JPS63291423A - Low temperature dry-etching equipment - Google Patents

Low temperature dry-etching equipment

Info

Publication number
JPS63291423A
JPS63291423A JP12580987A JP12580987A JPS63291423A JP S63291423 A JPS63291423 A JP S63291423A JP 12580987 A JP12580987 A JP 12580987A JP 12580987 A JP12580987 A JP 12580987A JP S63291423 A JPS63291423 A JP S63291423A
Authority
JP
Japan
Prior art keywords
temperature
substrate
liquefied gas
sample stage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12580987A
Other languages
Japanese (ja)
Other versions
JP2719332B2 (en
Inventor
Masabumi Kanetomo
正文 金友
Shinichi Taji
新一 田地
Kazunori Tsujimoto
和典 辻本
Kiichiro Mukai
向 喜一郎
Takahiro Oguro
崇弘 大黒
Shigekazu Kieda
茂和 木枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62125809A priority Critical patent/JP2719332B2/en
Priority to US07/192,178 priority patent/US4956043A/en
Publication of JPS63291423A publication Critical patent/JPS63291423A/en
Application granted granted Critical
Publication of JP2719332B2 publication Critical patent/JP2719332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To realize a dry-etching equipment with which the accuracy of temperature setting can be improved while the temperature range is expanded by a method wherein a means which controls the liquid level of liquefied gas to regulate the temperature and reduces the thermal contact resistance between a sample table and a substrate is provided. CONSTITUTION:Liquefied gas 12 is supplied into a liquefied gas container 4 provided in a vacuum chamber in accordance with the signal of a level sensor 11 to control the liquid surface level. The container 4 itself is linked with a movable flange 6. A heater 13 is provided in a sample table 2 and the temperature of a substrate 3 is monitored by a thermocouple 14 while the temperature is thermally balanced by the liquefied gas 12 and the heater 13. A temperature regulator 15 receives the signal of the thermocouple 14 and controls the power applied to the heater 13. The flange 6 linked with the sample table 2 is coupled with the vacuum chamber 1 through a bellows 16. If the flange 6 is moved at the time of etching, the substrate 3 is strongly pressed against a fixed ring 17 and the contact area between the substrate 3 and the sumple table 2 to reduce a thermal contact resistance so that the thermal conduction effect can be improved and the cooling capability of the liquefied gas to the substrate 3 can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低温ドライエツチング装置に係り。[Detailed description of the invention] (Industrial application field) The present invention relates to a low temperature dry etching device.

特にサイドエツチングの少ない異方性ドライエツチング
に好適な低温ドライエツチング装置に関する。
In particular, the present invention relates to a low temperature dry etching apparatus suitable for anisotropic dry etching with little side etching.

(従来の技術) 半導体基板に精度の高いエツチング加工を効率良〈実施
することは、超LS 1%造には必須の技術であって、
アンダカットの少ない異方性エツチングに関する各種の
新しい技術が開発研究されており、特に試料台上の被エ
ツチング基板の冷却方法若しくは装置に関しては特願昭
59−11945号及び特願昭61−260738号が
先行技術として出願されている。
(Conventional technology) Efficiently performing highly accurate etching processing on semiconductor substrates is an essential technology for ultra-LS 1% manufacturing.
Various new techniques related to anisotropic etching with less undercut have been developed and researched, and in particular, Japanese Patent Application No. 11945/1982 and Japanese Patent Application No. 260738/1983 regarding methods and devices for cooling the substrate to be etched on a sample stage have been developed. has been filed as prior art.

(発明が解決しようとする問題点) 上記先願技術のうち前者は、冷却機構としてヒートパイ
プを使用して基板を摂氏マイナス数十度以下の温度に冷
却してサイドエツチングを防止する表面反応制御である
が、温度制御可能範囲は、−196〜160℃で制御範
囲が狭いという問題点があった。また後者は前者の問題
点を解決する手段としてヒートパイプにヒータを併用す
ることによって試料台を冷却制御するものである6本発
明は上記の先願技術を利用すると共にさらに試料台と基
板の間の吸熱能力を増加させ、エツチング時に発生する
熱を効率的に吸収することにより、0〜−196℃の範
囲で各基板材料、エツチングガスに対して最適の温度を
設定すべく、温度範囲の拡大と並行して設定温度の精度
向上が可能な試料冷却機構を備えた。サイドエツチング
の少ない異方性ドライエツチングに好適な低温ドライエ
ツチング装置を提供することを目的としている。
(Problem to be Solved by the Invention) The former of the above-mentioned prior art uses a heat pipe as a cooling mechanism to cool the substrate to a temperature of several tens of degrees Celsius or lower, thereby preventing side etching. However, there was a problem in that the temperature controllable range was -196 to 160°C, and the control range was narrow. The latter solves the former problem by controlling the cooling of the sample stage by using a heater in combination with a heat pipe.6 The present invention utilizes the technology of the prior application described above, and furthermore, the present invention utilizes the technology of the prior application described above, and furthermore, By increasing the heat absorption capacity of the etching process and efficiently absorbing the heat generated during etching, we have expanded the temperature range to set the optimum temperature for each substrate material and etching gas in the range of 0 to -196°C. At the same time, it is equipped with a sample cooling mechanism that can improve the accuracy of the set temperature. It is an object of the present invention to provide a low temperature dry etching apparatus suitable for anisotropic dry etching with little side etching.

(問題点を解決するための手段) 上記の目的は、真空室内に配置され、液化ガスを導入し
た冷却容器上の試料台にヒータを配備し。
(Means for Solving the Problems) The above purpose is achieved by providing a heater on a sample stage above a cooling container that is placed in a vacuum chamber and into which liquefied gas is introduced.

AM記液液化ガス液面高さの制御によって温度を調節し
、試料台と基板の接触熱抵抗を減少する手段を設けるこ
とによって達成される。また前記試料台の低温制御手段
は、低温ガスの専大若しくはペルチェ素子を配備しても
よい。
AM is achieved by adjusting the temperature by controlling the liquid level of the liquefied gas and by providing means for reducing the contact thermal resistance between the sample stage and the substrate. The low temperature control means for the sample stage may include a low temperature gas controller or a Peltier device.

(作用) エツチングに伴って発生する熱は、ヒータの併用と、冷
却容器内の液化ガスの液面制御により、例えば−150
℃という比較的低温領域に基板を温度制御するときは、
液化ガスの液面を高くし、逆に0℃という比較的高温領
域に基板を温度制御するときは液化ガスの液面を低くす
る。試料台と基板の接触熱抵抗を減する手段により、試
料台の吸熱能力が増大し、その広範囲の温度調節が可能
となる。低温ガスを使用する場合は、加熱ヒータの電流
制御と低温ガスの流量のコントロールを行い、ペルチェ
素子の場合は、電流を変化させることによって、基板は
真空内の断熱条件下で、0〜−180℃の範囲で選択的
に温度制御がなされる。
(Function) The heat generated during etching can be reduced by using a heater and controlling the liquid level of the liquefied gas in the cooling container.
When controlling the temperature of the substrate to a relatively low temperature range of ℃,
The liquid level of the liquefied gas is raised, and conversely, when the temperature of the substrate is controlled to a relatively high temperature range of 0° C., the liquid level of the liquefied gas is lowered. By reducing the contact thermal resistance between the sample stage and the substrate, the heat absorption capacity of the sample stage is increased and its temperature can be adjusted over a wide range. When using low-temperature gas, control the current of the heater and the flow rate of low-temperature gas. In the case of a Peltier element, by changing the current, the substrate can be heated from 0 to -180 under adiabatic conditions in vacuum. Temperature control is selectively performed within a range of °C.

(実施例) 以下本発明の実施例を図面と共に説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

〈第1実施例〉 第1図は本発明に係る低温ドライエツチング装置に係る
一実施例を示す図で、真空室1内に設けた液化ガス容器
4は熱伝導性の良いフィンが多数配設されており、別に
設けた補給器9から供給ホース10を経由しさらに供給
パイプ8を介して液化ガス12が液化ガス容器4内に導
入され、液面センサ11の信号により、自動的に液化ガ
ス12が液化ガス容器4内に補給され液面制御するよう
に構成されている。また液化ガス容器4自体は矢印5u
、5dの方向に移動可能なフランジ6と係設されている
。試料台2内にヒータ13が配設され、基板3は液化ガ
ス12とヒータ13で熱的バランスをとりつつ温度を熱
電対14でモニタし、この信号を受は取った温調器15
がヒータ13の電力を制御する。
<First Embodiment> FIG. 1 is a diagram showing an embodiment of the low-temperature dry etching apparatus according to the present invention, in which a liquefied gas container 4 provided in a vacuum chamber 1 is provided with a large number of fins with good thermal conductivity. Liquefied gas 12 is introduced into the liquefied gas container 4 from a separately provided replenisher 9 via a supply hose 10 and further through a supply pipe 8, and the liquefied gas is automatically supplied by a signal from a liquid level sensor 11. 12 is replenished into the liquefied gas container 4 and is configured to control the liquid level. Also, the liquefied gas container 4 itself is indicated by the arrow 5u.
, 5d. A heater 13 is disposed inside the sample stage 2, and the temperature of the substrate 3 is monitored with a thermocouple 14 while keeping a thermal balance between the liquefied gas 12 and the heater 13, and a temperature controller 15 receives and receives this signal.
controls the power of the heater 13.

試料台2と係設したフランジ6は、ベローズ16を介し
て真空室1と結合しており、エツチングの際は矢印5u
方向に移動することにより第2図に示すように、固定リ
ング17に基板3が強く押圧され、基板3と試料台2の
接触面積が増加し接触熱抵抗が減少することによって熱
伝導効果が増し、液化ガスによる基板3に対する冷却能
力が増大する。エツチングは試料台2と上部型@18と
の間に高周波電圧を印加することによって行われる。
The flange 6 connected to the sample stage 2 is connected to the vacuum chamber 1 via a bellows 16, and during etching, the flange 6 is
As shown in FIG. 2, by moving in the direction, the substrate 3 is strongly pressed against the fixing ring 17, the contact area between the substrate 3 and the sample stage 2 increases, the contact thermal resistance decreases, and the heat conduction effect increases. , the cooling capacity of the substrate 3 by the liquefied gas increases. Etching is performed by applying a high frequency voltage between the sample stage 2 and the upper mold @18.

また真空室1の側面には、バルブ19を介して試料導入
室20が設けられており、真空室1を大気に開放するこ
となく、基板3の交換が可能な構造となっている。
Further, a sample introduction chamber 20 is provided on the side surface of the vacuum chamber 1 via a valve 19, and the structure is such that the substrate 3 can be replaced without opening the vacuum chamber 1 to the atmosphere.

〈第2実施例〉 第3図に本発明の第2実施例を示す。同図は試料台2と
基板3との中間に軟質薄板21を介在させることにより
、基板3と試料台2との熱接触が増加(接触熱抵抗は減
少)するものであって、これによって基板の温度を高精
度に制御することが可能である。軟質薄板材としてはエ
ツチングの際、異物混入の弊害のないテフロン、シリコ
ンゴム等が好ましい。押えリング17は、バネ22を介
して真空室1に固定されており液化ガス容器4の矢印5
U方向へ押圧するための移動距離で押圧力を調整できる
ように構成されている。
<Second Embodiment> FIG. 3 shows a second embodiment of the present invention. The figure shows that by interposing a soft thin plate 21 between the sample stage 2 and the substrate 3, the thermal contact between the substrate 3 and the sample stage 2 is increased (the contact thermal resistance is decreased). It is possible to control the temperature with high precision. As the soft thin plate material, Teflon, silicone rubber, etc. are preferable because they do not have the problem of contamination with foreign matter during etching. The holding ring 17 is fixed to the vacuum chamber 1 via a spring 22, and is attached to the arrow 5 of the liquefied gas container 4.
It is configured such that the pressing force can be adjusted by the moving distance for pressing in the U direction.

〈第3実施例〉 第4図に本発明の第3実施例を示す。これは試料台2の
試料取付は面を上に凸なる円弧状に形成し、この上に前
記軟質薄板21を中間にはさんで基板3を配置したもの
である。液化ガス容器4を矢印5uの方向に移動させ、
固定リング17と基板3の外周縁が接触し押圧されるこ
とにより、基板3は弧状に変形し試料台2と密着する。
<Third Embodiment> FIG. 4 shows a third embodiment of the present invention. In this case, the surface of the sample stage 2 for mounting the sample is formed into an upwardly convex arc shape, and the substrate 3 is placed on top of this with the soft thin plate 21 sandwiched between them. Move the liquefied gas container 4 in the direction of the arrow 5u,
When the fixing ring 17 and the outer peripheral edge of the substrate 3 come into contact with each other and are pressed, the substrate 3 deforms into an arc shape and comes into close contact with the sample stage 2 .

これによって基板3と試料台2との熱接触が増加(接触
熱抵抗は減少)しエツチングの際に発生する熱は、効率
良く液化ガスの方向へ移行し基板3の温度を高精度に制
御することができる。
This increases the thermal contact between the substrate 3 and the sample stage 2 (decreases the contact thermal resistance), and the heat generated during etching is efficiently transferred to the liquefied gas, controlling the temperature of the substrate 3 with high precision. be able to.

〈第4実施例〉 第5図に本発明第4実施例を示す。この実施例は特に基
板3を低温に保持するためのもので、試料台裏面24が
常時液化ガス4と接触するように、液化ガスの液面が試
料台裏面24よりも高い位置を占めるように構成したも
のである。これによってエツチング熱は容易に液化ガス
12に移行し、基板3を低温に保持することが可能とな
った。
<Fourth Embodiment> FIG. 5 shows a fourth embodiment of the present invention. This embodiment is specifically designed to keep the substrate 3 at a low temperature, and is designed so that the liquid level of the liquefied gas occupies a higher position than the back surface 24 of the sample stage so that the back surface 24 of the sample stage is always in contact with the liquefied gas 4. It is composed of As a result, the etching heat is easily transferred to the liquefied gas 12, making it possible to maintain the substrate 3 at a low temperature.

〈第5実施例〉 第6図は本発明の低温ガスを使用した実施例を示す図で
、真空容器1内に配置された試料台2上に基板3が配置
されており、その下方に冷却ブロック34が設置されて
いる。冷却ブロック34内には多数のフィン35が配置
されており、パイプ36を経て導入された低温ガスが基
板3から熱を奪う、冷却用ガス(例えば乾燥窒素ガス)
はボンベ37に貯蔵されており、配管38内を通って冷
却ブロック37に導入される。液化ガス39を収容した
容器40内を通過しここで室温の前記ガスは冷却されて
低温となる。真空室1内の上部電極18と試料台2の間
に高周波電圧が印加され、エツチングが行われる。
<Fifth Embodiment> FIG. 6 is a diagram showing an embodiment using low-temperature gas of the present invention, in which a substrate 3 is placed on a sample stage 2 placed in a vacuum container 1, and a cooling gas A block 34 is installed. A large number of fins 35 are arranged inside the cooling block 34, and a low temperature gas introduced through a pipe 36 removes heat from the substrate 3. A cooling gas (for example, dry nitrogen gas)
is stored in a cylinder 37 and introduced into the cooling block 37 through a pipe 38. It passes through a container 40 containing liquefied gas 39, where the gas at room temperature is cooled to a low temperature. A high frequency voltage is applied between the upper electrode 18 and the sample stage 2 in the vacuum chamber 1, and etching is performed.

この時発生する熱のため基板3の温度が上昇すると、熱
電対14で計測し計測信号を温調器15が受信し、低温
ガスの流量弁45を開放して低温ガスの流量を増し、冷
却ブロック34の冷却能力を高め基板3の温度を低温に
維持する。第7図は第6図実施例の試料台2にヒータ1
3を組み込んだもので、冷却ガスの流量を一定にしてお
き、ヒータ13の電流値を変化させることによって、試
料台2の温度制御を行うものである。
When the temperature of the substrate 3 rises due to the heat generated at this time, the temperature controller 15 receives the measurement signal measured by the thermocouple 14, opens the flow rate valve 45 of the low temperature gas, increases the flow rate of the low temperature gas, and cools the substrate 3. The cooling capacity of the block 34 is increased to maintain the temperature of the substrate 3 at a low temperature. Fig. 7 shows a heater 1 on the sample stage 2 of the embodiment shown in Fig. 6.
3, the temperature of the sample stage 2 is controlled by keeping the flow rate of cooling gas constant and changing the current value of the heater 13.

〈第6実施例〉 第8図に本発明の第6の実施例を示す。冷却ブロック3
4内には冷凍器55から送られた冷却ガス(例えばフレ
オン)の流路50が構成されており、ここでエツチング
の際発生する熱との熱交換が行われる。基板3の温度は
熱電対14によって検出され、入熱があったときも基板
3の温度が一定となるように、熱電対14の信号により
、冷凍器55の制御を行うように構成されている。冷却
ガスは冷却ブロック34内での熱交換後冷凍器55へ戻
り冷却される。
<Sixth Embodiment> FIG. 8 shows a sixth embodiment of the present invention. cooling block 3
A flow path 50 for a cooling gas (for example, Freon) sent from a refrigerator 55 is formed within the cooling gas 4, and heat exchange with the heat generated during etching is performed here. The temperature of the substrate 3 is detected by a thermocouple 14, and the refrigerator 55 is controlled based on the signal from the thermocouple 14 so that the temperature of the substrate 3 remains constant even when heat is input. . After heat exchange within the cooling block 34, the cooling gas returns to the refrigerator 55 and is cooled.

〈第7実施例〉 第9図に本発明のペルチェ素子を使用した実施例を示す
。試料台2の下部にペルチェ素子51が配設されており
、これを駆動する電流値を変化させることによって熱の
吸熱能力を可変とし、さらに印加電流の向きを逆にする
ことによって、選択的に加熱と冷却の両操作を行うこと
ができる。ペルチェ素子はコントローラ52で基板3の
温度が一定になるよう制御されている。基板3の温度は
熱電対14で計測されており、ペルチェ素子51の下方
には基板3から吸収した熱を大気中に放散させる目的で
ファン53を設け、矢印5u方向に送風するように構成
されている0本実施例を用いて基板の温度制御を実施し
た結果20〜−120℃の範囲で±3℃の精度に制御が
可能であった。
<Seventh Example> FIG. 9 shows an example using the Peltier element of the present invention. A Peltier element 51 is disposed at the bottom of the sample stage 2, and by changing the current value that drives it, the heat absorption ability can be varied, and by reversing the direction of the applied current, it can be selectively Both heating and cooling operations can be performed. The Peltier element is controlled by a controller 52 so that the temperature of the substrate 3 is constant. The temperature of the board 3 is measured by a thermocouple 14, and a fan 53 is provided below the Peltier element 51 for the purpose of dissipating the heat absorbed from the board 3 into the atmosphere, and is configured to blow air in the direction of the arrow 5u. As a result of controlling the temperature of the substrate using this example, it was possible to control the temperature within the range of 20 to -120°C with an accuracy of ±3°C.

特にエツチング時50ワットの入熱が基板3にあった場
合でも、オーバシュート値は5℃内外に過ぎず、概ね1
0秒で元の設定温度に制御することができた。また基板
にSiウェハを使用してエツチングを行ったところ、−
80〜−120℃が最適温度であることが判明した。
In particular, even if there is a heat input of 50 watts to the substrate 3 during etching, the overshoot value is only around 5°C, and is approximately 1.
The temperature could be controlled to the original set temperature in 0 seconds. Also, when etching was performed using a Si wafer as the substrate, -
It was found that 80 to -120°C is the optimum temperature.

上記の各実施例による発明者等の実験を総合すると、基
板の温度は、30〜−150℃の範囲で±3℃の精度に
制御されることができ、また基板3を一50℃以上の比
較的高温域での温度制御に当って液化ガスの液面を低く
することで、ヒータの入力電力が100W、液化ガスと
して使用した液体窒素の消費量が30dl’/分と小さ
い値を示した。またこれらの実施例で使用したSiウェ
ハにプラズマエツチングを実施したところ−80〜−1
20℃の間で良好なエツチングができ、この温度領域が
シリコンの低温エツチングの温度としては最適であると
判定された。
Comprehensive experiments conducted by the inventors in each of the above embodiments show that the temperature of the substrate can be controlled to an accuracy of ±3°C in the range of 30 to -150°C, and that the temperature of the substrate 3 can be controlled at a temperature of -50°C or more. By lowering the liquid level of the liquefied gas when controlling the temperature in a relatively high temperature range, the input power of the heater was 100 W, and the consumption of liquid nitrogen used as the liquefied gas was as small as 30 dl'/min. . Furthermore, when the Si wafers used in these examples were subjected to plasma etching, the results were -80 to -1.
Good etching was achieved at a temperature of 20° C., and this temperature range was determined to be the optimum temperature for low-temperature etching of silicon.

上記を要約すると、本発明の主体は液化ガスの液面制御
による熱抵抗の増減と、基板と試料台との接触熱抵抗の
減少を図る手段を有することを特徴とする低温ドライエ
ツチング装置である。
To summarize the above, the main subject of the present invention is a low-temperature dry etching apparatus characterized by having means for increasing/decreasing thermal resistance by controlling the liquid level of liquefied gas and for reducing contact thermal resistance between a substrate and a sample stage. .

(発明の効果) 本発明の実施に伴う液化ガスの液面制御とその容器の真
空室内への配置及びに力学的荷重を被エツチング基板外
縁に負荷して前記基板を試料台に密着させることにより
、少ない液化ガス量とヒータ電力で高精度に温度制御さ
れる結果、サイドエツチングがなく、深さ方向のみのエ
ツチングが可能となり被エツチング基板の製造原価の低
減と信頼性の向上に顕著な効果を奏した。
(Effects of the invention) By controlling the liquid level of the liquefied gas and arranging the container in the vacuum chamber according to the present invention, a mechanical load is applied to the outer edge of the substrate to be etched to bring the substrate into close contact with the sample stage. As a result of highly accurate temperature control with a small amount of liquefied gas and heater power, there is no side etching and etching can be performed only in the depth direction, which has a remarkable effect on reducing manufacturing costs and improving reliability of the substrate to be etched. played.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明に係る低温ドライエツチング装置の
一実施例を示す図、第3〜9図は本発明の他の実施例を
示す図である6
1 and 2 are views showing one embodiment of a low temperature dry etching apparatus according to the present invention, and FIGS. 3 to 9 are views showing other embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1、真空室内で低温に温度制御された試料台上に被エッ
チング基板を載置し、前記真空室内に励起したプラズマ
により前記基板の表面処理を行う低温ドライエッチング
装置において、前記試料台を載置する冷却容器内に導入
する液化ガスの液面高さを調節する手段と、前記基板と
前記試料台との接触熱抵抗を減する手段を含む前記基板
の温度制御装置を有することを特徴とする低温ドライエ
ッチング装置。 2、前記接触熱抵抗を減ずる手段として、試料台上に載
置した被エッチング基板の外周縁面上に力学的荷重が負
荷されるように構成したことを特徴とする特許請求の範
囲第1項記載の低温ドライエッチング装置。 3、前記接触熱抵抗を減ずる手段として、前記基板と前
記試料台の間に軟質薄板を挿入することを特徴とする特
許請求の範囲第1項記載の低温ドライエッチング装置。 4、前記接触熱抵抗を減する手段として、一前記試料台
の表面が上に凸なる円弧状に形成されていることを特徴
とする特許請求の範囲第1項記載の低温ドライエッチン
グ装置。 5、前記試料台は、液化ガスに代えて低温ガスを導入す
る冷却ブロックと温度制御装置を備えていることを特徴
とする特許請求の範囲第1項乃至第4項記載の低温ドラ
イエッチング装置。 6、前記試料台は、液化ガスに代えてペルチェ素子を使
用して温度制御するように構成されていることを特徴と
する特許請求の範囲第1項乃至第4項記載の低温ドライ
エッチング装置。
[Scope of Claims] 1. A low-temperature dry etching apparatus in which a substrate to be etched is placed on a sample stage whose temperature is controlled to a low temperature in a vacuum chamber, and the surface of the substrate is treated by plasma excited in the vacuum chamber, A temperature control device for the substrate, including means for adjusting a liquid level height of liquefied gas introduced into a cooling container in which the sample stage is placed, and means for reducing contact thermal resistance between the substrate and the sample stage. A low-temperature dry etching device comprising: 2. As a means for reducing the contact thermal resistance, a mechanical load is applied to the outer peripheral surface of the substrate to be etched placed on the sample stage. The low temperature dry etching device described. 3. The low temperature dry etching apparatus according to claim 1, wherein a soft thin plate is inserted between the substrate and the sample stage as means for reducing the contact thermal resistance. 4. The low temperature dry etching apparatus according to claim 1, wherein the surface of the sample stage is formed in an upwardly convex arc shape as means for reducing the contact thermal resistance. 5. The low-temperature dry etching apparatus according to claims 1 to 4, wherein the sample stage is equipped with a cooling block for introducing low-temperature gas instead of liquefied gas and a temperature control device. 6. The low-temperature dry etching apparatus according to claims 1 to 4, wherein the sample stage is configured to use a Peltier element instead of liquefied gas to control the temperature.
JP62125809A 1987-05-25 1987-05-25 Plasma processing method Expired - Lifetime JP2719332B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62125809A JP2719332B2 (en) 1987-05-25 1987-05-25 Plasma processing method
US07/192,178 US4956043A (en) 1987-05-25 1988-05-10 Dry etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62125809A JP2719332B2 (en) 1987-05-25 1987-05-25 Plasma processing method

Publications (2)

Publication Number Publication Date
JPS63291423A true JPS63291423A (en) 1988-11-29
JP2719332B2 JP2719332B2 (en) 1998-02-25

Family

ID=14919455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62125809A Expired - Lifetime JP2719332B2 (en) 1987-05-25 1987-05-25 Plasma processing method

Country Status (1)

Country Link
JP (1) JP2719332B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146728A (en) * 1989-08-30 1990-06-05 Hitachi Ltd Plasma etching and device therefor
US5037262A (en) * 1988-07-15 1991-08-06 Balzers Aktiengesellschaft Holding device for a disk and application therefor
US5352327A (en) * 1992-07-10 1994-10-04 Harris Corporation Reduced temperature suppression of volatilization of photoexcited halogen reaction products from surface of silicon wafer
US5409562A (en) * 1991-08-16 1995-04-25 Hitachi, Ltd. Dry-etching method and apparatus
JP2017022216A (en) * 2015-07-09 2017-01-26 株式会社日立ハイテクノロジーズ Plasma processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123944A (en) * 1975-04-21 1976-10-29 Hitachi Ltd Heat transmitter device
JPS5766642A (en) * 1980-10-09 1982-04-22 Mitsubishi Electric Corp Plasma etching device
JPS6176674A (en) * 1984-09-21 1986-04-19 Hitachi Ltd Thin film forming device
JPS61103530A (en) * 1984-10-25 1986-05-22 Ulvac Corp Cooling mechanism of substrate in vacuum treatment device
JPS61238985A (en) * 1985-04-16 1986-10-24 Teru Ramu Kk Parallel flat plate type plasma etching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123944A (en) * 1975-04-21 1976-10-29 Hitachi Ltd Heat transmitter device
JPS5766642A (en) * 1980-10-09 1982-04-22 Mitsubishi Electric Corp Plasma etching device
JPS6176674A (en) * 1984-09-21 1986-04-19 Hitachi Ltd Thin film forming device
JPS61103530A (en) * 1984-10-25 1986-05-22 Ulvac Corp Cooling mechanism of substrate in vacuum treatment device
JPS61238985A (en) * 1985-04-16 1986-10-24 Teru Ramu Kk Parallel flat plate type plasma etching device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037262A (en) * 1988-07-15 1991-08-06 Balzers Aktiengesellschaft Holding device for a disk and application therefor
JPH02146728A (en) * 1989-08-30 1990-06-05 Hitachi Ltd Plasma etching and device therefor
US5409562A (en) * 1991-08-16 1995-04-25 Hitachi, Ltd. Dry-etching method and apparatus
US5352327A (en) * 1992-07-10 1994-10-04 Harris Corporation Reduced temperature suppression of volatilization of photoexcited halogen reaction products from surface of silicon wafer
JP2017022216A (en) * 2015-07-09 2017-01-26 株式会社日立ハイテクノロジーズ Plasma processing apparatus

Also Published As

Publication number Publication date
JP2719332B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US4956043A (en) Dry etching apparatus
JP7301903B2 (en) Substrate carrier using proportional thermal fluid delivery system
US8963052B2 (en) Method for controlling spatial temperature distribution across a semiconductor wafer
US6949722B2 (en) Method and apparatus for active temperature control of susceptors
US8921740B2 (en) Method and apparatus for controlling the spatial temperature distribution across the surface of a workpiece support
US6018616A (en) Thermal cycling module and process using radiant heat
KR100753877B1 (en) Method and apparatus for the treatment of substrates
JPH11265931A (en) Vacuum processor
JPH09172001A (en) Method and device for controlling temperature in semiconductor manufacturing apparatus
US20030089457A1 (en) Apparatus for controlling a thermal conductivity profile for a pedestal in a semiconductor wafer processing chamber
JPS63291423A (en) Low temperature dry-etching equipment
JP2003526921A (en) Substrate thermal management system
JP3931357B2 (en) Manufacturing method of semiconductor device
JP3921913B2 (en) Wafer processing apparatus and wafer manufacturing method
JP3167493B2 (en) Pressure control device
JPH06283493A (en) Substrate cooling device
KR20220105761A (en) Wafer sawing chuck including low temperature cutting technology
JP3539662B2 (en) Temperature control plate for semiconductor wafer
JP3263721B2 (en) Processing equipment
CN220306221U (en) Refrigeration carrier disc device and semiconductor device
CN215731640U (en) Electrostatic chuck device and semiconductor processing equipment
JPH0242721A (en) Dry etching apparatus
JPH02146728A (en) Plasma etching and device therefor
JPH01268126A (en) Wafer processing device
TW202117914A (en) Substrate support pedestal and plasma processing apparatus