method for wastewater, and provides a treatment method that is particularly suitably applied to the biological denitrification process for human waste wastewater. .

従来一般に、し尿系汚水の生物学的脱窒素法は汚水を曝
気槽または硝酸化槽にて好気的条件下で活性汚泥と接触
させ、汚水に含まれるアンモニア性窒素を各種硝化菌の
共同作用により亜硝酸性窒素(NO2−N)および硝酸
性窒素(NO3−N)に変換し、ついで、この混合液ま
たは沈澱上澄液を脱窒素槽にて脱窒菌の硝酸呼吸により
生物学的に還元し、亜硝酸性窒素および硝酸性窒素を分
解除去する方法、または前記硝酸化種流出液を多量に循
環返送して、原汚水と共に第1脱窒素槽に導き、脱窒菌
によって硝酸化検流出液中の亜硝酸性窒素および硝酸性
窒素を還元分解したのち、硝酸化槽に導いて、混合前の
原汚水に含まれるアンモニア性窒素を各種硝化菌の共同
作用によって亜硝酸性窒素、硝酸性窒素に酸化(またの
ち、さらに第2脱窒素槽に導き、有機炭素源(BOD源
)の存在下で、脱窒菌の生物学的還元作用によって亜硝
酸性窒素および硝酸性窒素を分解除去する方法が採られ
てきた。
Conventionally, the biological denitrification method for human waste wastewater involves contacting the wastewater with activated sludge under aerobic conditions in an aeration tank or nitrification tank, and the ammonia nitrogen contained in the wastewater is removed by the joint action of various nitrifying bacteria. is converted into nitrite nitrogen (NO2-N) and nitrate nitrogen (NO3-N), and then this mixed solution or precipitated supernatant is biologically reduced by nitrate respiration by denitrifying bacteria in a denitrification tank. Then, nitrite nitrogen and nitrate nitrogen are decomposed and removed, or a large amount of the nitrated species effluent is circulated and returned to the first denitrification tank together with the raw wastewater, and the nitrated detection effluent is treated with denitrifying bacteria. After reducing and decomposing the nitrite nitrogen and nitrate nitrogen in the water, the ammonia nitrogen contained in the raw wastewater before mixing is converted into nitrite nitrogen and nitrate nitrogen by the joint action of various nitrifying bacteria. oxidation (and then further led to a second denitrification tank, where nitrite nitrogen and nitrate nitrogen are decomposed and removed by the biological reduction action of denitrifying bacteria in the presence of an organic carbon source (BOD source). It has been adopted.

しかし、硝酸化槽で硝化細菌の作用を受けて生成される
亜硝酸性窒素および硝酸性窒素を最終電子受容体として
利用する脱窒菌は通性嫌気性の従属栄養菌であるため、
脱窒素槽で亜硝酸性窒素を還元するのに必要なエネルギ
ーを獲得するために、水素供与体としての有機炭素源の
存在が不可欠の条件である。
However, denitrifying bacteria that use nitrite nitrogen and nitrate nitrogen produced by the action of nitrifying bacteria in the nitrification tank as final electron acceptors are facultative anaerobic heterotrophic bacteria;
In order to obtain the energy necessary to reduce nitrite nitrogen in the denitrification tank, the presence of an organic carbon source as a hydrogen donor is an essential condition.

ところが、硝化プロセス、すなわち、硝酸化槽からの流
出液中には脱窒菌が利用できる水素供与体としての有機
炭素源が極めて少ないため、脱窒菌が生育増殖し、その
機能を営むための有機炭素源を人為的に供給しなければ
、脱窒素は不完全なものとなる。
However, in the nitrification process, that is, in the effluent from the nitrification tank, there is extremely little organic carbon source as a hydrogen donor that can be used by denitrifying bacteria. Denitrification will be incomplete unless a source is artificially provided.

このため、この有機炭素源の供給源を、■脱窒菌の細胞
内貯蔵物質に求める、■汚水の流入基質に求める、■外
界からの添加に求める等により、亜硝酸性窒素または硝
酸性窒素を生物還元する方法がある。
Therefore, nitrite nitrogen or nitrate nitrogen can be produced as a source of organic carbon by: (1) obtaining the intracellular storage substances of denitrifying bacteria, (2) obtaining the inflow substrate of sewage, and (2) obtaining it from addition from the outside world. There is a method of biological reduction.

しかるに、上記の方法に基づく供給手段によるときは次
に述べる弊害を伴う。
However, when using a supply means based on the above method, the following disadvantages occur.

すなわち、その弊害としては主に、 1 有機炭素源を脱窒菌の細胞内貯蔵物質に求めて細菌
の自己酸化呼吸(内生呼吸作用)により、亜硝酸性窒素
および硝酸性窒素を還元分解する方法による場合には、
脱窒素槽に於て脱窒菌の増殖速度が減すると共に死滅細
胞も増すから、脱窒速度も遅くなり、その結果大なる脱
窒素槽が要求されること、 2 有機炭素源を汚水の流入基質に求めて亜硝酸性窒素
および硝酸性窒素を還元分解するのに必要な有機炭素量
に相当する汚水を脱窒素槽に添加する方法によるときは
汚水に含有されるアンモニア性窒素は脱窒菌の作用の対
象とならないので、処理水中にそのまま流出し、脱窒効
率は汚水の添加率に反比例して低下すること、3 有機
炭素源を外界からの添加に求めて脱窒菌の生育・増殖を
体外呼吸期で行って脱窒素活性を高め、短時間内に亜硝
酸性窒素や硝酸性窒素を還元しようとする方法による場
合には、脱窒素槽は前記1の脱窒素槽必要容積に比して
著しく縮少されるが、硝酸性窒素や亜硝酸性窒素を還元
するのに必要とされる理論量以上の有機炭素が必要であ
る。
In other words, the main disadvantages are: 1) A method of reductively decomposing nitrite nitrogen and nitrate nitrogen through bacterial autooxidative respiration (endogenous respiration), using the intracellular storage substances of denitrifying bacteria as an organic carbon source. In the case of
In the denitrification tank, the growth rate of denitrifying bacteria decreases and the number of dead cells increases, so the denitrification rate also slows down, and as a result, a large denitrification tank is required. 2. Organic carbon source is used as wastewater inflow substrate. When using the method of adding wastewater equivalent to the amount of organic carbon required to reductively decompose nitrite nitrogen and nitrate nitrogen to the denitrification tank, the ammonia nitrogen contained in the wastewater is removed by the action of denitrifying bacteria. 3) The organic carbon source is added from the outside world and the growth and proliferation of denitrifying bacteria is caused by extracorporeal respiration. In the case of a method that aims to reduce nitrite nitrogen and nitrate nitrogen in a short period of time by increasing denitrification activity and reducing nitrite nitrogen and nitrate nitrogen within a short period of time, the denitrification tank has a significantly smaller volume than the required volume of the denitrification tank described in 1 above. Although reduced, organic carbon is required in excess of the stoichiometric amount required to reduce nitrate nitrogen and nitrite nitrogen.

たとえば、この有機炭素として、メタノールを用いる場
合には、通常硝酸性窒素1kgに対し2.5 kg以上
の多量のメタノールが要求されるため、脱窒素に関わる
運転コストは脱窒素槽に流入する亜硝酸窒素および硝酸
性窒素の濃度に比例して著しく増大すること、4 脱窒
素を例えば特開昭51−8754号公報のように2段階
で行なう従来法によるときは、第1脱窒素槽にて硝化槽
から循環する硝化混合液中のN02−N及びN03−N
を脱窒菌の働きにより脱窒し、補足的に第2脱窒素槽で
残留※※ するN02−N及びN03−Nを脱窒菌の内
生呼吸により又は系外から添加する有機炭素源の存在下
で脱窒することを目的とするものであるから、第1脱窒
素槽での窒素除去率を高めるためには、脱窒に要する化
学量論的な炭素質対窒素の比率(BOD/N03−N二
3〜5)により定まる窒素除去率と硝化混合液の汚水に
対する循環比を大きくすることが必要であり、このため
液循環に要する運転コストが増大すること、等を挙げる
ことができる。
For example, when methanol is used as this organic carbon, a large amount of methanol (2.5 kg or more) is usually required for 1 kg of nitrate nitrogen, so the operating cost associated with denitrification is reduced by the amount of nitrogen flowing into the denitrification tank. The concentration of nitrate nitrogen and nitrate nitrogen increases significantly in proportion to the concentration. 4. When denitrification is carried out in a conventional method in two stages as in JP-A-51-8754, for example, in the first denitrification tank. N02-N and N03-N in the nitrification mixture circulating from the nitrification tank
is denitrified by the action of denitrifying bacteria, and N02-N and N03-N, which remain in the second denitrifying tank, are supplemented by endogenous respiration of denitrifying bacteria or in the presence of an organic carbon source added from outside the system. Therefore, in order to increase the nitrogen removal rate in the first denitrification tank, the stoichiometric carbon to nitrogen ratio (BOD/N03- It is necessary to increase the nitrogen removal rate determined by N23-5) and the circulation ratio of the nitrification mixture to wastewater, which increases the operating cost required for liquid circulation.

本発明の目的は、前記特開昭51−8754号公報のよ
うに脱窒素を2段階で行う従来の汚水の生物学的膜窒素
法における上記1〜4の弊害を除き維持管理費の節減を
図ることにある。
The purpose of the present invention is to eliminate the disadvantages 1 to 4 mentioned above in the conventional biological membrane nitrogen method for wastewater, which performs denitrification in two stages, as disclosed in JP-A-51-8754, and to reduce maintenance and management costs. It's about trying.

本発明のこの目的は、汚水をそのままあるいは適当に希
釈してのち、あらかじめ酸化によって内呼吸相に戻して
安定化させた活性汚泥に吸着させたのち分離し、次にこ
の吸着汚泥を適量の清水又は脱窒素処理水等の洗浄水で
洗浄して、汚泥中に介在するアンモニウムを活性汚泥界
面から洗浄水中へ脱離拡散させてのち再び分離させて、
殆どアンモニウムを含まない有機質吸着汚泥として回収
し、これを第2脱窒素槽に導き、脱窒菌の水素供与体と
して利用することにより達成される。
The purpose of the present invention is to adsorb wastewater as it is or after diluting it into activated sludge that has been stabilized by returning it to the internal respiratory phase through oxidation, and then separate the adsorbed sludge into an appropriate amount of clean water. Alternatively, by washing with washing water such as denitrified water, ammonium present in the sludge is desorbed and diffused from the activated sludge interface into the washing water, and then separated again.
This is achieved by collecting organic adsorbed sludge containing almost no ammonium, introducing it into a second denitrification tank, and using it as a hydrogen donor for denitrifying bacteria.

本発明の実施態様を図面を参照しつつ説明すれば、汚水
をそのままあるいは適当に希釈して管Aより吸着槽1に
導き、安定化槽9で十分に酸化して内呼吸相に戻して生
物学的活性状態にした活性汚泥微生物((C5H7NO
2)n)の適量と接触混和すると、次に示すような生物
学的吸着反応によって短時間内に汚水に含まれる有機炭
素化合物(CxHyOz)が活性汚泥微生物体に吸着蓄
積されるからこれを沈澱槽2に導き吸着汚泥と液分とに
固液分離すると、汚水中の有機汚染源であるBOD成分
の60〜90%が活性汚泥界面に吸着、凝集して汚水か
ら分離される。
The embodiment of the present invention will be described with reference to the drawings. The wastewater is introduced into the adsorption tank 1 through the pipe A as it is or after being diluted appropriately, and is sufficiently oxidized in the stabilization tank 9 and returned to the internal respiratory phase. Activated sludge microorganisms ((C5H7NO
2) When mixed with an appropriate amount of n), organic carbon compounds (CxHyOz) contained in sewage are adsorbed and accumulated on activated sludge microorganisms within a short period of time due to the following biological adsorption reaction, so they are precipitated. When the sludge is introduced into tank 2 and solid-liquid separated into adsorbed sludge and liquid, 60 to 90% of the BOD component, which is a source of organic pollution in the sewage, is adsorbed and coagulated on the activated sludge interface and separated from the sewage.

脱窒菌などの活性汚泥微生物による有機物の吸着・蓄積
反応二 次にこの分離活性汚泥を洗浄槽3に導き、適度に攪拌し
つつ管Bから供給される適量の清水で洗浄すると、希釈
されると同時に分離活性汚泥に混在するアンモニウムは
速やかに洗浄水中に溶解拡散するが、一方活性汚泥が分
泌する粘性物質により凝集し、生体界面に吸着保持され
ているBOD成分及び生体内に貯蔵・蓄積されたBOD
成分は緩やかな攪拌混合によっては、洗浄水中には容易
に溶解し拡散することはなく生体界面に保持されるので
、これを沈澱槽4に導き沈澱させると、殆どアンモニウ
ムを含まない高濃度の有機質吸着汚泥とアンモニウムを
含む液分とに分離される。
After the adsorption and accumulation reaction of organic matter by activated sludge microorganisms such as denitrifying bacteria, this separated activated sludge is led to washing tank 3 and washed with an appropriate amount of fresh water supplied from pipe B while being moderately stirred. At the same time, ammonium mixed in the separated activated sludge quickly dissolves and diffuses into the washing water, but on the other hand, it aggregates due to the viscous substances secreted by the activated sludge, and is stored and accumulated in the BOD component adsorbed and retained at the biological interface and in the biological body. BOD
By gentle stirring and mixing, the components easily dissolve in the washing water and are retained at the biological interface without being diffused. When this is led to the precipitation tank 4 and allowed to settle, a highly concentrated organic substance containing almost no ammonium is produced. It is separated into adsorbed sludge and a liquid containing ammonium.

沈澱分離した有機質吸着汚泥は回収して第2脱窒素槽の
脱窒菌の炭素源とするため管12から第2脱窒素槽7に
導かれる。
The precipitated and separated organic adsorbed sludge is recovered and led to the second denitrification tank 7 through a pipe 12 in order to be used as a carbon source for denitrification bacteria in the second denitrification tank.

一方前記沈澱槽2で分離された液分は管11により第1
脱窒素槽5に導かれ、これが沈澱槽4から管13を通っ
て流出する洗浄液、返送管14から第1脱窒素槽5に返
送される適量の硝酸化検流出液および返送管15から返
送される適量の活性汚泥と嫌気的条件下で十分攪拌混合
され、脱窒菌の生物学的還元作用により混合液中の亜硝
酸性窒素および硝酸性窒素は窒素ガスあるいは酸化窒素
ガスにまで分解される。
On the other hand, the liquid separated in the settling tank 2 is transferred to the first
The washing liquid flows out from the settling tank 4 through the pipe 13, an appropriate amount of nitrification detection effluent is returned to the first denitrification tank 5 from the return pipe 14, and is returned from the return pipe 15. The mixture is sufficiently stirred and mixed with an appropriate amount of activated sludge under anaerobic conditions, and the nitrite nitrogen and nitrate nitrogen in the mixed solution are decomposed into nitrogen gas or nitrogen oxide gas by the biological reduction action of denitrifying bacteria.

この場合硝酸化槽6から循環する混合液の第1脱窒素槽
5に流入する汚水に対する比率(循環液比)は脱窒に要
する化学量論的な炭素質対窒素の比率が炭素質としてB
ODを、窒素として硝酸性窒素を用いて定めるとBOD
/No3−N=3〜5であるから流入原水のB OD/
Nから求められるに適合する範囲に調整することが必要
である。
In this case, the ratio of the mixed liquid circulating from the nitrification tank 6 to the wastewater flowing into the first denitrification tank 5 (circulating liquid ratio) is such that the stoichiometric ratio of carbon to nitrogen required for denitrification is B as carbon.
When OD is determined using nitrate nitrogen as nitrogen, BOD
/No3-N=3~5, so BOD/ of inflow raw water
It is necessary to adjust the range to fit what is required from N.

又目標窒素除去率(α1)から求められる理論循環宥父
上ヒυりは、 (但し、 d:希釈水量比、r:返送汚泥比)から窒素除去率αを
限界窒素除去率αに近づけるほどAは大きくなり、液循
環に伴う動力費は増大することとなる。
In addition, the theoretical circulation permeation rate determined from the target nitrogen removal rate (α1) is as follows: (where d: dilution water volume ratio, r: return sludge ratio), the closer the nitrogen removal rate α is to the critical nitrogen removal rate α, the greater the becomes large, and the power cost associated with liquid circulation increases.

それゆえ、Aを小さくするにはαを小さくすることが必
須条件である。
Therefore, in order to reduce A, it is essential to reduce α.

脱窒工程に先立ち流入原水中のBODを吸着槽1で吸着
し除去回収するのは、第1脱窒素槽5での限界窒素除去
率を小さくし、Aを小さくするためである。
The reason why BOD in the inflow raw water is adsorbed and removed and recovered in the adsorption tank 1 prior to the denitrification process is to reduce the critical nitrogen removal rate in the first denitrification tank 5 and to reduce A.

前記のように吸着工程においてBODは60〜90%除
去されるから公知の第1脱窒−硝化一第2脱窒プロセス
に較べαは70〜90%小さくなり、それに比例してA
も小さくなる。
As mentioned above, since 60 to 90% of BOD is removed in the adsorption process, α is 70 to 90% smaller than in the known first denitrification-nitrification-second denitrification process, and A is proportionally reduced.
will also become smaller.

次に、第1脱窒素槽5に導かれる沈澱槽2の液分および
沈澱槽4の洗浄液中のアンモニウムは脱窒菌の作用の対
象とならないのでそのまま第1脱窒素槽5から流出する
Next, ammonium in the liquid in the settling tank 2 and the washing liquid in the settling tank 4 that are led to the first denitrifying tank 5 flow out of the first denitrifying tank 5 as they are because they are not subject to the action of denitrifying bacteria.

そこで、次にこの混合液を硝酸化槽6に導き、pHコン
トローラ10によりたえず液のpHを6.5〜8.5に
維持しながら各種硝化細菌の共同作用により、アンモニ
ウムを亜硝酸性窒素および硝酸性窒素に酸化すると同時
に、有機炭素源であるBOD成分も酸化分解される。
Therefore, this mixed solution is then led to the nitrification tank 6, and while the pH of the solution is constantly maintained at 6.5 to 8.5 by the pH controller 10, ammonium is converted into nitrite nitrogen and At the same time as being oxidized to nitrate nitrogen, the BOD component, which is an organic carbon source, is also oxidized and decomposed.

このように処理された混合培養液は次に第2脱窒素槽7
に導かれるが、この混合培養液中には脱窒菌が亜硝酸性
窒素および硝酸性窒素を還元するのに必要なエネルギー
を獲得するための有機炭素源が極めて少ないため、前記
沈澱槽4で回収したアンモニウムを殆ど含まない有機質
吸着汚泥を供給管12から第2脱窒素槽7に導き、硝化
槽6から流入する硝化混合液と混和すると、有機質吸着
汚泥中の脱窒菌は次式に示す呼吸反応により自から又は
他の微生物が吸着蓄積した有機炭素化合物を水素供与体
として利用し、一方硝化槽6から流入する硝化混合液中
の脱窒菌は有機質吸着活性汚泥と接触し衝突しながら活
性汚泥界面に吸着する有機炭素化合物を加水分解酵素に
より加水分解して水素供与体として利用し混合培養液中
の亜硝酸性窒素または硝酸性窒素を、脱窒菌の生物学的
還元作用によって窒素ガスあるいは酸化窒素ガスにまで
分解して、大気に放散する。
The mixed culture solution treated in this way is then transferred to the second denitrification tank 7.
However, since there is very little organic carbon source in this mixed culture solution for the denitrifying bacteria to acquire the energy necessary to reduce nitrite nitrogen and nitrate nitrogen, it is collected in the settling tank 4. When the organic adsorbed sludge containing almost no ammonium is led from the supply pipe 12 to the second denitrification tank 7 and mixed with the nitrification mixture flowing from the nitrification tank 6, the denitrifying bacteria in the organic adsorbed sludge undergo a respiration reaction as shown in the following equation. The denitrifying bacteria in the nitrification mixture flowing from the nitrification tank 6 contact and collide with the organic matter-adsorbing activated sludge, using the organic carbon compounds adsorbed and accumulated by themselves or other microorganisms as hydrogen donors. Hydrolytic enzymes hydrolyze the organic carbon compounds that are adsorbed on the water and use them as hydrogen donors, converting nitrite nitrogen or nitrate nitrogen in the mixed culture solution into nitrogen gas or nitrogen oxide through the biological reduction action of denitrifying bacteria. It decomposes into gas and dissipates into the atmosphere.

第2脱窒素槽7における呼吸反応: ■ 亜硝酸呼吸 ■ 硝酸呼吸 これらの式のHは活性汚泥微生物が吸着°蓄積した水素
供与体である有機炭素化合物の加水分解反応から与えら
れる。
Respiration reactions in the second denitrification tank 7: ■ Nitrite respiration ■ Nitrate respiration H in these equations is given from the hydrolysis reaction of organic carbon compounds, which are hydrogen donors, adsorbed and accumulated by activated sludge microorganisms.

NO□−NやNo3−Nの量に対して吸着有機物の量が
少なくなれば脱窒菌は■、■、■式により自己の細胞質
を酸化して脱窒し生活のためのエネルギーを得る。
When the amount of adsorbed organic matter is less than the amount of NO□-N or No3-N, denitrifying bacteria oxidize and denitrify their own cytoplasm according to formulas 1, 2, and 2, and obtain energy for life.

次いで脱窒素された混合培養液は沈澱池8に導かれ、活
性汚泥と脱窒素水に分離される。
The denitrified mixed culture solution is then led to a sedimentation tank 8, where it is separated into activated sludge and denitrified water.

沈澱池8で分離された脱窒素水は管Cより糸外に放流さ
れるが、その一部を返送管17かも前記洗浄槽3に導き
、清水に替えて洗浄水として使用するようにしても良い
The denitrified water separated in the sedimentation tank 8 is discharged to the outside of the yarn from the pipe C, but a portion of it may also be guided to the washing tank 3 through the return pipe 17 and used as washing water instead of fresh water. .

また沈澱池8ど分離濃縮された活性汚泥の一部は返送管
15かも第1脱窒素槽5に、一部は返送管16から前記
安定化槽9に返送され、余剰分は管りから系外に排出さ
れる。
In addition, a part of the activated sludge separated and concentrated in the sedimentation tank 8 is returned to the return pipe 15 or the first denitrification tank 5, a part is returned to the stabilization tank 9 from the return pipe 16, and the surplus is sent from the pipe to the system. It is discharged outside.

本発明は上記の工程構成であるので次の効果が得られる
Since the present invention has the above-described process configuration, the following effects can be obtained.

■活性汚泥微生物(脱窒菌、BOD酸化菌、真菌類など
)により、吸着貯蔵された有機物質(Cxf(yOz
)が先ず加水分解され、脱窒菌の生活のためのエネルギ
ーとして利用されるがこの段階は脱窒菌の内生呼吸を利
用するものではないから吸着・蓄積された有機物が利用
しつくされるまで脱窒菌が体外呼吸により脱窒する。
■Organic substances adsorbed and stored by activated sludge microorganisms (denitrifying bacteria, BOD oxidizing bacteria, fungi, etc.)
) is first hydrolyzed and used as energy for the life of the denitrifying bacteria, but since this step does not utilize the endogenous respiration of the denitrifying bacteria, denitrification is continued until the adsorbed and accumulated organic matter is used up. Nitrogen bacteria denitrify through extracorporeal respiration.

したがってメタノールなどを系外から添加した場合と同
様の脱窒速度で窒素の除去が行なわれるから第2脱窒素
槽の容積を大きくとる必要性がない。
Therefore, since nitrogen is removed at the same rate of denitrification as when methanol or the like is added from outside the system, there is no need to increase the volume of the second denitrification tank.

■第1脱窒素槽への流入BODは60〜90%減少する
から硝化槽からの循環液量を少なくでき、かつ流出BO
Dも少なくなり硝化槽のBOD負荷が著しく小さくなる
ので硝化槽容量はBOD酸化に相当する容量だけ小さく
できる。
■Since the inflow BOD to the first denitrification tank is reduced by 60 to 90%, the amount of circulating fluid from the nitrification tank can be reduced, and the outflow BOD
Since D is also reduced and the BOD load on the nitrification tank is significantly reduced, the nitrification tank capacity can be reduced by the capacity corresponding to BOD oxidation.

■吸着汚泥中にはアンモニア性窒素が殆ど含まれないの
で、処理液中の窒素濃度を高めることはない。
■Since adsorbed sludge contains almost no ammonia nitrogen, it does not increase the nitrogen concentration in the treated liquid.

■脱窒菌の内生呼吸作用を抑制する範囲で脱窒反応を行
なうものであるから菌体細胞質の分解は極力おさえられ
アンモニアの溶出が抑制される。
■Denitrification Since the denitrification reaction is carried out to the extent that the endogenous respiration of the bacteria is suppressed, the decomposition of the bacterial cell cytoplasm is suppressed as much as possible and the elution of ammonia is suppressed.

■脱窒菌の炭素源として吸着有機物を利用するものであ
るから、仮に吸着汚泥の添加量が亜硝酸性窒素や硝酸性
窒素濃度に対応する量の範囲を越えても、吸着BOD源
は微生物体に吸着保持された状態にあるため液中へ溶出
することはなく、処理水のBOD濃度を高める(メタノ
ールなど添加する場合に附随する課題)といった問題が
生じない。
■Since adsorbed organic matter is used as a carbon source for denitrifying bacteria, even if the amount of adsorbed sludge added exceeds the range corresponding to the nitrite nitrogen or nitrate nitrogen concentration, the adsorbed BOD source will be the microorganisms. Since it is adsorbed and held in the water, it does not elute into the liquid, and there is no problem of increasing the BOD concentration of the treated water (a problem associated with adding methanol, etc.).

■吸着工程も流入汚水中のBOD源を捕捉し、脱窒菌の
炭素源として利用するものであるから、硝化工程へのB
OD源の流出は少なくなり、その結果菌体合成が盛んな
りOD酸化菌の活動が抑制され、総括での余剰汚泥発生
量を少なくできる。
■The adsorption process also captures the BOD source in the inflowing wastewater and uses it as a carbon source for denitrifying bacteria, so BOD is added to the nitrification process.
The outflow of OD sources is reduced, and as a result, bacterial cell synthesis is promoted and the activity of OD oxidizing bacteria is suppressed, and the overall amount of surplus sludge generated can be reduced.

以上のように、本発明は、汚水の生物学的膜窒素プロセ
スにおいて、第2脱窒素槽で必要とされろ水素供与体す
なわち有機炭素源として、汚水に含まれる有機炭素化合
物を利用するものであるから、第2脱窒素槽で多量に必
要とする従来法での有機化合物たとえばメタノールの添
加を全く必要としないか、補填する程度の添加でよくそ
の使用量を大巾に節減することができ、さらに硝化混合
液の循環に要する動力費も節減できるから維持管理費を
著しく低減することができるのである。
As described above, the present invention utilizes organic carbon compounds contained in wastewater as a hydrogen donor, that is, an organic carbon source required in the second denitrification tank in the biological membrane nitrogen process of wastewater. Therefore, it is possible to significantly reduce the amount of organic compounds used in the second denitrification tank, such as methanol, which is required in large amounts in the conventional method, by not requiring the addition at all, or by adding just enough to compensate. Moreover, since the power cost required for circulating the nitrification mixture can be reduced, maintenance costs can be significantly reduced.

例1 スクリーニングして異質夾雑物を除去したし尿を水で5
倍に希釈し、容積0.2 m’の吸着槽に導き、この流
入汚水量と略等容量の安定化活性汚泥(酸化還元電位2
00mV)を接触させてのち、容積0.4dの沈澱槽で
固液に分離し、その液分を容積2.8m”の第1脱窒素
槽に導入した。
Example 1 Human waste that has been screened to remove foreign contaminants is mixed with water for 5 minutes.
The stabilized activated sludge (oxidation-reduction potential 2
00 mV), the mixture was separated into solid and liquid in a settling tank with a volume of 0.4 d, and the liquid was introduced into a first denitrification tank with a volume of 2.8 m''.

固形汚泥は容積0.4 m’の二段向流洗浄装置に導い
て、汚泥と略等容量の水で洗浄し第2脱窒素槽の脱窒菌
の水素供与体として利用し、前記洗浄後の液分は第1脱
窒素槽へ導入した。
The solid sludge is introduced into a two-stage countercurrent cleaning device with a volume of 0.4 m', where it is washed with approximately the same volume of water as the sludge and used as a hydrogen donor for the denitrifying bacteria in the second denitrification tank. The liquid was introduced into the first denitrification tank.

第1脱窒素槽へ導入した吸着処理後の液分及び洗浄後の
液分並びに容積1.4m”の硝酸化槽から返送する流入
汚水の2倍容量の硝化水、更には返送汚泥の囲者を混合
し脱窒菌の生物学的還元作用により硝化水中の亜硝酸性
窒素および硝酸性窒素を分解除去したのち硝酸化槽に導
いて、アルカリ剤として苛性ソーダを使用して混合液の
pHを約8に調整しつつ、十分にアンモニア性窒素を硝
化し、次いで、この混合培養液を容積2.8セの第2脱
窒素槽に導き、前記洗浄後の汚泥およびメタノールを水
素供与体として添加し、亜硝酸性窒素および硝酸性窒素
を脱窒菌の生物学的還元作用により分解除去し、その混
合培養液を容積1.0771″の沈澱池に導いて活性汚
泥と脱窒素水に分離した。
The liquid content after adsorption treatment and the liquid content after cleaning introduced into the first denitrification tank, the nitrified water with twice the volume of the inflow sewage returned from the 1.4 m" volume nitrification tank, and the enclosure of the returned sludge. The nitrite nitrogen and nitrate nitrogen in the nitrified water are decomposed and removed by the biological reduction action of denitrifying bacteria, and then introduced into the nitrification tank, where the pH of the mixed solution is adjusted to approximately 8 using caustic soda as an alkaline agent. The ammonia nitrogen is sufficiently nitrified while adjusting to Nitrite nitrogen and nitrate nitrogen were decomposed and removed by the biological reduction action of denitrifying bacteria, and the mixed culture solution was introduced into a sedimentation basin with a volume of 1.0771'' and separated into activated sludge and denitrified water.

活性汚泥の一部は返送汚泥として前記第1脱窒素槽に返
送し、一部は吸着活性を高めるため容積0.7セの安定
化槽に返送し酸化還元電位が110〜210 mVの範
囲となるよう曝気した。
Part of the activated sludge is returned to the first denitrification tank as return sludge, and part of the activated sludge is returned to a stabilization tank with a volume of 0.7 cm to increase adsorption activity, so that the oxidation-reduction potential is in the range of 110 to 210 mV. I aerated it to make sure.

次に、本発明の上記実施例1による結果と従来法による
結果とを表で示すと後記のとおりである。
Next, the results according to the above-mentioned Example 1 of the present invention and the results according to the conventional method are shown in a table as shown below.

なお、ここにいう従来法は添附図面の一部をかりて説明
すると次のとおりである。
The conventional method referred to herein will be explained as follows with reference to some of the attached drawings.

すなわち、スクリーニングして異質夾雑物を除去したし
尿を水で10倍に希釈し、容積2.8.’の第1脱窒素
槽5に導き、管14を通って硝酸化槽6から返送される
流入汚水量の2倍容の硝化水と混合しながら硝化水に含
まれる亜硝酸性窒素および硝酸性窒素を脱窒菌の生物学
的還元作用により分解除去したのち、容積2.8m″の
前記硝酸化槽6に導いて、アルカリ剤として苛性ソーダ
を使用して液のpHを8.0に調整しつつ十分にアンモ
ニア性窒素を硝化した。
That is, human waste that has been screened to remove foreign contaminants is diluted 10 times with water to a volume of 2.8. The nitrite nitrogen and nitrate contained in the nitrified water are mixed with the nitrified water of twice the volume of the inflowing sewage, which is led to the first denitrification tank 5 through the pipe 14 and returned from the nitrification tank 6. After nitrogen is decomposed and removed by the biological reduction action of denitrifying bacteria, it is introduced into the nitrification tank 6 with a volume of 2.8 m'', and the pH of the liquid is adjusted to 8.0 using caustic soda as an alkaline agent. Ammonia nitrogen was sufficiently nitrified.

次いで容積2.8.’の第2脱窒素槽7に導き、メタノ
ールを水素供与体として供給しながら硝酸化槽6で生成
した亜硝酸性窒素および硝酸性窒素を脱窒菌の生物学的
還元作用により分解除去☆☆し、その混合培養液を容積
1.0m”の沈澱池8に導いて、活性汚泥と脱窒素水に
分離し、流入汚水量の約50%容積の活性汚泥を返送汚
泥として管15を通じて第1脱窒素槽5に返送した。
Then the volume is 2.8. The nitrite nitrogen and nitrate nitrogen produced in the nitrification tank 6 are decomposed and removed by the biological reduction action of denitrification bacteria while supplying methanol as a hydrogen donor. The mixed culture solution is led to a sedimentation tank 8 with a volume of 1.0 m, where it is separated into activated sludge and denitrified water, and activated sludge with a volume of about 50% of the amount of inflow sewage is returned as return sludge to the first denitrified sludge through a pipe 15. It was returned to nitrogen tank 5.

なお、本発明では硝酸化槽6の容積を従来法の%の容積
としたが、これは吸着工程で汚水中の有機汚染物質が6
0〜90%除去されるため、当該硝酸化槽での有機質/
窒素比が低くおさえられ、その結果、硝化菌も多くなり
、硝化反応速度が従来法に比し著しく増大するからであ
る。
In addition, in the present invention, the volume of the nitrification tank 6 is set to 6% of the volume of the conventional method, which means that organic pollutants in wastewater are absorbed by 6% in the adsorption process.
Since 0 to 90% is removed, the organic matter/
This is because the nitrogen ratio is kept low, and as a result, the number of nitrifying bacteria increases, and the nitrification reaction rate increases significantly compared to conventional methods.

上記の結果から明らかなように、本発明によれば水素供
与体(たとえばメタノール)の使用量は著しく少量でよ
く、しかも窒素除去率も優れている。
As is clear from the above results, according to the present invention, only a very small amount of hydrogen donor (for example, methanol) can be used, and the nitrogen removal rate is also excellent.

例2 スクリーニングして異質夾雑物を除去したし尿を水で5
倍に希釈し、汚水のBODを2200ppm、総窒素を
700ppmとなし、これを吸着槽に導き汚水量の10
0%容量の安定化活性汚泥(酸化還元電位140mV)
と接触させてのち沈澱槽で固液に分離すると、その液分
におけるBODは約80%減となった。
Example 2 Human waste that has been screened to remove foreign impurities is mixed with water for 5 minutes.
Dilute the wastewater to 2200ppm BOD and 700ppm total nitrogen, and introduce this into an adsorption tank to reduce the amount of wastewater to 10%.
0% volume stabilized activated sludge (redox potential 140mV)
When the liquid was separated into solid and liquid in a settling tank, the BOD in the liquid was reduced by about 80%.

分離汚泥を二段向流洗浄装置で略等容量の水を用いて洗
浄すると、アンモニウムは吸着活性汚泥界面から約90
%除去され、有機質吸着活性汚泥のBOD濃度は吸着前
汚泥(安定化活性汚泥)のBODに比し約3.5倍に増
加した。
When the separated sludge is washed with approximately equal volume of water in a two-stage countercurrent washing device, ammonium is removed from the adsorption-activated sludge interface by approximately 90%.
% removed, and the BOD concentration of the organic adsorption activated sludge increased approximately 3.5 times compared to the BOD of the sludge before adsorption (stabilized activated sludge).

次いで前記吸着処理後の液分及び洗浄後の液分と、これ
ら汚水量の3倍容量の硝化液および50%容量の返送汚
泥を容積2.8771″の第1脱窒素槽に導き、嫌気的
条件下で十分に混合接触させてのち、容積1.4771
”の硝酸化槽に導いて、アルカリ剤として苛性ソーダを
使用して混合液のpHを約8に調整しつつ曝気を行なう
と、汚水のBODは23.5 ppm となり、アンモ
ニアは殆ど亜硝酸性窒素および硝酸性窒素に変換された
Next, the liquid after the adsorption treatment and the liquid after washing, the nitrification liquid with a volume three times the volume of these sewage, and the returned sludge with a volume of 50% are led to a first denitrification tank with a volume of 2.8771'', and are subjected to anaerobic treatment. After thorough mixing and contact under the following conditions, the volume is 1.4771.
When aeration is carried out while adjusting the pH of the mixture to approximately 8 using caustic soda as an alkaline agent, the BOD of the wastewater becomes 23.5 ppm, and the ammonia is mostly converted to nitrite nitrogen. and converted to nitrate nitrogen.

次いでこの硝化液を容積2.8771″の第2脱窒素槽
に導いて、メタノールは供給しないで前記洗浄後におけ
る吸着活性汚泥のみを水素供与体として添加し、嫌気的
条件下で脱窒菌と接触混合させてのち、この混合培養液
を沈澱池に導いて脱窒素水と活性汚泥に分離すると、脱
窒素水の総窒素は原し尿換算で約98%減となり、BO
Dは約99%減となった。
Next, this nitrified solution was led to a second denitrification tank with a volume of 2.8771", and only the adsorption activated sludge after washing was added as a hydrogen donor without supplying methanol, and it was brought into contact with denitrifying bacteria under anaerobic conditions. After mixing, this mixed culture solution is led to a sedimentation tank and separated into denitrified water and activated sludge.The total nitrogen in the denitrified water is reduced by approximately 98% in terms of raw human waste, and the BO
D decreased by about 99%.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を示す系統図である。 A・・・・・・汚水導入管、B・・・・・・洗浄水供給
管、1・・・・・・吸着槽、2・・・・・・沈澱槽、3
・・・・・・洗浄槽、4・・・・・・沈澱槽、5・・・
・・・第1脱窒素槽、6・・・・・・硝酸化槽、7・・
・・・第2脱窒素槽、8・・・・・・沈澱池、9・・・
・・・安定化槽、10・・・・・・pHコントローラー
、11・・・・・・上澄液導管、12・・・・・吸着汚
泥導管、13・・・・・・洗浄液導管、15・・・・・
・活性汚泥返送管、14・・・・・・硝酸化検流出液返
送管、16・・・・・・活性汚泥導管、17・・・・・
・脱窒素水導管、C・・・・・・脱窒素水放流管、D・
・・・・・余剰活性汚泥放出管。
The drawings are system diagrams showing embodiments of the present invention. A: Sewage introduction pipe, B: Washing water supply pipe, 1: Adsorption tank, 2: Sedimentation tank, 3
...Cleaning tank, 4...Sedimentation tank, 5...
...First denitrification tank, 6...Nitrification tank, 7...
...Second denitrification tank, 8...Sedimentation tank, 9...
... Stabilization tank, 10 ... pH controller, 11 ... Supernatant liquid pipe, 12 ... Adsorption sludge pipe, 13 ... Washing liquid pipe, 15・・・・・・
・Activated sludge return pipe, 14...Nitrification detection effluent return pipe, 16...Activated sludge conduit, 17...
・Denitrified water pipe, C・・・Denitrified water discharge pipe, D・
... Surplus activated sludge discharge pipe.

Claims (1)

【特許請求の範囲】 1 アンモニウムを含む汚水と、硝酸化槽から返送され
る硝化液とを第1脱窒素槽に導き脱窒菌によってこれを
還元分解したのち、前記硝酸化槽に導いて残存するアン
モニア性窒素を各種硝化菌の共同作用によって亜硝酸性
窒素および硝酸性窒素に酸化したのち、さらに、第2脱
窒素槽に導き有機炭素源の存在下で脱窒菌によってこれ
らを還元分解し、沈澱池で脱窒素水と活性汚泥とに分離
する生物学的脱窒素プロセスにおいて、前記第1脱窒素
槽に流入する汚水と、前記沈澱池で分離され返送された
活性汚泥とを接触せしめ汚水中の有機質を活性汚泥に吸
着させてのちこれを分離し、ここに分離した汚泥を洗浄
水で洗浄したのち再分離させて得られる有機質吸着活性
汚泥を、前記第2脱窒素槽での脱窒菌の水素供与体とし
て利用することを特徴とする汚水の生物学的脱窒素法。 2 前記洗浄水として清水を使用することを特徴とする
特許請求の範囲の第1項記載の汚水の生物学的脱窒素法
。 3 前記洗浄水として沈澱池からの脱窒素水を使用する
ことを特徴とする特許請求の範囲の第1項記載の汚水の
生物学的脱窒素法。
[Scope of Claims] 1. Sewage containing ammonium and nitrification liquid returned from the nitrification tank are introduced into a first denitrification tank, where they are reduced and decomposed by denitrification bacteria, and then introduced into the nitrification tank where they remain. After ammonia nitrogen is oxidized to nitrite nitrogen and nitrate nitrogen by the joint action of various nitrifying bacteria, it is further transferred to a second denitrification tank where it is reductively decomposed by denitrifying bacteria in the presence of an organic carbon source, and then precipitated. In the biological denitrification process in which denitrified water and activated sludge are separated in a pond, the sewage flowing into the first denitrification tank is brought into contact with the activated sludge that has been separated and returned in the settling tank, and the sludge in the sewage is Organic matter is adsorbed to activated sludge and then separated, and the separated sludge is washed with washing water and then re-separated. The organic matter-adsorbing activated sludge obtained is then treated with hydrogen by denitrifying bacteria in the second denitrification tank. A biological denitrification method for wastewater characterized by its use as a donor. 2. The biological denitrification method for wastewater according to claim 1, characterized in that fresh water is used as the washing water. 3. The biological denitrification method for wastewater according to claim 1, characterized in that denitrified water from a settling tank is used as the washing water.
JP1743777A 1977-02-18 1977-02-18 Biological denitrification method of wastewater Expired JPS5939199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1743777A JPS5939199B2 (en) 1977-02-18 1977-02-18 Biological denitrification method of wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1743777A JPS5939199B2 (en) 1977-02-18 1977-02-18 Biological denitrification method of wastewater

Publications (2)

Publication Number Publication Date
JPS53103654A JPS53103654A (en) 1978-09-09
JPS5939199B2 true JPS5939199B2 (en) 1984-09-21

Family

ID=11943993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1743777A Expired JPS5939199B2 (en) 1977-02-18 1977-02-18 Biological denitrification method of wastewater

Country Status (1)

Country Link
JP (1) JPS5939199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1270839B (en) * 1993-10-01 1997-05-13 Caffaro Spa Ind Chim PROCEDURE FOR THE TREATMENT OF INDUSTRIAL WATERS WITH FLOCCULANTS CONSTITUTED FROM NITRATES OR BASIC NITRATES OF TRIVALENT METALS
IT1270840B (en) * 1993-10-01 1997-05-13 Caffaro Spa Ind Chim PROCEDURE FOR THE MANUFACTURE OF PAPER AND CARDBOARD

Also Published As

Publication number Publication date
JPS53103654A (en) 1978-09-09

Similar Documents

Publication Publication Date Title
JPS637839B2 (en)
JP5424789B2 (en) Nitrous oxide emission control method for nitrogen-containing wastewater treatment
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2000308900A (en) Treatment of ammonia-containing waste water
JP2004305980A (en) Biological denitrification treatment method
JP3358388B2 (en) Treatment method for selenium-containing water
JP3837757B2 (en) Method for treating selenium-containing water
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPS5939199B2 (en) Biological denitrification method of wastewater
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
KR100470350B1 (en) Method for disposing of livestock waste water
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JP3837763B2 (en) Method for treating selenium-containing water
JP3755167B2 (en) Method for treating selenium-containing water
KR20130003238A (en) The method and treatment process of wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JPH1085790A (en) Biological denitrification apparatus for drainage
JPH09290290A (en) Treatment of coke-oven gas liquor
JPH09122687A (en) Treatment of selenium-containing water
JPH0938694A (en) Treatment of waste water of flue gas desulfurization
KR20010054865A (en) A treatment method of sewage and wastewater using ozone and oxygen
JP2002273476A (en) Treatment of waste water containing high-concentration nitrogen
JPS63291698A (en) Biological denitrification of waste water
JPH0679714B2 (en) Organic wastewater treatment method
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water