KR20130003238A - The method and treatment process of wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater - Google Patents

The method and treatment process of wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater Download PDF

Info

Publication number
KR20130003238A
KR20130003238A KR1020110064422A KR20110064422A KR20130003238A KR 20130003238 A KR20130003238 A KR 20130003238A KR 1020110064422 A KR1020110064422 A KR 1020110064422A KR 20110064422 A KR20110064422 A KR 20110064422A KR 20130003238 A KR20130003238 A KR 20130003238A
Authority
KR
South Korea
Prior art keywords
tank
wastewater
water
treating
nitrogen
Prior art date
Application number
KR1020110064422A
Other languages
Korean (ko)
Other versions
KR101306805B1 (en
Inventor
진창숙
Original Assignee
(주)전테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)전테크 filed Critical (주)전테크
Priority to KR1020110064422A priority Critical patent/KR101306805B1/en
Publication of KR20130003238A publication Critical patent/KR20130003238A/en
Application granted granted Critical
Publication of KR101306805B1 publication Critical patent/KR101306805B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1215Combinations of activated sludge treatment with precipitation, flocculation, coagulation and separation of phosphates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE: A method and apparatus for treating wastewater containing organic material and nitrogen components are provided to prevent environmental contamination by treating organic wastewater into a condition suitable for directly discharging into a river. CONSTITUTION: A method and apparatus for treating wastewater containing organic material and nitrogen components comprises: a step of anaerobic treating waste water for 1-2 hours; a step of introducing first treated water into an oxygen-free tank and stirring the same for 1-2 hours; a step of introducing the second treated water into an aerobic tank and aerobic treating the same; a step of introducing the third treated water into a precipitation tank and leaving the same for 2-4 hours for separating into liquid supernatant and solid sludge; a step of introducing the supernatant into a denitrification tank and denitrificating the same for 1-4 hours; and a step of introducing the fourth treated water into the aerobic tank and aerobic treating the same. [Reference numerals] (S10) First treating step of anaerobically treating waste liquid or wastewater through precipitation and degassing; (S20) Second treating step of stirring the anaerobically treated waste liquid or wastewater in an anoxic bath; (S30) Third treating step of aerobically treating aerating the stirred waste liquid or wastewater; (S40) Precipitating step of separating the aerobically treated waste liquid or wastewater into supernatant and solid sludge; (S50) Fourth treating step of sulfating and denitrifying supernatant using sulfating and denitrifying microorganisms; (S60) Fifth treating step of aerating sulfated and denitrified waste liquid or wastewater

Description

유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치 및 그 처리 방법{The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater}The method and treatment process of wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater}

본 발명은 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치 및 그 처리 방법에 관한 것으로, 특히 축산분뇨, 음식물류 폐기물, 하수슬러지 등 유기성 폐기물을 단독 또는 병합하여 혐기소화처리 시 배출되는 소화폐액, 음식물류 폐기물에서 침출되는 음폐수, 축산폐수와 같은 고농도 유기성폐수를 처리하여 하수처리장 연계처리 또는 수계에 직접 방류하기 위해 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치 및 그 처리 방법에 관한 것이다.The present invention relates to an apparatus for treating livestock wastewater, digestive waste liquid, and negative wastewater containing organic substances and nitrogen components, and a method of treating the same. Livestock wastewater, digestive waste, and negative wastewater containing organic and nitrogen components to treat high concentration organic wastewater such as digested wastewater, effluents leaching from food waste, livestock wastewater, and direct discharge into sewage treatment plant or water system A processing apparatus and a processing method thereof.

고농도의 유기물과 질소성분이 함유되어 있는 축산폐수의 경우, 국내에서 발생되는 총 오폐수 발생량의 0.5% 정도이나, 수계에 미치는 오염 부하율은 18%로, 하천 및 호소에 수질악화 및 부영양화를 초래하여 수계의 이용도를 저하시킬 뿐 아니라 식수원을 위협하며 토양 및 지하수의 오염을 가속시키고 있다. 또한 발생되는 악취 및 해충의 번식은 인근 주민의 생활환경을 악화시켜 주민의 민원 대상이 되고 있다.For livestock wastewater containing high concentrations of organic matter and nitrogen, about 0.5% of total wastewater generated in Korea, but the pollutant loading rate on water systems is 18%, causing water degradation and eutrophication in streams and lakes. Not only does it reduce the availability of water, it also threatens drinking water sources and accelerates soil and groundwater contamination. In addition, the odors and pests that are produced are worsening the living environment of nearby residents and are subject to civil complaints.

축산분뇨와 같은 유기성 폐기물을 처리하면서 에너지를 생산할 수 있는 혐기소화기술의 보급이 진행되면서, 혐기소화 후 배출되는 소화폐액의 처리문제가 대두되고 있다. As the progress of anaerobic digestion technology that can produce energy while processing organic waste such as livestock manure, there is a problem of the treatment of digestive waste liquid discharged after anaerobic digestion.

소화폐액은 축산폐수와 마찬가지로 고농도의 유기물과 질소를 함유하고 있어 액비로서의 사용이 권장되고 있으나, 국내 여건상 전량을 액비로 사용하기엔 다소 문제가 있다. Digestive waste liquid contains high concentration of organic matter and nitrogen like livestock waste water, so it is recommended to be used as liquid fertilizer, but there are some problems in using whole amount as liquid fertilizer.

이에, 액비 사용과 함께, 일부는 수처리하는 방안이 검토되고 있으나, 아직 수처리공정이 완성되지 않았으며, 현지 다양한 수처리공정이 연구되고 있다. Therefore, the use of liquid fertilization, some of the ways to treat the water, but the water treatment process has not been completed yet, various local water treatment processes are being studied.

혐기소화 후의 소화폐액은 축산폐수와 유사한 성상을 함유하고 있으나, 분과 노를 고액분리한 후 배출되는 축산폐수와는 달리 축산분뇨를 혐기소화공정을 통해 어느 정도의 유기물을 분해, 제거하므로, 축산폐수에 비해 소화폐액에는 난분해성 유기물의 잔존량이 많고 질소농도가 더 높은 것이 일반적이다.The digestive waste liquid after anaerobic digestion has similar characteristics to the livestock wastewater, but unlike the livestock wastewater discharged after solid-liquid separation of powder and furnace, the livestock waste is decomposed and removed to some extent through the anaerobic digestion process. Compared with the digestive waste fluid, the amount of remaining hardly decomposable organic matters is higher and the nitrogen concentration is higher.

결과적으로, 혐기소화 후의 소화폐액이 축산폐수에 비해 수처리가 어렵다고 볼 수 있으며, 오래전부터 처리대상이었기 때문에 다양한 기술이 개발되어 있는 축산폐수와는 달리, 유기성 폐기물의 에너지화라는 명목아래 개발되고 있는 혐기소화기술개발은 최근에 진행되고 있어 소화폐액을 처리하는 기술개발은 이제 시작되었다고 할 수 있다.As a result, the anaerobic digestion wastewater is more difficult to treat than livestock wastewater and, unlike livestock wastewater, which has been developed for a long time since it has been treated for a long time, it is developed under the name of energyization of organic waste. Digestion technology development is progressing recently, the development of technology to treat digestive waste liquid can be said to have begun.

이러한, 성상면에서 소화폐액과 가장 유사하다고 할 수 있는 축산폐수의 처리법으로는 액상부식법, HBR, BIOSUF, B3공법, SBR공법, 자연정화법 등이 있으나, 질소와 인의 제거효율이 미비하며, 유기물과 질소성분을 제거하는데 긴시간을 필요로 하기 때문에 시설투자비 및 운전비용이 많이 소요되고, 운전이 난해하다.Such livestock wastewater treatment method, which is the most similar to digestive waste liquid in terms of properties, includes liquid corrosion method, HBR, BIOSUF, B3 method, SBR method, and natural purification method. However, nitrogen and phosphorus removal efficiency is insufficient, Since it takes a long time to remove the nitrogen and nitrogen components, the facility investment and operating costs are high, and the operation is difficult.

유기물의 저감에 대해서는 많은 부분에서 처리 방법이 연구되어 충분한 체류시간과 적정한 유입농도가 유지되면 어느 정도 유기물 제거효율을 달성할 수 있으나, 이는 시설설치비 및 운전관리비에 직접적인 영향을 주므로 이로 인해 원활한 처리를 수행하고 있는 곳이 적다. Regarding the reduction of organic matter, the treatment method is studied in many areas, and if the sufficient residence time and the proper inflow concentration are maintained, organic removal efficiency can be achieved to some extent, but this has a direct effect on facility installation cost and operation management cost. Fewer places

또한 질소 및 인과 같은 부영양화 유발물질과 착색문제는 후속고도처리공정에서 높은 제거효율을 달성하기 어려운 현실이다. 이 역시 비용과 상대적인 관계에 있기 때문이다. Also, eutrophication agents and coloring problems such as nitrogen and phosphorus are difficult to achieve high removal efficiency in the subsequent high-level treatment process. This is also relative to cost.

일반적으로 축분에 함유된 CODCr농도는 180,000 ~ 250,000㎎/ℓ, 축뇨의 CODCr농도는 10,000 ~ 20,000㎎/ℓ으로 약 20배의 차가 있으며, 암모니아성 질소는 분이 5,000 ~ 10,000㎎/ℓ, 뇨는 4,000 ~ 5,000㎎/ℓ으로 약 2배의 차를 보인다. In general, COD Cr concentration in animal meal is about 180,000 to 250,000mg / l, and urinary COD Cr concentration is 10,000 to 20,000mg / l, which is about 20 times difference.Ammonia nitrogen is 5,000 ~ 10,000mg / l, urine 4,000 ~ 5,000 ㎎ / ℓ shows about twice the difference.

축산폐수 공공처리장에서는 분과 뇨의 분리를 기본으로 하여, 공공처리장 유입 시 분과 뇨의 분리가 되지 않아 BOD농도가 높은 경우, 반입을 불허하고 있다.The livestock wastewater treatment plant is based on the separation of urine and urine, and when the inflow of public treatment plant does not separate sewage and urine, it is not allowed to bring in high BOD concentrations.

음식물류 폐기물은 대표적인 유기성 폐기물로서, 소득수준의 향상에 따른 음식소비 증가 및 음식물 분리수거 확산으로 발생량이 지속적으로 증가하고 있다. 더욱이 2005년부터 직매립이 금지되면서 처리가 더욱 어려워졌다(환경부, 2007). 음식물류 폐기물은 배출원별로 성분의 차이가 있다. Food waste is a representative organic waste, and its amount is continuously increasing due to the increase of food consumption and the separation of food collection due to the improvement of income level. Moreover, since landfilling has been banned since 2005, the process becomes more difficult (Ministry of Environment, 2007). Food wastes vary in composition from source to source.

그리고, 수분함량의 경우, 농산물도매시장에서 배출되는 쓰레기가 약 90%, 가정에서 배출되는 쓰레기가 약 80%, 식당에서 배출되는 쓰레기가 약 77%이다. 유기물 함량은, 식당이 88%, 가정이 83%, 농산물도매시장이 77% 이며, 염분(NaCl)함량은, 가정이 4.8%, 식당이 3.4%, 농산물도매시장이 0.8%로 알려져 있다(농업진흥청, 1999). 염분은 퇴비화에서 가장 주의가 필요한 성분으로 현재는 전처리단계에서 가수(加水)함에 의해 조절하고 있으나, 혐기소화 처리량과 음폐수(소화 후 고액분리하여 발생되는 소화탈리액 : 음식물류 폐기물 폐액) 처리량이 증가한다는 단점이 있다.In the case of water content, about 90% of wastes from agricultural wholesale markets, about 80% of wastes from homes, and about 77% of wastes from restaurants. Organic matter content is 88% in restaurants, 83% in homes, 77% in agricultural wholesale markets, and NaCl content is 4.8% in homes, 3.4% in restaurants, and 0.8% in agricultural wholesale markets (agriculture). Promotion Agency, 1999). Salinity is the most important ingredient in composting, and is currently controlled by hydrolysis in the pretreatment stage, but increases in anaerobic digestion and effluent (digestive desorption liquid caused by solid-liquid separation after digestion: food waste waste). There are disadvantages.

위에 기술한 것과 같이 음식물류 폐기물의 재활용 시 가장 큰 난점은 음폐수의 처리라고 볼 수 있다. 환경부의 자료에 따르면 음폐수 발생량은 매년 증가하고 있으며, 공공수역 방류를 위해 하수처리장 등에서 처리가 필요하나, 방류수 수질기준 준수부담으로 하수처리장에서는 공공시설에서 발생되는 음폐수를 위주로 처리하고 있고, 민간업체는 고액분리한 후 고형물 8%를 포함한 폐수를 해양배출하고 있으나, 2012년부터는 해양투기가 전면금지되므로 육상에서의 처리방안을 찾아야하는 문제를 안고 있다.As described above, the biggest difficulty in recycling food waste is the treatment of effluent. According to the Ministry of Environment's data, the amount of wastewater is increasing every year, and treatment is required at sewage treatment plants for discharge of public waters, but sewage treatment plants mainly treat negative wastewater from public facilities due to compliance with discharge water quality standards. The company has discharged wastewater containing 8% of solids after separation of solids, but since 2012, the dumping of ocean dumping has been banned.

최근에는, 해양오염의 문제 등에 의해 전 세계적으로 해양배출량을 점차 감소시키고 있으며, 국내에서도 1993년에 가입한 런던협약 및 1996의정서 가입을 추진하면서 국제적 규제기준 적용에 따라 해양배출기준을 강화하고 있다. 해양배출량에 대한 규제가 강화되면, 민간업체에서 행하고 있는 처리방식을 전면적으로 변경하여야 한다. In recent years, marine emissions have been gradually reduced worldwide due to marine pollution, and Korea has been strengthening marine emission standards in accordance with the application of international regulatory standards, while also promoting accession to the London Convention and the 1996 Protocol. If regulations on ocean emissions are tightened, it is necessary to completely change the treatment practices performed by private companies.

이러한, 하수처리장 등에서 처리하려면 하수처리장의 부하가 증가하는 만큼 하수처리장 용량을 증가시켜야하고, 처리장 용량 증가 없이 처리하려면 음폐수 처리시설을 완벽하게 갖추어야 한다. In order to treat such a sewage treatment plant, the sewage treatment plant capacity should be increased as the load of the sewage treatment plant is increased, and the wastewater treatment facility should be perfectly equipped to treat the treatment plant without increasing its capacity.

그러나, 현재 국내에는 음폐수를 하수연계처리를 위한 수질을 맞출 수 있는 기술이 몇 가지 있을 뿐, 공공수역 방류기준까지 처리할 수 있는 기술은 전무한 상태이다. 물론 시설투자비용이 충분하다면 다양한 기술의 접목에 의해 어느 정도 처리 가능하나, 많은 투자를 하기 어려운 것이 현실이다.However, at present, there are only a few technologies in Korea that can match the water quality for sewage treatment, and there are no technologies that can handle the discharge of public waters. Of course, if the facility investment cost is sufficient, it can be handled to some extent by combining various technologies, but it is difficult to make a lot of investment.

그리고, 소화폐액, 음폐수 및 축산폐수등과 같은 유기성 폐수을 처리할 때, 유기물을 제거하는 본처리 기술 중에서 가장 처리효율이 높은 것은 혐기성 처리법이다. 그러나 혐기성 처리법은 질소 및 인의 제거가 불충분하며, 혐기성 처리법의 유입수에 고농도의 암모니아성 질소가 함유되어 있으면 프리암모니아(FA)농도가 높아짐에 의해 처리효율이 저하되는 문제점이 있다.In the treatment of organic wastewater such as digestive waste liquid, drinking wastewater and livestock wastewater, the anaerobic treatment method is the most effective among the main treatment techniques for removing organic matter. However, the anaerobic treatment method is insufficient to remove nitrogen and phosphorus, and if the influent of the anaerobic treatment method contains a high concentration of ammonia nitrogen, there is a problem that the treatment efficiency is lowered due to the increase of the preammonia (FA) concentration.

호기성 처리법에는 활성슬러지법, 활성슬러지변법(AO법, A2O법, 막분리 활성슬러지법 등), 생물막법(접촉산화법, 회전원판법 등), 회분식 활성슬러지법, 산화구법 등이 있다(畜産糞尿處理施設ㆍ機械選定 ガイドブック, 畜産環境整備機構, p. 13, 2004). 호기성 처리법은 유기물(BOD)농도가 3,000mg/L이상이거나 유기물과 질소의 비(C/N비)가 5 이하이거나 10 이상이면 처리효율이 매우 낮아져 체류시간이 길어지고 넓은 부지를 필요로 하는 등의 문제점이 있다.The aerobic treatment methods include activated sludge method, activated sludge method (AO method, A2O method, membrane separation activated sludge method, etc.), biofilm method (contact oxidation method, rotating disc method, etc.), batch activated sludge method, and oxidative ball method (畜産 糞尿). Establishment and Determination Guide Block, Deposition, p. 13, 2004). The aerobic treatment method requires an organic matter (BOD) concentration of more than 3,000 mg / L, an organic matter and nitrogen ratio (C / N ratio) of 5 or less, or more than 10, resulting in a very low treatment efficiency, requiring a long residence time and a large site. There is a problem.

질소 및 인의 고도처리에 있어서는, 질소는 주로 생물학적 처리기술을 이용하며, 인은 화학적 응집침전기술을 이용한다. In the advanced treatment of nitrogen and phosphorus, nitrogen mainly uses biological treatment technology and phosphorus uses chemical flocculation sedimentation technology.

질소제거에는, 독립영양미생물을 이용한 질산화와 종속영양미생물을 이용한 탈질을 결합한 생물학적 처리법이 주종을 이루고 있다. 이 경우, 질산화는 암모니아(NH4 +-N)가 독립영양미생물에 의해 아질산성 질소(NO2 --N) 또는 질산성 질소(NO3 --N)로 전환하는 과정으로, 암모니아에서 아질산으로 산화될 때는 Nitrosomonas, Nitrosococcus , Nitrosobacillus등의 미생물이 관여하며, 아질산에서 질산으로 산화될 때는 Nitrobacter , Nitrosocystis등이 관여한다. Nitrogen removal is predominantly a biological treatment that combines nitrification with autotrophic microorganisms and denitrification with heterotrophic microorganisms. In this case, nitrification is the process in which ammonia (NH 4 + -N) is converted to nitrite nitrogen (NO 2 -- N) or nitrate nitrogen (NO 3 -- N) by an autotrophic microorganism, from ammonia to nitrous acid. when it is oxidized, and microorganisms such as Nitrosomonas, Nitrosococcus, Nitrosobacillus involved, when it is oxidized to nitrite from nitric acid are involved, such as Nitrobacter, Nitrosocystis.

질산화반응은 산소가 필요하며, 다량의 질산화미생물을 반응조 내에 확보ㆍ유지시키지 않으면 안 된다. 또한 다량의 알칼리도도 필요하므로 저하되는 pH를 조절하기 위해 pH buffer가 요구된다. 여기에 온도, BOD/N비, 암모니아농도 등도 질산화반응에 영향을 준다.The nitrification requires oxygen, and a large amount of nitrifying microorganisms must be secured and maintained in the reactor. In addition, a large amount of alkalinity is required, so a pH buffer is required to control the lowering pH. Temperature, BOD / N ratio, and ammonia concentration also influence nitrification.

탈질은 용존산소(DO)가 존재하지 않고 질산성질소 또는 아질산성질소가 존재하는 무산소(Anoxic)상태에서 Pseudomonas , Bacillus , Micrococcus등의 종속영양미생물에 의해 질산이나 아질산이 질소가스(N2)로 전환되는 과정을 말한다. 종속영양 탈질반응에는 전자공여체로서 유기 탄소원을 필요로 하므로, 유기탄소원이 낮은 경우에는 메탄올과 같은 유기탄소원을 첨가해 주어야 한다. 그러나 메탄올 첨가의 경우에는 적절한 첨가량의 제어가 곤란하고 메탄올 자체의 독성 때문에 처리수에 메탄올이 잔존하면 2차 오염의 원인이 된다. 이론적인 메탄올 필요량은 처리해야할 질소량의 3배 이상이 필요하다고 되어 있으나, 실제 현장운전을 한 결과에서 보면 3~10배로 평균 6.5배 정도가 필요한 것으로 알려져 있다.Denitrification is carried out by heterotrophic microorganisms such as Pseudomonas , Bacillus and Micrococcus in the anoxic state in which there is no dissolved oxygen (DO) and nitrous or nitrite nitrogen is released into nitrogen gas (N 2 ). The process of conversion. Heterotrophic denitrification requires an organic carbon source as an electron donor, so if an organic carbon source is low, an organic carbon source such as methanol should be added. However, in the case of methanol addition, it is difficult to control the proper amount of addition, and methanol remains in the treated water due to the toxicity of methanol itself, which causes secondary contamination. The theoretical amount of methanol required is more than three times the amount of nitrogen to be treated, but from the actual field operation results, it is known that an average of 6.5 times is required, from 3 to 10 times.

독립영양미생물을 이용한 질산화와 종속영양미생물을 이용한 탈질을 결합한 생물학적 처리법은 대부분 무산소조-호기조로 이루어지며 폐수를 순환시킴에 의해 무산소조에서는 탈질, 호기조에서는 질산화가 일어나게 한다. 그러나 이 방법은 반응조를 각각 별도로 설치하여야 하므로 넓은 설치부지가 요구되며 호기조 용량을 크게 해야만 한다. 반응조 용적이 작으면서 안정된 처리수를 얻기 위해서 현탁 활성슬러지 대신에 활성슬러지 또는 질산화균이나 탈질균을 고정화한 담체를 충진하는 방법도 이용되고 있다. Most biological treatments that combine nitrification with autotrophic microorganisms and denitrification with heterotrophic microorganisms consist mostly of an anaerobic tank-aerobic tank and circulate the wastewater to cause denitrification in the aerobic tank and nitrification in the aerobic tank. However, this method requires a separate installation of the reactor, so a large installation site is required and the aerobic capacity must be increased. In order to obtain stable treated water with a small reaction tank volume, a method of filling activated sludge or a carrier immobilized with nitrifying or denitrifying bacteria is also used instead of suspended activated sludge.

그러나 담체가격이 비싸다는 단점과 담체표면에 미생물막을 형성하여 어느 정도 기간이 지나면 하중에 의해 침전되거나, 담체가 막혀 폐수나 공기가 담체 내부를 통과하지 못하면서 혐기화되는 문제가 발생한다. 이러한 문제는 담체 기공의 크기가 커서 발생되는 것이다.However, there are disadvantages in that the carrier price is high and the microbial membrane is formed on the surface of the carrier, and after a certain period of time, it is precipitated by load, or the carrier is blocked, so that the waste water or air does not pass through the carrier and is anaerobic. This problem is caused by the large size of the carrier pores.

최근에 주목받고 있는 황을 이용한 탈질은, Thiobacillus denitrificans로 대표되는 황산화 미생물이 황을 산화하는 과정에서 황산화에 필요한 산소성분을 질산성질소나 아질산성질소에 결합되어 있는 산소성분을 이용하면서 질산성질소나 아질산성질소를 질소가스로 전환시킴에 의해 물속에서 질소성분을 제거하는 반응이다. Denitrification using sulfur, recently attracting attention, is Thiobacillus In the process of oxidizing sulfur, the sulfated microorganism represented by denitrificans converts the nitrate or nitrite nitrogen into nitrogen gas by using the oxygen component combined with the nitrate nitrogen or nitrite nitrogen. This reaction removes nitrogen from the water.

황산화 탈질 반응은 산소가 존재하지 않고 질산성 질소나 아질산성 질소가 존재하는 무산소 상태에서 이루어진다. 황산화 탈질미생물은 절대 화학독립영양미생물로 CO2, HCO3 -, CO3 2 -등의 무기탄소를 탄소원으로 이용하여 생육하므로, 메탄올과 같은 유기탄소원을 투입해 줄 필요가 없다.Sulfation denitrification takes place in the absence of oxygen and in the absence of oxygen in the presence of nitrate nitrogen or nitrite nitrogen. Chemistry denitrifying microorganisms are sulfate absolute chemical autotrophic microorganisms CO 2, HCO 3 -, CO 3 2 - because the arms, such as the growth carbon using a carbon source, there is no need to input by an organic carbon source such as methanol.

아울러, T. denitrificans에 의한 황탈질반응에 있어서 수소수용체로서 황화합물의 비용을 전자 당량 당 약품비용으로 비교한 결과, SO가 가장 경제적인 수소공여체라고 보고되어 있다(Bisogni, J. J.r. & Driscoll, C. T. Jr. : Denitrification using thiosulfate and sulfide, J. Environ. Eng. Div. Proc. ASCE, Vol. 103, p. 593~604(1977)). In addition, as a result of comparing the cost of sulfur compounds as hydrogen acceptors by the chemical cost per electron equivalent in the denitrification reaction by T. denitrificans , it is reported that S O is the most economic hydrogen donor (Bisogni, JJr & Driscoll, CT Jr.). Denitrification using thiosulfate and sulfide, J. Environ.Eng. Div. Proc.ASCE, Vol.103, p. 593-604 (1977).

이러한, SO는 자원이 풍부하고 가격이 저가이며, 저장이 쉽고 취급성이 좋으며, 독성이 없는 등의 장점이 있으나, 물에 쉽게 용해되지 않는다는 단점이 있다. 그리고 황산화 탈질 미생물은 응집성이 없어 미생물의 집적과 고액분리가 어렵다고 알려져 있다. 또한 황산화반응의 최종산물인 황산염이온이 pH를 저하시키는데, pH가 5.5이하가 되면 탈질반응에 저해를 받아 지속적으로 알칼리도를 보충하여 주어야하는 문제도 있다.These, S O is resource rich, low-cost prices, good handling, easy to save, but the advantages of non-toxic, there is a disadvantage does not dissolve readily in water. In addition, sulfated denitrification microorganisms are known to be difficult to accumulate and solid-liquid separation of microorganisms due to their cohesiveness. In addition, sulphate ions, the final product of the sulphation reaction, lower the pH, and when the pH is 5.5 or less, there is a problem in that the denitrification reaction is inhibited and the alkalinity must be continuously added.

위에 서술한 황산화 탈질공법의 문제점을 해결하기 위해 당사에서 개발한 기술(특허 제0503134호)이 있으며, 이 기술은 황과 알칼리성물질을 용융하여 제조한 일체형담체를 사용함에 의해 기존의 황산화 탈질공법에서 발생되는 문제점을 모두 해결한 것이다.There is a technology developed by our company (Patent No. 0503134) to solve the above-mentioned problem of the sulfate denitrification method, and this technique is achieved by using an integrated carrier prepared by melting sulfur and alkaline substances. It solves all the problems caused by the process.

음폐수 및 축산폐수 등에는 휴민산 유래의 갈색이 나타나는데, 이는 1차, 2차, 3차 처리를 거쳐도 거의 제거되지 않는다. 색도제거를 위해 펜톤산화법, 오존처리법, 전기분해법 등이 이용되는데, 약품비 및 전기료 등 제거효율에 비해 과다한 처리비용이 문제가 되고 있다.In drinking water and livestock waste water, brown color derived from humic acid appears, which is hardly removed even after the first, second and third treatment. Fenton oxidation method, ozone treatment method, electrolysis method, etc. are used to remove the color, excessive treatment cost is a problem compared to the removal efficiency, such as chemical costs and electricity bills.

이로 인하여, 구조가 간단한 동시에 폐수 및 폐액을 법적 방류 기준에 맞도록 정수할 수 있도록 개선된 폐수 처리장치 및 처리방법이 절실히 요구되는 실정이다.For this reason, there is an urgent need for an improved wastewater treatment apparatus and treatment method that is simple in structure and capable of purifying wastewater and wastewater to meet legal discharge criteria.

본 발명은 축산분뇨, 음식물류 폐기물, 하수슬러지 등 유기성 폐기물을 단독 또는 병합하여 혐기소화처리 시 배출되는 소화폐액, 음식물류 폐기물에서 침출되는 음폐수, 축산폐수와 같은 고농도 유기성폐수를 처리하여 하수처리장 연계처리 또는 수계에 직접 방류하기 위함이다.The present invention treats organic wastewater, such as livestock manure, food waste, sewage sludge alone or combined, and treats wastewater discharged during anaerobic digestion, drinking wastewater leaching from food waste, livestock wastewater, and high concentration organic wastewater such as livestock wastewater. Or for direct discharge into the water system.

상기한 목적을 달성하기 위하여 본 발명은 축산폐수, 소화폐액, 음폐수와 같은 처리대상 폐액 또는 폐수를 처리하는 처리 장치에 있어서, 상기 폐액 또는 폐수를 고액분리하는 탈수기를 구성하고, 상기 고액 분리된 폐액 또는 폐수를 공급받아 잔여 고형물과 유기물을 분리, 제거하는 침전를 구성하며, 상기 침전조에 존재하는 깨끗한 상등수를 공급받아 고농도의 암모니아성 질소를 제거하는 탈기조를 구성하고, 상기 탈기조를 거쳐 암모니아성질소가 제거된 상등수를 공급받아 상등수에 함유된 고농도의 유기물을 제거하는 제1혐기조를 구성하며, 상기 혐기조를 거친 고농도 유기물이 제거된 상등수를 공급받아 잔여 암모니아성 질소를 질산성 질소 또는 아질산성 질소로 변환시킨 후, 일부는 종속영양탈질에 의해 제거하고, 나머지는 황산화탈질공법에 의해 질산성 질소 또는 아질산성 질소를 제거하는 미생물반응조로 구성되는 것을 특징으로 하는 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치 및 그 처리 방법을 제공한다.
In order to achieve the above object, the present invention is a treatment apparatus for treating wastewater or wastewater, such as livestock wastewater, digestive wastewater, negative wastewater, comprising a dehydrator for solid-liquid separation of the waste liquid or waste water, the solid-liquid separation A sediment is formed to separate and remove residual solids and organics by receiving waste liquid or waste water, and to form a degassing tank to remove high concentration of ammonia nitrogen by receiving clean supernatant present in the sedimentation tank. The first anaerobic tank is configured to receive the supernatant from which cattle are removed, and to remove the high concentration of organic matter contained in the supernatant. After conversion, some are removed by heterotrophic denitrification and others are sulfate denitrification By providing a nitrate or nitrite to the reaction vessel consisting of a microorganism to remove nitrogen characteristic of the livestock waste water containing organic matter and nitrogen components, the process of extinguishing the waste, the waste water apparatus and the sound processing method.

이상에서와 같이 본 발명은 축산분뇨, 음식물류 폐기물, 하수슬러지 등 유기성 폐기물을 단독 또는 병합하여 혐기소화처리 시 배출되는 소화폐액, 음식물류 폐기물에서 침출되는 음폐수, 축산폐수와 같은 고농도 유기성폐수를 처리하여 하수처리장 연계처리 또는 수계에 직접 방류하기 위한 시스템으로, 적절한 폐수처리를 통해 생태계의 보호, 그리고 자연을 효과적으로 보전할 수 있는 유용한 효과가 있다.As described above, the present invention treats high concentration organic wastewater, such as live wastewater leaching from anaerobic digestion, effluents leaching from food waste, livestock wastewater, by combining organic wastes such as livestock manure, food waste and sewage sludge alone or in combination. It is a system to link sewage treatment plant or direct discharge to water system, and it has a useful effect to protect ecosystem and effectively preserve nature through proper wastewater treatment.

도 1은 본 발명에 따른 다양한 폐수를 처리하기 위한 처리장치를 나타낸 개략적인 구성도,
도 2는 본 발명에 따른 다양한 폐수를 처리하기 위한 처리방법을 나타낸 순서도이다.
1 is a schematic configuration diagram showing a treatment apparatus for treating various wastewater according to the present invention;
2 is a flow chart showing a treatment method for treating various wastewater according to the present invention.

이에 상기한 바와 같은 본 발명의 바람직한 실시 예를 첨부도면에 의거하여 상세히 설명하면 다음과 같다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.

도 1 및 도 2에 도시된 바와 같이, 본 발명의 다양한 폐수를 처리하기 위한 처리장치는 축산폐수, 소화폐액, 음폐수와 같은 처리대상 폐액 또는 폐수를 처리하는 처리 장치에 관한 것으로, 탈수기(10) 및 고형물과 유기물을 분리제거하는 침전조(20), 암모니아성 질소를 제거하는 탈기조(30), 고농도 유기물을 제거하는 제1혐기조(40), 질소를 제거하는 미생물반응조(50)로 처리장치(100)가 구성된다.1 and 2, a treatment apparatus for treating various wastewater of the present invention relates to a treatment apparatus for treating waste liquid or wastewater, such as livestock wastewater, digestive wastewater, negative wastewater, dehydrator (10) And a precipitator 20 for separating and removing solids and organics, a degassing tank 30 for removing ammonia nitrogen, a first anaerobic tank 40 for removing high concentrations of organic matter, and a microbial reaction tank 50 for removing nitrogen. 100 is configured.

먼저, 상기 탈수기(10)는 폐액 또는 폐수를 고액분리하는 것으로, First, the dehydrator 10 is to solid-liquid waste liquid or waste water,

그리고, 상기 침전조(20)는 고액 분리된 폐액 또는 폐수를 공급받아 잔여 고형물과 유기물을 분리, 제거하도록 구성된다.In addition, the settling tank 20 is configured to separate and remove the remaining solids and organics by receiving the solid-liquid separated waste liquid or waste water.

이때, 상기 탈수기(10)는 침전조(20)의 내부에 설치된다.At this time, the dehydrator 10 is installed inside the settling tank 20.

이러한, 상기 탈수기(10)에 소화폐액, 축산폐수, 음폐수 등의 유기성 폐수가 유입되면, 탈수기(10)에서 탈수함에 의해 고형물, 총인 등을 제거하도록 구성된 것이다.When the organic wastewater such as digestive waste liquid, livestock wastewater, and negative wastewater flows into the dehydrator 10, the dehydrator 10 is configured to remove solids, total phosphorus, etc. by dehydration in the dehydrator 10.

한편, 상기 탈기조(30)는 침전조(20)에 존재하는 깨끗한 상등수를 공급받아 고농도의 암모니아성 질소를 제거하도록 구성한다.On the other hand, the degassing tank 30 is configured to remove the high concentration of ammonia nitrogen by receiving the clean supernatant present in the settling tank 20.

아울러, 상기 탈기조(30)는 침전조(20)에서 고형물(SS)를 좀 더 처리하여 혐기반응에 적합한 고형물 농도까지 처리한 상등수가 유입되면 암모니아성 질소를 탈기시켜 제거하도록 구성된다.In addition, the degassing tank 30 is configured to degas and remove ammonia nitrogen when the supernatant treated to a solids concentration suitable for anaerobic reaction by further treating the solids (SS) in the settling tank 20.

그리고, 상기 제1혐기조(40)는 탈기조(30)를 거쳐 암모니아성질소가 제거된 상등수를 공급받아 상등수에 함유된 고농도의 유기물을 제거하도록 구성한다.Then, the first anaerobic tank 40 is configured to remove the high concentration of organic matter contained in the supernatant by receiving the supernatant water from which the ammonia nitrogen is removed through the degassing tank 30.

이러한, 상기 탈기조(30)에서 처리된 처리수는 제1혐기조(40)로 유입되어 혐기미생물(그래뉼)에 의해 유기물성분(CODCr, CODMn, BOD)이 분해되어 CH4와 CO2가스가 생성된다. The treated water treated in the degassing tank 30 is introduced into the first anaerobic tank 40 to decompose organic matter components (COD Cr , COD Mn , BOD) by anaerobic microorganisms (Granules) to form CH 4 and CO 2 gas. Is generated.

그리고, 상기 미생물반응조(50)는 제1혐기조(40)를 거친 고농도 유기물이 제거된 상등수를 공급받아 잔여 암모니아성 질소를 질산성 질소 또는 아질산성 질소로 변환시킨 후, 일부는 종속영양탈질에 의해 제거하고, 나머지는 황산화탈질균이 우점화되어 이루어지는 황산화탈질조(51)에서 황산화탈질반응에 의해 질산성 질소 또는 아질산성 질소를 질소가스로 제거하도록 구성된다.In addition, the microbial reaction tank 50 receives the supernatant from which high concentration organic matter is removed from the first anaerobic tank 40 and converts residual ammonia nitrogen to nitrate nitrogen or nitrite nitrogen, and partly by heterotrophic denitrification. The remainder is configured to remove nitrate nitrogen or nitrite nitrogen with nitrogen gas by a sulphate denitrification reaction in the sulphate denitrification tank 51 in which the sulphate denitrification bacteria are predominant.

여기서, 상기 미생물반응조(50)는 황산화탈질균이 우점화되어 이루어지는 황산화탈질조(51)가 구성된다.Here, the microbial reaction tank 50 is composed of a sulfate denitrification tank 51 in which the sulfated denitrification bacteria dominates.

그리고, 상기 황산화탈질조(51)와 연결되며, 제1교반기(52a)를 포함하여 이루어지는 제2혐기조(52)가 구성된다.A second anaerobic tank 52 is connected to the sulfate denitrification tank 51 and includes a first stirrer 52a.

한편, 상기 제1혐기조(40)에서 처리된 처리수는 미생물반응조(50)의 제2혐기조(52)로 유입되며, 여기서 유기물이 일부 제거되고 인성분이 슬러지 외부로 방출되도록 구성된다.On the other hand, the treated water treated in the first anaerobic tank 40 is introduced into the second anaerobic tank 52 of the microbial reaction tank 50, where the organic material is partially removed and the phosphorus component is configured to be discharged to the outside of the sludge.

아울러, 상기 제2혐기조(52)와 연결되며, 제2교반기(53a)를 포함하여 이루어지는 무산소조(53)가 구성된다.In addition, the anaerobic tank 53 is connected to the second anaerobic tank 52 and includes a second stirrer 53a.

이때, 상기 제2혐기조(52)에서 처리된 처리수는 무산소조(53)으로 유입되어 종속영양탈질미생물에 의해 잔류하는 유기물을 이용하여 질산성질소가 질소가스로 탈질되도록 구성된다.At this time, the treated water treated in the second anaerobic tank 52 is introduced into the oxygen-free tank 53 is configured to denitrify the nitrogen nitrate with nitrogen gas by using the organic matter remaining by the heterotrophic denitrification microorganism.

더불어, 상기 무산소조(53)와 연결되며, 폭기노즐을 포함하여 이루어지는 호기조(54)가 구성된다.In addition, the aerobic tank 54 is connected to the anoxic tank 53 and includes an aeration nozzle.

이러한, 상기 무산소조(53)의 처리수는 호기조(54)로 유입되며 호기성 미생물에 의해 잔류 유기물이 분해되고 암모니아성 질소가 질산성질소 또는 아질산성질소로 질산화되며, 혐기조에서 방출된 인성분은 호기미생물에 흡수되어 잉여슬러지 제거 시 인성분이 제거되도록 구성된다.The treated water of the anoxic tank 53 is introduced into the aerobic tank 54, the residual organic matter is decomposed by the aerobic microorganisms, the ammonia nitrogen is nitrified to nitrate nitrogen or nitrite nitrogen, the phosphorus component released from the anaerobic tank is an aerobic microorganism Absorbed in the excess sludge to remove the phosphorus component is configured.

한편, 상기 호기조(54)와 연결되는 침전조(55)와, 상기 침전조(54)에서 얻어지는 상등수를 황산화탈질조(51)로 공급하기 위해 연결되는 제1연결통로(56)로 구성되는 것이다.On the other hand, the settling tank 55 is connected to the aerobic tank 54, and the first connection passage 56 is connected to supply the supernatant water obtained in the settling tank 54 to the sulfate denitrification tank 51.

아울러, 상기 호기조(54)에서 처리된 처리수는 황산화탈진조(51)로 유입되어 잔류하는 질산성질소나 아질산성질소가 독립영양미생물인 황산화탈질미생물에 의해 질소가스로 탈질된다. In addition, the treated water treated in the aerobic tank 54 is introduced into the sulphate dedusting tank 51 and the remaining nitrate nitrogen or nitrite nitrogen is denitrated by nitrogen gas by the sulphate denitrification microorganism as an independent nutrient.

이대, 상기 황산화탈진조(51)에서 처리된 처리수는 탈색조(57)에서 화학응집친전 또는 오존처리에 의해 색도가 제거되어 방류되도록 구성된다.
In this case, the treated water treated in the desulfurization tank 51 is configured to be discharged by removing the chromaticity by chemical coagulation or ozone treatment in the decolorization tank 57.

상기와 같이 구성된 본 발명의 작용 및 실시 예를 설명하면 다음과 같다.Referring to the operation and the embodiment of the present invention configured as described above are as follows.

도 1 및 도 2에 도시된 바와 같이, 상기 축산폐수, 소화폐액, 음폐수와 같은 처리대상 폐액 또는 폐수의 처리장치(100)를 이용하여 잔류 유기물과 질소를 방류수기준까지 폐액 또는 폐수의 처리 방법은 제1차처리단계(S10), 2차처리단계(S20), 3차처리단계(S30), 침전단계(S40), 4차처리단계(S50), 5차처리단계(S60)으로 이루어진다.As shown in Figure 1 and 2, by using the apparatus 100 for treating wastewater or wastewater, such as livestock wastewater, digestion wastewater, negative wastewater, the residual organic matter and nitrogen to the effluent standard to the wastewater or wastewater treatment method The first treatment step (S10), the secondary treatment step (S20), the third treatment step (S30), the precipitation step (S40), the fourth treatment step (S50), the fifth treatment step (S60).

먼저, 상기 1차처리단계(S10)는 침전조(20)와 탈기조(30), 제1혐기조(40)를 순차적으로 거쳐 침전과 탈기 과정을 거친 폐액 또는 폐수의 유입수를 공기가 통하지 않는 제2혐기조(52) 내로 도입시켜 상기 제2혐기조(52) 내에서 1 내지 2시간 동안 교반시켜 혐기처리시키는 단계이다.First, the first treatment step (S10) is a second through which the inflow of the waste liquid or wastewater through the sedimentation and degassing process through the sedimentation tank 20, the degassing tank 30, the first anaerobic tank 40 sequentially It is introduced into the anaerobic tank 52 and stirred in the second anaerobic tank for 1 to 2 hours to anaerobic treatment.

이후, 상기 2차처리단계(S20)는 1차처리단계(S10)를 거치면서 1차처리된 1차처리수를 무산소조 내로 도입시켜 상기 무산소조(52) 내에서 1 내지 2시간 동안 교반시키는 단계이다.Thereafter, the secondary treatment step (S20) is a step of introducing the primary treated water into the anaerobic tank while undergoing the primary treatment step (S10) to stir for 1 to 2 hours in the anoxic tank 52. .

다음으로, 상기 3차처리단계(S30)는 2차처리단계(S20)를 거치면서 2차처리된 2차처리수를 호기조(53) 내로 도입시켜 상기 호기조(53) 내에서 공기 또는 산소가 풍부한 기체를 4 내지 12시간 동안 폭기시켜 호기처리시키는 단계이다.Next, the tertiary treatment step (S30) is introduced into the aeration tank 53 while the secondary treatment water through the secondary treatment step (S20) into the aerobic tank 53 is rich in air or oxygen in the aerobic tank 53 Gas for 4 to 12 hours Aeration and aerobic treatment.

그 다음으로, 상기 침전단계(S40)는 3차처리단계(S30)를 거치면서 3차처리된 3차처리수를 침전조(54) 내로 도입시켜 상기 3차처리수를 2 내지 4시간 동안 정치하여 액상의 상등수와 고상의 슬러지로 분리시키는 단계이다.Subsequently, the precipitation step (S40) is introduced into the sedimentation tank 54 by the third treated water while passing through the third treatment step (S30) to leave the third treated water for 2 to 4 hours This is a step of separating the liquid supernatant and the solid sludge.

아울러, 상기 4차처리단계(S50)는 침전단계(S40)에서 유출되는 상기 상등수를 황산화탈질조(51) 내로 도입시켜 1 내지 4시간 동안 황산화탈질미생물에 의해 황산화탈질처리하는 단계이다.In addition, the fourth treatment step (S50) is a step of introducing the supernatant discharged from the precipitation step (S40) into the sulfate denitrification tank 51 and desulfurization and denitrification by the sulfate denitrification microorganism for 1 to 4 hours. .

마지막으로, 상기 5차처리단계(S60)는 4차처리된 상기 4차처리수를 다시 상기 호기조(53) 내로 도입시켜 상기 호기조(54) 내에서 공기 또는 산소가 풍부한 기체를 4 내지 12시간 동안 폭기시켜 호기처리시키는 단계이다.Finally, the fifth treatment step (S60) introduces the fourth treated water back into the aeration tank (53) to allow air or oxygen-rich gas in the aeration tank (54) for 4 to 12 hours. Aeration and aerobic treatment.

이때, 상기 유입수의 공급 유량이 일정하지 않고 유량의 변동폭이 클 경우 방류되는 4차처리된 처리수의 일부를 호기조(54)로 재순환시켜 정수 처리보다는 미생물반응조(50)의 안정화된 정수과정이 이루어지도록 하는 단계인 것이다.At this time, when the supply flow rate of the inflow water is not constant and the fluctuation range of the flow rate is large, a part of the discharged fourth treated water is recycled to the aerobic tank 54 so that the purified water purification process of the microbial reaction tank 50 is performed rather than the purified water treatment. It is a step to lose.

상기와 같은 처리장치(100)를 이용하는 처리방법을 적용한 일 예를 살펴보면 다음과 같다.An example in which the processing method using the processing apparatus 100 as described above is applied is as follows.

일 예로, 양돈농장에서 배출된 돈분뇨를 혐기소화에 의해 바이오가스를 생산하여 전기에너지를 생산하는 Pilot Plant와 연계하여, 혐기소화조에서 배출된 소화폐액을 처리하는 Pilot Plant를 운영하여 표 1과 같은 결과를 얻었다.For example, in connection with a pilot plant that produces biogas by anaerobic digestion of pig manure discharged from pig farms, it operates a pilot plant that processes digestive waste liquid discharged from an anaerobic digester as shown in Table 1. The result was obtained.

분석항목Analysis item pHpH CODCOD CrCr T-NT-N NH3-NNH3-N T-PT-P TSTS 단위unit -- ㎎/ℓ㎎ / ℓ ㎎/ℓ㎎ / ℓ ㎎/ℓ㎎ / ℓ ㎎/ℓ㎎ / ℓ %% 소화폐액Digestive waste 8.05 8.05 49,36949,369 4,1464,146 3,6943,694 874874 3.093.09

조건은, 소화폐액을 탈수기(10)로 탈수한 후의 고형물농도는 약 3,000~4,000mg/L이었으며, 총질소농도는 약 2,000mg/L이었다. The condition was that the solid concentration after dehydrating the digestive waste liquid with the dehydrator 10 was about 3,000-4,000 mg / L, and the total nitrogen concentration was about 2,000 mg / L.

이에 침전조(20)에서 고형물농도를 1,000mg/L이하로 처리한 후, 탈기조(30)에서 암모니아성 질소를 탈기·제거하고, 제1혐기조(40)로 유입하였다.Thus, after treating the solid concentration in the settling tank 20 to 1,000 mg / L or less, deaeration and removal of ammonia nitrogen in the degassing tank 30, and flowed into the first anaerobic tank (40).

여기서, 상기 제1혐기조(40)는 고효율 혐기처리 공법으로 혐기성 박테리아를 그래뉼화한 미생물을 이용하여 고농도의 유기물을 제거하는 공법으로, 원수의 고형물농도가 1,000mg/L이하이어야 정상적인 성능을 나타낼 수 있다.Here, the first anaerobic tank 40 is a method for removing high concentrations of organic matter by using microorganisms granulated anaerobic bacteria by a high-efficiency anaerobic treatment method, the solids concentration of raw water can be shown to be normal performance only less than 1,000mg / L. have.

이때, 수소이온농도 값은 pH 6.8~7.2로 운전하였고, 온도는 35~37℃로 유지하며 운전하였다. At this time, the hydrogen ion concentration value was operated at pH 6.8 ~ 7.2, the temperature was maintained while maintaining at 35 ~ 37 ℃.

이러한, 상기 제1혐기조(40)를 이용한 공법의 유기물 제거 효율은 제1혐기조(40)의 용적에 유입되는 유기물 부하의 비로 표현되는 유입부하 개념으로 운전하며 확인하였다.The organic matter removal efficiency of the method using the first anaerobic tank 40 was confirmed by operating with the inflow load concept represented by the ratio of the organic load flowing into the volume of the first anaerobic tank 40.

그리고, 혐기성 박테리아에 의해 제거되기 쉬운 조건으로 조절된 소화폐액은 펌프를 이용하여 유입유량보다 많이 제2혐기조(52)로 이송하였다. Then, the digestive waste liquid adjusted to a condition that is easy to be removed by anaerobic bacteria was transferred to the second anaerobic tank 52 by using a pump more than the inflow flow rate.

아울러, 상기 제2혐기조(52) 하부로 유입된 소화폐액은 일정량의 그래뉼층을 상향류로 흐르면서 유기물이 제거되고, 상부의 세틀러를 통하여 삼상(기체, 액체, 고체)분리되어 유입된 유량만큼은 배출되며, 나머지는 다시 제2혐기조(52)로 유입되어 유입수와 혼합, 황산화탈질조(51)로 재 유입되었다. In addition, the digestive waste fluid introduced into the lower portion of the second anaerobic tank 52 removes organic matter while flowing a predetermined amount of granule layer in an upstream, and discharges the flow rate in which three phases (gas, liquid, solid) are separated through an upper settler. The rest was again introduced into the second anaerobic tank 52, mixed with the influent, and reintroduced into the sulfate denitrification tank 51.

이렇게, 황산화탈질조(51)로 유입되는 유입부하는 조정조로 유입되는 유량을 기준으로 계산하고, 제1혐기조(40)로 유입되는 유량은 유입유량의 1.5배로 운전하였다. Thus, the inflow load flowing into the desulfurization tank 51 was calculated based on the flow rate flowing into the adjustment tank, and the flow rate flowing into the first anaerobic tank 40 was operated at 1.5 times the inflow flow rate.

유입된 소화폐액의 평균 CODCr농도는 36,356㎎/ℓ로, 유입부하량은 평균 15㎏/㎥·D로 운전하였다. 결과는 표 2에 나타내었다.The average COD Cr concentration of the ingested digestive fluid was 36,356 mg / l and the influent load was 15 kg / m 3 · D. The results are shown in Table 2.

항 목Item CODCOD CrCr 제거율 Removal rate 바이오가스 발생량Biogas Generation 메탄가스 함량Methane gas content 단 위unit %% ℓ/Dℓ / D %% value 7272 20.2620.26 8080

그리고, 상기 제1혐기조(40)처리수는, 변형 A2O공법인 J-PONT 시스템(전테크-인 & 유기물 & 질소처리 시스템)으로 유입되었다.In addition, the first anaerobic tank 40 treated water was introduced into the J-PONT system (All Tech-In & Organics & Nitrogen Treatment System), which is a modified A 2 O method.

이러한, 상기 처리장치(100)는 기존의 혐기 - 무산소 - 호기공정에 황산화탈질기술인 (특허 제10-0503134호)을 추가한 것으로, 기존 공법의 처리용량에 비해 작으면서(약 80%) 질소제거성능은 20%이상 높아지는 특징이 있다.Such, the treatment device 100 is added to the conventional anaerobic-anoxic-aerobic process (sulfurization and denitrification technology (Patent No. 10-0503134), and compared to the treatment capacity of the conventional method (about 80%) nitrogen The removal performance is characterized by 20% higher.

이때, 공정흐름은 [황산화탈질 - 혐기 - 무산소 - 호기]로서, 기존 활성슬러지공법, 활성슬러지변형공법, A2O공법, A2O변형공법 등에서의 문제점으로 지적되던 낮은 질소제거성능과 안정된 제거효율을 유지하기 어렵고, 안정적인 인제거 성능 유지가 어려우며, 처리시스템의 용량이 커서 넓은 처리부지가 필요로 하는 등의 문제점을 해결하였으며 결과는 표 3에 나타나 있다.At this time, the process flow is [sulfur oxide denitrification-anaerobic-anoxic-aerobic], and the low nitrogen removal performance and the stable nitrogen removal performance pointed out as problems in the existing activated sludge method, activated sludge modification method, A 2 O method, A 2 O modification method, etc. It is difficult to maintain the removal efficiency, it is difficult to maintain a stable phosphorus removal performance, the large capacity of the processing system is required to solve the problems such as the need for a wide treatment site, the results are shown in Table 3.

항 목Item 원 수enemy 방류수Effluent 제거율Removal rate 단위unit ㎎/ℓ㎎ / ℓ ㎎/ℓ㎎ / ℓ %% CODCr COD Cr 2,0552,055 113113 94.594.5 CODMn COD Mn 1,8921,892 8686 95.595.5 SSSS 324324 4040 87.787.7 T-NT-N 877877 5858 93.493.4 T-PT-P 8585 2222 74.174.1

이렇게, 상기 처리장치(100)는 탈색을 위한 화학응집조 또는 오존처리조에서 처리한 후, 최종적으로 수계에 방류하거나 하수처리장 연계처리한다.In this way, the treatment apparatus 100 is treated in a chemical coagulation tank or ozone treatment tank for decolorization, and finally discharged to the water system or the sewage treatment plant linked processing.

이로써, 본 발명은 상기에서 살핀 바와 같이, 혐기소화폐액, 음식물류 폐기물 발생 폐수(음폐수) 및 축산폐수와 같은 고농도 유기성폐수 등을 처리하기 위한 것으로서, 이러한 유기성 폐수를 처리하여 하수처리장 연계처리 또는 수계에 직접 방류하기 적합한 조건으로 정수하여 환경 오염을 방지할 수 있는 특징이 있다.Thus, the present invention is to treat high concentration organic wastewater, such as anaerobic wastewater, food waste generation wastewater (negative wastewater) and livestock wastewater, as described above, by treating such organic wastewater, sewage treatment plant linked treatment or water system There is a characteristic that can prevent the environmental pollution by water purification in a suitable condition for direct discharge.

이상에서는 본 발명을 특정의 바람직한 실시 예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described by way of specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications can be made by those who have

10 : 탈수기 20 : 침전조
30 : 탈기조 40 : 제1혐기조
50 : 미생물반응조 51 : 황산화탈질조
52 : 제2혐기조 52a : 제1교반기
53 : 무산소조 53a : 제2교반기
54 : 호기조 55 : 침전조
56 : 제1연결통로 57 : 탈색조
100 : 처리장치
S10 : 1차처리단계 S20 : 2차처리단계
S30 : 3차어리단계 S40 : 침전단계
S50 : 4차처리단계 S60 : 5차처리단계
10: dehydrator 20: sedimentation tank
30: degassing tank 40: first anaerobic tank
50: microbial reaction tank 51: sulfate denitrification tank
52: 2nd anaerobic tank 52a: 1st stirrer
53: anaerobic tank 53a: second stirrer
54: aerobic tank 55: sedimentation tank
56: first connection passage 57: decolorization tank
100: Processing device
S10: primary treatment stage S20: secondary treatment stage
S30: 3rd step S40: precipitation step
S50: 4th processing step S60: 5th processing step

Claims (4)

축산폐수, 소화폐액, 음폐수와 같은 처리대상 폐액 또는 폐수를 처리하는 처리 장치에 있어서,
상기 폐액 또는 폐수를 고액분리하는 탈수기(10)를 구성하고,
상기 고액 분리된 폐액 또는 폐수를 공급받아 잔여 고형물과 유기물을 분리, 제거하는 침전조(20)를 구성하며,
상기 침전조(20)에 존재하는 깨끗한 상등수를 공급받아 고농도의 암모니아성 질소를 제거하는 탈기조(30)를 구성하고,
상기 탈기조(30)를 거쳐 암모니아성질소가 제거된 상등수를 공급받아 상등수에 함유된 고농도의 유기물을 제거하는 제1혐기조(40)를 구성하며,
상기 제1혐기조(40)를 거친 고농도 유기물이 제거된 상등수를 공급받아 잔여 암모니아성 질소를 질산성 질소 또는 아질산성 질소로 변환시킨 후, 일부는 종속영양탈질에 의해 제거하고, 나머지는 황산화탈질공법에 의해 질산성 질소 또는 아질산성 질소를 제거하는 미생물반응조(50)로 구성되는 것을 특징으로 하는 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치.
In the treatment apparatus for treating wastewater or wastewater to be treated, such as livestock wastewater, digestion wastewater, drinking water,
To constitute a dehydrator (10) for separating the waste liquid or waste water into a solid solution,
The solid-liquid separated waste liquid or waste water is supplied to constitute a sedimentation tank 20 for separating and removing residual solids and organic matter,
Constructing a degassing tank 30 to remove the high concentration of ammonia nitrogen by receiving clean supernatant water present in the settling tank 20,
The first anaerobic tank 40 is provided to receive the supernatant water from which the ammonia nitrogen is removed through the degassing tank 30 to remove the high concentration of organic matter contained in the supernatant water.
After receiving the supernatant from which the high concentration organic matter is removed from the first anaerobic tank 40, the remaining ammonia nitrogen is converted to nitrate nitrogen or nitrite nitrogen, and some are removed by heterotrophic denitrification, and the rest is sulphated and denitrified. Livestock wastewater, digestive waste liquid, drinking water containing organic matter and nitrogen components, characterized in that consisting of a microorganism reaction tank (50) for removing nitrate nitrogen or nitrite nitrogen by the method.
제 1항에 있어서, 상기 탈수기(10)는 침전조(20)의 내부에 설치되어 탈수기(10)에서 탈수되는 폐액 또는 폐수가 침전조(20)에서 고형물과 유기물이 분리되도록 구성되는 것을 특징으로 하는 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치.The organic material according to claim 1, wherein the dehydrator (10) is installed inside the sedimentation tank (20) so that the waste liquid or waste water dewatered from the dehydrator (10) is configured to separate solids and organic matter from the sedimentation tank (20). Livestock wastewater, digestive waste liquid and effluent containing nitrogen and nitrogen. 제 1항에 있어서, 상기 미생물반응조(50)는 황산화탈질균이 우점화되어 이루어지는 황산화탈질조(51)와,
상기 황산화탈질조(51)와 연결되며, 제1교반기(52a)를 포함하여 이루어지는 제2혐기조(52)와,
상기 제2혐기조(52)와 연결되며, 제2교반기(53a)를 포함하여 이루어지는 무산소조(53)와,
상기 무산소조(53)와 연결되며, 폭기노즐을 포함하여 이루어지는 호기조(54)와,
상기 호기조(54)와 연결되는 침전조(55)와,
상기 침전조(54)에서 얻어지는 상등수를 황산화탈질조(51)로 공급하기 위해 연결되는 제1연결통로(56);를 포함하여 구성되는 것을 특징으로 하는 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치.
The method of claim 1, wherein the microbial reaction tank 50 is a sulfated denitrification tank 51 is formed by predominantly sulfated denitrification bacteria,
A second anaerobic tank 52 connected to the sulfate denitrification tank 51 and including a first stirrer 52a;
An anaerobic tank 53 connected to the second anaerobic tank 52 and including a second stirrer 53a;
An aerobic tank 54 connected to the anoxic tank 53 and including an aeration nozzle,
A settling tank 55 connected to the exhalation tank 54,
Livestock wastewater containing the organic matter and nitrogen components, digestion, comprising: a first connection passage 56 connected to supply the supernatant water obtained from the settling tank 54 to the sulphation denitrification tank 51 Wastewater, treatment equipment of negative wastewater.
축산폐수, 소화폐액, 음폐수와 같은 처리대상 폐액 또는 폐수의 처리장치를 이용하여 잔류 유기물과 질소를 방류수기준까지 폐액 또는 폐수의 처리 방법에 있어서,
침전조(20)와 탈기조(30), 제1혐기조(40)를 순차적으로 거쳐 침전과 탈기 과정을 거친 폐액 또는 폐수의 유입수를 공기가 통하지 않는 제2혐기조(52) 내로 도입시켜 상기 제2혐기조(52) 내에서 1 내지 2시간 동안 교반시켜 혐기처리시키는 1차처리단계(S10);
상기 1차처리단계(S10)를 거치면서 1차처리된 1차처리수를 무산소조 내로 도입시켜 상기 무산소조(52) 내에서 1 내지 2시간 동안 교반시키는 2차처리단계(S20);
상기 2차처리단계(S20)를 거치면서 2차처리된 2차처리수를 호기조(53) 내로 도입시켜 상기 호기조(53) 내에서 공기 또는 산소가 풍부한 기체를 4 내지 12시간 동안 폭기시켜 호기처리시키는 3차처리단계(S30);
상기 3차처리단계(S30)를 거치면서 3차처리된 3차처리수를 침전조(54) 내로 도입시켜 상기 3차처리수를 2 내지 4시간 동안 정치하여 액상의 상등수와 고상의 슬러지로 분리시키는 침전단계(S40);
상기 침전단계(S40)에서 유출되는 상기 상등수를 황산화탈질조(51) 내로 도입시켜 1 내지 4시간 동안 황산화탈질미생물에 의해 황산화탈질처리하는 4차처리단계(S50); 및
상기 4차처리된 상기 4차처리수를 다시 상기 호기조(53) 내로 도입시켜 상기 호기조 내에서 공기 또는 산소가 풍부한 기체를 4 내지 12시간 동안 폭기시켜 호기처리시키는 5차처리단계(S60)로 구성되는 것을 특징으로 하는 유기물과 질소성분을 함유한 축산폐수, 소화폐액, 음폐수의 처리 장치를 이용한 처리방법.
In the method of treating the waste liquid or waste water to the discharged water standard by using the apparatus for treating waste liquid or waste water such as livestock waste water, digestive waste liquid, negative waste water,
The second anaerobic tank is introduced through the sedimentation tank 20, the degassing tank 30, and the first anaerobic tank 40 in order to introduce into the second anaerobic tank 52 through which the inflow water of the waste liquid or wastewater, which has undergone precipitation and degassing, is passed through the air. Primary treatment step (S10) for anaerobic treatment by stirring for 1 to 2 hours in (52);
A second treatment step (S20) of introducing the first treated water treated as the first treatment step (S10) into the anoxic tank to stir for 1 to 2 hours in the anoxic tank (52);
Through the secondary treatment step (S20) to introduce the secondary treated water into the aerobic tank (53) by the air or oxygen-rich gas in the aerobic tank (53) for 4 to 12 hours Tertiary treatment step (S30) for aeration by aeration;
The tertiary treated water is introduced into the sedimentation tank 54 while passing through the tertiary treatment step (S30) to allow the tertiary treated water to stand for 2 to 4 hours to be separated into liquid supernatant and solid sludge. Precipitation step (S40);
A fourth treatment step (S50) of introducing the supernatant flowing out of the precipitation step (S40) into the sulfate denitrification tank 51 and performing sulfate denitrification by the sulfate denitrification microorganism for 1 to 4 hours; And
The fourth treated water is introduced into the aerobic tank (53) again to the aerobic treatment 53 to aeration process by aeration of air or oxygen-rich gas for 4 to 12 hours in the aerobic tank (S60) Livestock wastewater, digestive waste liquid, negative waste water containing a treatment method containing organic matter and nitrogen components.
KR1020110064422A 2011-06-30 2011-06-30 The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater KR101306805B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110064422A KR101306805B1 (en) 2011-06-30 2011-06-30 The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110064422A KR101306805B1 (en) 2011-06-30 2011-06-30 The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater

Publications (2)

Publication Number Publication Date
KR20130003238A true KR20130003238A (en) 2013-01-09
KR101306805B1 KR101306805B1 (en) 2013-09-10

Family

ID=47835524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110064422A KR101306805B1 (en) 2011-06-30 2011-06-30 The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater

Country Status (1)

Country Link
KR (1) KR101306805B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002699A1 (en) * 2019-07-03 2021-01-07 주식회사 부강테크 Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435235B (en) * 2013-09-13 2015-02-25 北京英特环科水处理工程设备有限公司 Kitchen waste filtrate treatment equipment and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004073A (en) * 1999-06-28 2001-01-15 김형벽 Bio-filter apparatus for denitrification of sewage using sulphur particle as a media
JP2004528163A (en) * 2001-02-23 2004-09-16 ヴイ.エイ.アイ. リミテッド Method and apparatus for biological treatment of wastewater
JP2004174288A (en) * 2002-11-22 2004-06-24 Mitsubishi Heavy Ind Ltd Methane fermentation treatment apparatus and methane fermentation processing method for garbage
EP1747058A4 (en) * 2004-04-22 2009-09-30 Siemens Water Tech Corp Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002699A1 (en) * 2019-07-03 2021-01-07 주식회사 부강테크 Method for removing nitrogen and phosphorus from sewage and wastewater through combination of biological nitrogen and phosphorus removal process using nitrite nitrogen and anaerobic ammonium oxidation process (anammox)

Also Published As

Publication number Publication date
KR101306805B1 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
KR100277597B1 (en) Deodorize and nutrients removal from wastewater by soil microorganisms
AU731280B2 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
CN103803711A (en) Method for treating ammonia-nitrogen wastewater by using immobilized microorganism
CN108996808B (en) Biochemical combined treatment process and equipment for degradation-resistant concentrated water in steel industry
Huynh et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater
KR100953058B1 (en) Natural high-treatment system
Rajesh Banu et al. Trends in biological nutrient removal for the treatment of low strength organic wastewaters
US6395174B1 (en) Method for lagoon remediation
Nasr et al. Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment
Lim et al. Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage
Malamis et al. Integration of energy efficient processes in carbon and nutrient removal from sewage
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100346910B1 (en) Autotrophic denitrification using sulfur and sea shell
KR100229237B1 (en) Advanced treatment method and its device of night soil
KR101306805B1 (en) The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater
KR20090080594A (en) The system and method of removing BOD, N, and P removal from an animal wastewater
de Sousa et al. Anaerobic digestion and the denitrification in UASB reactor
CN212222737U (en) Pesticide effluent treatment plant
CN107285469A (en) A kind of monomer piggery waste method for treating water
KR100438323B1 (en) High intergated Biological Nutrient Removal System
CN113072184A (en) Anaerobic ammonia oxidation based independent denitrification 'coupled' system and water treatment method
KR100192144B1 (en) Solid waste made land leachate treatment process
CN110857236A (en) Ecological river lake underwater forest construction method
KR102607197B1 (en) High-concentration landfill leachate, livestock wastewater, manure, food wastewater, industrial wastewater and low-concentration wastewater treatment system using an upflow complex bioreactor
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170904

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180904

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190725

Year of fee payment: 7