JPS63291211A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPS63291211A JPS63291211A JP12378687A JP12378687A JPS63291211A JP S63291211 A JPS63291211 A JP S63291211A JP 12378687 A JP12378687 A JP 12378687A JP 12378687 A JP12378687 A JP 12378687A JP S63291211 A JPS63291211 A JP S63291211A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording medium
- layer
- magnetic recording
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 22
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims 1
- 229910020630 Co Ni Inorganic materials 0.000 abstract description 4
- 229910002440 Co–Ni Inorganic materials 0.000 abstract description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 26
- 238000005260 corrosion Methods 0.000 description 19
- 230000007797 corrosion Effects 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 239000010409 thin film Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 11
- 238000007747 plating Methods 0.000 description 8
- 229910003296 Ni-Mo Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 229910018062 Ni-M Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910020676 Co—N Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc. Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁気ディスク装置用などの磁気記録媒体に係
わり、特に高密度記録に好適で耐蝕性、耐摺動特性など
信頼性に優れた媒体に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium for use in magnetic disk drives, etc., and is particularly suitable for high-density recording and has excellent reliability such as corrosion resistance and sliding resistance. Regarding the medium.
従来、高密度記録用の磁気記録媒体として、特公昭54
−33523で示されているように、金属磁性コ−
薄膜を用いた媒体が提案されている。一般に、媒体の形
成法としては蒸着法、スパッタリング法。Conventionally, as a magnetic recording medium for high-density recording,
As shown in No. 33523, a medium using a metal magnetic core thin film has been proposed. Generally, methods for forming the medium include vapor deposition and sputtering.
メッキ法、イオンビームスパッタリング法などがある。There are plating methods, ion beam sputtering methods, etc.
最近、金属磁性薄膜に関する要求がますます高まってき
ており、特に磁気特性、耐摩耗性及び耐蝕性を向上させ
るため、特開昭57−183004号公報、特開昭57
−170504号公報のように磁性金属にM o y
T a ? Wなど第3元素を添加する提案がなされる
ようになった。Recently, the demand for metal magnetic thin films has been increasing, and in particular, in order to improve magnetic properties, abrasion resistance, and corrosion resistance, Japanese Patent Application Laid-Open No. 57-183004,
M o y in magnetic metal as in the -170504 publication.
Ta? Proposals have been made to add a third element such as W.
しかし、これらの発明はほとんど蒸着法、イオンブレー
ティング法などによる磁気記録用テープに関するもので
あり、コンピュータ用ハードディスクなどのように記録
再生特性、信頼性に関するより厳しい仕様を満たすまで
に至っていない。However, most of these inventions relate to magnetic recording tapes using vapor deposition methods, ion blating methods, etc., and have not yet reached the point where they meet stricter specifications regarding recording and reproducing characteristics and reliability, such as computer hard disks.
本発明の目的は、金属磁性薄膜の改良された耐蝕性、耐
摩耗性を実質的に維持しつつ、ノイズが低く、S/N比
の高い良好な記録再生特性を有するCo基合金系磁気記
録媒体を提供することにある。An object of the present invention is to provide a Co-based alloy magnetic recording system that has good recording and reproducing characteristics with low noise and high S/N ratio while substantially maintaining the improved corrosion resistance and wear resistance of metal magnetic thin films. The goal is to provide a medium.
周期律表IVa、Va、VIa、■族の第4.第5゜第
6周期の元素やCu、Si、Sn、AQなどをCo −
N iに添加し、スパッタ法などで形成した磁性膜の記
録再生特性、耐蝕性などを鋭意検討した本発明者等の研
究によれば、媒体ノイズを低減し記録再生特性を向上せ
しめためには、Niの含有量をCoに対して34at%
以上55at%以下とし、さらにCoとNiの総量に対
して3.5at%以上3Qa t%以下、より望ましく
は4at%以上11at%以下のAQもしくはMoもし
くはWを少なくともG o −N i基磁性合金薄膜中
に含ませることが極めて有効であることが見出された。IVa, Va, VIa, group 4 of the periodic table. Co −
According to research conducted by the present inventors, who have intensively investigated the recording/reproducing characteristics, corrosion resistance, etc. of a magnetic film doped with Ni and formed by sputtering, etc., in order to reduce media noise and improve recording/reproducing characteristics, , the Ni content is 34 at% with respect to Co.
At least 55 at% or less, and furthermore, 3.5 at% or more and 3Q at% or less, more preferably 4 at% or more and 11 at% or less of AQ, Mo, or W based on the total amount of Co and Ni is added to at least Go-Ni based magnetic alloy. It has been found that inclusion in thin films is extremely effective.
さらに、耐蝕性向上のためには2at%以上、15at
%以下のZr、Ti、Hfのうち少なくとも何れか1種
を前記磁性合金中に含ませることが極めて有効である。Furthermore, in order to improve corrosion resistance, 2at% or more, 15at%
% or less of at least one of Zr, Ti, and Hf in the magnetic alloy.
さらに、磁性層と非磁性基板との間に膜厚100Å以上
5000Å以下のCr、Mo、Wもしくはこれらを主成
分とする合金のうち何れか1種の中間層を少なくとも1
層形成することで、特に高出力で記録再生特性に優れた
磁気記録媒体を提供できる。Furthermore, at least one intermediate layer of any one of Cr, Mo, W, or alloys containing these as main components is provided between the magnetic layer and the nonmagnetic substrate with a thickness of 100 Å or more and 5000 Å or less.
By forming layers, it is possible to provide a magnetic recording medium with particularly high output and excellent recording and reproducing characteristics.
以上の発明は以下の機能による。まず、スパッタリング
法によりC/ (Cot−xNix)1−YMOY/C
r媒体を以ドの条件で作製した。外径130mΦ、内径
40naΦ、厚さ1.9mのAQ合金基板の上に20μ
mの非磁性12 w t%P−Niメッキ層を形成した
後、表面を中心線平均面粗さで3nmとなるように鏡面
研磨してN1−Pの膜厚を15μmとした基板上に、R
Fスパッタ装置により基板温度150℃、Arガス圧1
5 mTorr。The above invention is based on the following functions. First, by sputtering method, C/(Cot-xNix)1-YMOY/C
A medium was prepared under the following conditions. 20μ on an AQ alloy substrate with an outer diameter of 130mΦ, an inner diameter of 40naΦ, and a thickness of 1.9m.
After forming a non-magnetic 12 wt% P-Ni plating layer of m, the surface was mirror-polished to a center line average surface roughness of 3 nm, and a N1-P film thickness of 15 μm was formed on the substrate. R
The substrate temperature was 150°C and the Ar gas pressure was 1 using F sputtering equipment.
5 mTorr.
RF投入電力2 W/aiで膜厚2500人のCr薄膜
を形成して磁性制御層とした後、同条件で膜厚600人
の(C0l−XN ix) 1−YMOY (XmO,
14゜0.2,0.3,0.34,0.4,0.5,0
.55,0.6、Y =0.02,0,035゜0.0
6,0.08,0.11,0.15,0.2,0.25
,0.3)磁性層を形成した。さらに、膜厚400人の
炭素CttDCマグネトロンスパッタ装置により基板温
度150℃、Arガス圧10 m Torr、投入電力
6W/dで形成しC/ (Co z−xN i X)
1−YM OY/ Crディスクとした。Mo組成yを
0.04 とした本ディスクの保磁力HcのNi組成比
X依存性を第2図に示すm N x組成比Xが34at
%以上55at%以下で保磁力Hcは7500 e以上
と大きいことが分かる。Ni組成比Xが40at%以上
50at%以下で最も保磁力が高い、これらの組成範囲
で再生出力も大きかった。このNi組成依存性はMO濃
度に依らず成り立っていた。ここで、基板上にCrを介
さないでCo−Ni−Mo磁性膜を形成すると、通常の
スパッタリング法では保磁力Heが1000o以下と小
さいが、100Å以上のCrを介してCo系磁性膜を形
成することでHaは4000e以上となり高密度記録に
適するようになる。これは、CrとCo−Ni−Mo合
金との結晶整合性が高く、Cr下地層を設けることによ
りCo−Ni−Moの結晶異方性軸(C軸)が面内成分
を多く持つようにエピタキシャル的に成長するためであ
る。ここで、5000Å以上のCrを設けると表面の面
粗さが大きくなり、磁気ヘッドの浮上性等が低下して望
ましくない、さらに、第4図に、Ni組成比Xを0.3
4 とした媒体の保磁力HeとMo組成との関係を示す
、この図からMOが3.5〜30a t%でH8が高い
ことが分かる。HcのMoの組成依存性は、Ni組成に
依らず同様であった。ところで1Mo組成の増加と共に
Msは急激に低下するので、Mo組成としては15at
%以下、より望ましくは11at%以下が好ましい、一
方、蒸着法もしくはイオンブレーティング法でCo−N
i−Mo磁性膜を斜め蒸着法で基板上に直接形成すると
、特開昭57−183004に述べられているようにM
oを5wt%(3at%)程度以上添加するとかえって
Heは低下することが知られている。また、スパッタリ
ング法でG o −N i −M o合金から成る磁気
記録媒体を直接形成する場合には、特開昭61−224
125に述べられているように、純Arガス中で直接、
スパッタリング法で形成するとHaは小さく磁気記録媒
体には適さないが、N2を含むArガス中でスパッタリ
ングした後、熱処理することにより保磁力を大きくでき
、耐蝕性の高い媒体が得られることが知られている。し
かしながら本発明者等の研究によれば、スパッタリング
法でCr下地層を介してG o −M o 、 Co
−N i −M o磁性層を形成すると、Mo組成に依
らず、第4図に示したようにHcは5000 e程度以
上と高い。After forming a Cr thin film with a thickness of 2500 nm at an RF input power of 2 W/ai to form a magnetic control layer, a Cr thin film with a thickness of 600 nm (C0l-XN ix) 1-YMOY (XmO,
14゜0.2, 0.3, 0.34, 0.4, 0.5, 0
.. 55,0.6, Y =0.02,0,035°0.0
6,0.08,0.11,0.15,0.2,0.25
, 0.3) A magnetic layer was formed. Furthermore, a carbon film with a thickness of 400 mm was formed using a CttDC magnetron sputtering device at a substrate temperature of 150°C, an Ar gas pressure of 10 m Torr, and an input power of 6 W/d.
1-YM OY/Cr disk. Figure 2 shows the dependence of the coercive force Hc on the Ni composition ratio X of this disk with a Mo composition y of 0.04.
% to 55 at%, the coercive force Hc is as large as 7500 e or more. The coercive force was highest when the Ni composition ratio X was 40 at % or more and 50 at % or less, and the reproduction output was also large in these composition ranges. This Ni composition dependence was true regardless of the MO concentration. Here, when a Co-Ni-Mo magnetic film is formed on a substrate without intervening Cr, the coercive force He is as small as 1000 degrees or less using the normal sputtering method, but a Co-based magnetic film is formed through Cr of 100 Å or more. By doing so, Ha becomes 4000e or more, which is suitable for high-density recording. This is because the crystal consistency between Cr and the Co-Ni-Mo alloy is high, and by providing a Cr underlayer, the crystal anisotropy axis (C axis) of Co-Ni-Mo has a large in-plane component. This is because it grows epitaxially. Here, if Cr of 5000 Å or more is provided, the surface roughness will increase and the flying properties of the magnetic head will deteriorate, which is undesirable.Furthermore, as shown in FIG.
From this figure, which shows the relationship between the coercive force He and the Mo composition of a medium with a concentration of 4.5%, it can be seen that H8 is high when the MO content is 3.5 to 30at%. The dependence of Hc on the Mo composition was the same regardless of the Ni composition. By the way, as the 1Mo composition increases, Ms rapidly decreases, so the Mo composition is 15at.
% or less, more preferably 11 at% or less. On the other hand, Co-N
When an i-Mo magnetic film is directly formed on a substrate by an oblique evaporation method, M
It is known that adding more than about 5 wt % (3 at %) of o actually reduces He. In addition, when directly forming a magnetic recording medium made of a Go-Ni-Mo alloy by a sputtering method, Japanese Patent Laid-Open No. 61-224
125, directly in pure Ar gas,
When formed by sputtering, Ha is small and is not suitable for magnetic recording media, but it is known that coercive force can be increased by sputtering in Ar gas containing N2 followed by heat treatment, and a highly corrosion-resistant medium can be obtained. ing. However, according to the research of the present inventors, G o -Mo, Co
When a -N i -Mo magnetic layer is formed, Hc is as high as about 5000 e or more, as shown in FIG. 4, regardless of the Mo composition.
さらに1水媒体の記録再生特性を評価すると、Mo添加
量と共に媒体ノイズが低下することが明らかとなった。Furthermore, when the recording and reproducing characteristics of the aqueous medium were evaluated, it became clear that the medium noise decreased with the amount of Mo added.
これは、磁性膜のHc、ノイズ特性がCr下地層の配向
性、結晶性と、この上にエピタキシャル的に成長する磁
性膜の配向性、結晶性によって決まるためである。さら
に、耐蝕性については特開昭57−170504や特開
昭61−224125に述べられているように、蒸着法
やNzを含むArガス中でのスパッタリング法でCo
−N i −M 。This is because the Hc and noise characteristics of the magnetic film are determined by the orientation and crystallinity of the Cr underlayer and the orientation and crystallinity of the magnetic film epitaxially grown thereon. Furthermore, regarding corrosion resistance, as described in JP-A-57-170504 and JP-A-61-224125, Co
-Ni-M.
磁性層を形成するとMo添加量とともに耐蝕性が向上す
ることも知られている。ところが、本発明のように酸素
を含むArもしくは純Arガス中でのスパッタリング法
でCr下地層を介してCo −N i −M o膜を形
成した場合には、Co−Niに比べMOを4at%以上
添加するとかえって耐蝕性は悪くなった。実際、Co
o、seN i o、am/ Cr媒体とMo、Wを1
0at%添加したCoo、ssN i (1,84/
Cr膜の塩水噴霧試験に対する耐蝕性を第3図に示す。It is also known that when a magnetic layer is formed, corrosion resistance improves as the amount of Mo added increases. However, when a Co-Ni-Mo film is formed via a Cr underlayer by a sputtering method in oxygen-containing Ar or pure Ar gas as in the present invention, MO is 4at compared to Co-Ni. % or more, the corrosion resistance worsened on the contrary. In fact, Co
o, seN io, am/ Cr medium and Mo, W 1
Coo, ssN i (1,84/
FIG. 3 shows the corrosion resistance of the Cr film in the salt spray test.
このように、Mo、Wの添加により耐蝕性が劣化する理
由は、Arガス中もしくは酸素を含んだArガス中でス
パッタリング法によりCo −N i −M o *
Co −N i −W磁性膜をCr下地層を介して形成
すると、磁性層の結晶粒が微細化し、さらにMoやWが
結果粒界に偏析し、局部電池を形成してしまうためであ
る。実際、第5図に(Co o、eeN i O,84
) 0.11M Oo、x/ Cr薄膜を塩水噴霧試験
した後にオージェ分光法で分析した結果を示すが、膜内
部まで酸化が進行していることが分かる。一方、このよ
うにMo、Wの添加により耐蝕性は劣化するが、結晶粒
界にM o 。As described above, the reason why the corrosion resistance deteriorates due to the addition of Mo and W is that Co-Ni-Mo* is formed by sputtering in Ar gas or Ar gas containing oxygen.
This is because when a Co-Ni-W magnetic film is formed through a Cr underlayer, the crystal grains of the magnetic layer become finer, and Mo and W segregate as a result at the grain boundaries, forming local batteries. In fact, in Figure 5 (Co o, eeN i O, 84
) The results of Auger spectroscopy analysis of a 0.11M Oo, x/Cr thin film after a salt spray test are shown, and it can be seen that oxidation has progressed to the inside of the film. On the other hand, although the corrosion resistance is degraded by the addition of Mo and W, Mo is present at the grain boundaries.
Wが偏析するための結晶粒間の磁気的相互作用が弱めら
れるため、記録時の磁化遷移領域におけるジグザグドメ
インの広がりがMo、W添加量と共に小さくなり、ノイ
ズが小さくなっていることが、磁区amにより明らかに
なった。ここで本効果はMOやWの添加量が4at%以
上の時に顕著であった。添加量が11at%よりも多く
なると磁性膜の磁化の減少と共に再生出方が低下し、シ
ステムとしてのS/Nが悪くなるため望ましくない。Because the magnetic interaction between crystal grains for W segregation is weakened, the spread of the zigzag domain in the magnetization transition region during recording becomes smaller with the amount of Mo and W added, and the noise becomes smaller. It was revealed by am. Here, this effect was remarkable when the amount of MO or W added was 4 at% or more. If the amount added exceeds 11 at %, the magnetization of the magnetic film decreases, the reproduction quality deteriorates, and the S/N ratio of the system deteriorates, which is not desirable.
本効果はAQ、Si、Cuを添加物とした場合にも認め
られたが、A n 、 M o p Wを添加物とした
時に最も顕著であった0本効果は、さらに0が0.1a
t%以上20at%以下磁性膜中に含まれている場合に
、より顕著であり特に好ましい。This effect was also observed when AQ, Si, and Cu were used as additives, but the 0 effect, which was most remarkable when A n and M op W were used as additives,
It is more noticeable and particularly preferable when it is contained in the magnetic film from t% to 20at%.
添加量を20at%より多くすると、飽和磁束密度Bs
が小さくなるので好ましくない。When the amount added is more than 20at%, the saturation magnetic flux density Bs
is not preferable because it becomes small.
上記磁性層中にZr、Ti、Hf等の元素をさらに2a
t%以上15at%以下添加することで磁性膜表面に不
動態皮膜が形成しMO,Wを添加したことによる耐蝕性
の劣化を抑え、総合的にCo−Niに比べて耐蝕性を向
上せしめることができる。Further elements such as Zr, Ti, Hf, etc. are added to the magnetic layer.
By adding t% or more and 15 at% or less, a passive film is formed on the surface of the magnetic film, suppressing the deterioration of corrosion resistance caused by the addition of MO and W, and improving the corrosion resistance overall compared to Co-Ni. Can be done.
以上の効果はCr)IRを下地とした場合だけでなくM
o、WおよびCr T i 、 Cr −N i 、
Cr −S i 、 M o −S i 、 W −T
i 、 M o CrなどのCr合金、Mo合金、W
合金を下地としても認められた。これは、Co−Ni−
A11y Co−Ni−M o 、 G o −N i
−W合金とCr、Mo+Wやこれらを主たる成分とす
る合金との結晶整合性が高く、これらの下地膜を配向性
良く設けることで、Co−N1−AQ、Co−Ni−M
o、Co−N1−W磁性膜のC軸が面内成分に向かって
配向するようになるため、磁気記録媒体としての特性が
向上するためである。The above effects apply not only when using Cr)IR as the base but also when M
o, W and CrTi, Cr-Ni,
Cr-S i , Mo-S i , W-T
i, Mo alloy such as Cr, Mo alloy, W
It was also approved as an alloy substrate. This is Co-Ni-
A11y Co-Ni-Mo, Go-Ni
-W alloy has high crystal consistency with Cr, Mo+W, and alloys whose main components are Co-N1-AQ, Co-Ni-M
This is because the C-axis of the o, Co-N1-W magnetic film is oriented toward the in-plane component, so that the characteristics as a magnetic recording medium are improved.
以下1本発明の一実施例を第1図により説明する。11
はAf1合金等から成る非磁性基板、12゜12′はN
i −P 、 N i −W −Pもしくはこれらを
主たる成分とする合金から成る非磁性メッキ層13.1
3’はCr、Mo、W等から成る、もしくはこれらを主
たる成分とする合金から成る磁性制御層、14.14’
はCo、Ni、及びAQもしくはMoもしくはW、及び
Zr、Ti、Hf等から成る磁性層、15,15’はC
,B、BaC。An embodiment of the present invention will be described below with reference to FIG. 11
is a non-magnetic substrate made of Af1 alloy etc., 12゜12' is N
Non-magnetic plating layer 13.1 made of i-P, Ni-W-P or an alloy containing these as main components
3' is a magnetic control layer made of Cr, Mo, W, etc., or an alloy containing these as main components; 14.14'
is a magnetic layer consisting of Co, Ni, and AQ or Mo or W, and Zr, Ti, Hf, etc., and 15 and 15' are C
, B, BaC.
5i−C等から成る保護潤滑層であり、それぞれは以下
に示すように形成される。外径130nn+Φ、内径4
0mΦ、厚さ1.9mのAQ合金基板、11の上に20
μmの非磁性12 w t%P−Niメッキ層12,1
2’ を形成した後、表面を中心線平均面粗さで4nm
に鏡面研磨して15μmとした。この基板上にRFスパ
ッタ装置により、基板温度150℃、Arガス圧15
mTorr、 RF投入電力2’?J/dでCrもしく
はMOもしくはW薄膜を2500人形成して磁性制御非
磁性513゜13′とした後、同条件で膜厚600人の
(C。The protective lubricant layer is made of 5i-C or the like, and each layer is formed as shown below. Outer diameter 130nn+Φ, inner diameter 4
0mΦ, 1.9m thick AQ alloy substrate, 20 on top of 11
μm non-magnetic 12 wt% P-Ni plating layer 12,1
2', the surface is roughened to a center line average surface roughness of 4 nm.
It was mirror polished to a thickness of 15 μm. This substrate was sputtered using an RF sputtering device at a substrate temperature of 150°C and an Ar gas pressure of 15°C.
mTorr, RF input power 2'? After forming 2,500 Cr, MO, or W thin films at J/d to obtain a magnetically controlled non-magnetic film of 513°13', a film thickness of 600° (C) was formed under the same conditions.
o、oaN i o、sa) O*1111 Z r
oso7M o o、osもしくは(Coo、saN
io、as) osaaZ ro、o7A Qo、os
もしくは(Co o、eeN i o、sa) o、a
s Z r 0.07W0.0+5磁性914.14’
を形成した。さらに、DCマグネトロンスパッタ装置
により基板温度150℃。o, oaN io, sa) O*1111 Z r
oso7M o o, os or (Coo, saN
io, as) osaaZ ro, o7A Qo, os
Or (Co o, eeN io, sa) o, a
s Z r 0.07W0.0+5 Magnetic 914.14'
was formed. Furthermore, the substrate temperature was 150°C using a DC magnetron sputtering device.
Arガス圧10 mTorr、投入電力4 W/cdで
膜厚400人のCから成る保護潤滑層15.15’ を
形成した。A protective lubricant layer 15.15' of carbon having a thickness of 400 mm was formed at an Ar gas pressure of 10 mTorr and an input power of 4 W/cd.
比較例1
第1図における磁性層14,14’ を膜厚600人の
S n 、 T a 、 N b 、 Cu 、 V
@ G oとNiに対して5at%添加した( Co
o、ssN i o、as)o、saZ ro、o7磁
性層とした以外は実施例1と同じ構成の磁気ディスクを
比較例1として作製した。Comparative Example 1 The magnetic layers 14 and 14' in FIG. 1 were made of Sn, Ta, Nb, Cu, V with a thickness of 600 mm
@5at% added to Go and Ni (Co
o, ssN io, as) o, saZ ro, o7 A magnetic disk having the same configuration as Example 1 except that the magnetic layer was used was fabricated as Comparative Example 1.
比較例2
第1図における磁性層14,14’ を膜厚600人の
(Co0,81SN i o、ms) o、sa Z
r 0.0?磁性層とした以外は実施例1と同じ構成の
磁気ディスクを比較例2として作製した。Comparative Example 2 The magnetic layers 14, 14' in FIG.
r 0.0? A magnetic disk having the same configuration as Example 1 except for the magnetic layer was produced as Comparative Example 2.
上記各実施例1及び比較例1,2によって得られた磁気
記録媒体の記録再生特性をギャップ長Q、6μm、
トラック幅30μmのM n −Z n フェライト
ヘッドにより、相対速度20m/s、スペーシング0.
2μmで評価した。 ゛第1表に、その結果とし
て得られた媒体ノイズとS/N比について示す。The recording and reproducing characteristics of the magnetic recording media obtained in each of the above-mentioned Examples 1 and Comparative Examples 1 and 2 are as follows: gap length Q, 6 μm;
A M n -Z n ferrite head with a track width of 30 μm allows a relative speed of 20 m/s and a spacing of 0.
Evaluation was made at 2 μm. Table 1 shows the resulting media noise and S/N ratio.
ノイズ測定時の周波数帯域は20 M )(zとした。The frequency band during noise measurement was 20 M) (z).
G o −N i −ZrにTa、Nb、Cu、V、A
Q。Ta, Nb, Cu, V, A in G o -N i -Zr
Q.
Mo、Wを添加することにより、ノイズレベルが低下し
、S/Nが向上していることが分かる。中でも、AQ、
Mo、Wを添加した場合に効果が著しく、最も高い媒体
S/Nが得られている。ここで、これらの媒体を60℃
、80%RHの高温恒温炉で耐蝕性の評価をしたが、何
れの媒体も3週間でもエラーの増加は認められず良好な
耐蝕性を示した8以上の結果はCr磁性制御用非磁性層
の替わりに同じ膜厚のM o 、 W e Cr −T
i 、 Cr−8i層を用いても同様であった。It can be seen that by adding Mo and W, the noise level is reduced and the S/N is improved. Among them, AQ,
When Mo and W were added, the effect was remarkable and the highest medium S/N was obtained. Here, these media were heated to 60°C.
Corrosion resistance was evaluated in a high-temperature constant temperature furnace at 80% RH, and no increase in errors was observed for any of the media even after 3 weeks, indicating good corrosion resistance.Results of 8 or higher indicate that the nonmagnetic layer for controlling Cr magnetism M o , W e Cr -T with the same film thickness instead of
The same results were obtained using Cr-8i and Cr-8i layers.
実施例2
外径130mmφ、内径40tmφ、厚さ1.9腸のA
Q合金基板11の上に20μmの非磁性12wt%P
−N iメッキ層12,12’ を形成した後、表面を
円周方向に中心線平均面粗さで7nmの微小な傷が入る
ように研磨して10μmとした。Example 2 A with an outer diameter of 130 mmφ, an inner diameter of 40 tmφ, and a thickness of 1.9 mm
20 μm non-magnetic 12wt% P on Q alloy substrate 11
After the -Ni plating layers 12, 12' were formed, the surface was polished in the circumferential direction so that minute scratches with a center line average surface roughness of 7 nm were formed to 10 μm.
この基板上に、DCマグネトロンスパッタ装置により基
板温度150℃、Arガス圧20 mTorr。A substrate temperature of 150° C. and an Ar gas pressure of 20 mTorr were applied onto this substrate using a DC magnetron sputtering device.
DC投入電力2W/cdでcr薄膜の膜厚を5000人
。The film thickness of CR thin film is 5000 at DC input power of 2W/cd.
2000人、1000人、500人; 100人と変え
て形成し磁性制御層を13.13’ とした後。2000 people, 1000 people, 500 people; After changing the thickness to 100 people and making the magnetic control layer 13.13'.
さらに同条件で膜厚400人の(Co o、as N
i o、 as)o、aa Z r 0.07M O0
,0!II (Co o、eo N i O+40)0
.811Z ro、osM oo、zo、 (Coo
、soN io、ao) 0.117Zro、oaMo
o、oa、 (Coo、asNio、aa)o、aa
ZrO,07M O0,0111(Co o、aoN
i o、1o)oaa3Z r’0.05Wo、xo、
(Coo、5oNio、5o)o、a7Zro、o
aW6.04磁性層14.14’ を形成した。さらに
、DCマグネトロンスパッタ装置により基板温度150
℃、 A rガス圧10 mTorr、投入電力8w/
dで膜厚450人のC保護潤滑層15.15’を形成し
、最後に、膜厚4o人の極性液体潤滑層を形成して磁気
ディスクとした。cr膜厚と共にS/N比は高くなった
が、いずれも6.5以上と良好であり、耐蝕性もCo
o、aoN i o、go、 Coo、BsN i O
,lll5. Co o、soN i O*40磁性膜
による媒体よりも良好であり、50’C,85%RHの
高温恒湿テストで4週間の間エラーの増加は認められな
がつた。Furthermore, under the same conditions, a film thickness of 400 people (Co o, as N
i o, as) o, aa Z r 0.07M O0
,0! II (Co o,eo N i O+40)0
.. 811Z ro, osM oo, zo, (Coo
, soN io, ao) 0.117Zro, oaMo
o, oa, (Coo, asNio, aa) o, aa
ZrO,07M O0,0111 (Co o, aoN
i o, 1o) oaa3Z r'0.05Wo, xo,
(Coo, 5oNio, 5o)o, a7Zro,o
A 14.14' aW6.04 magnetic layer was formed. Furthermore, the substrate temperature was increased to 150°C using a DC magnetron sputtering device.
°C, Ar gas pressure 10 mTorr, input power 8w/
A C protective lubricant layer 15.15' with a thickness of 450 mm was formed at d, and finally a polar liquid lubricant layer with a thickness of 40 mm was formed to obtain a magnetic disk. The S/N ratio increased with the thickness of the Cr film, but all values were good at 6.5 or higher, and the corrosion resistance was also good.
o, aoN i o, go, Coo, BsN i O
,llll5. This was better than the media using CoO, soNiO*40 magnetic films, and no increase in errors was observed for 4 weeks in a high temperature and constant humidity test at 50'C and 85% RH.
実施例3
第1図における11,12,12’ 、13゜13′の
各層を前記実施例1と同じにした後、スパッタガスとし
てArに02を混合すること以外は前記実施例1と同条
件で14.14’層を形成することにより、実施例1お
よび実施例2における磁性層中に0.1 a t%以上
30a r%以下の酸素を含ませた。′N!素含素置有
量加と共に媒体S/Nは高くなりいずれもS/Nは7.
5以上と特に良好であったが、○が20at%よりも多
くなると再生出力の低下が激しく全体としてのS/Nは
低下し好ましくなかった。Example 3 After making the layers 11, 12, 12', and 13° 13' in FIG. 1 the same as in Example 1, the conditions were the same as in Example 1 except that 02 was mixed with Ar as the sputtering gas. By forming the 14.14' layer, the magnetic layers in Examples 1 and 2 contained oxygen in an amount of 0.1 at% or more and 30 at% or less. 'N! The medium S/N increases with addition of elemental content, and in both cases the S/N is 7.
A value of 5 or more was particularly good, but when the value of ◯ exceeded 20 at%, the reproduction output decreased significantly and the overall S/N decreased, which was not preferable.
実施例4
外径130+mO,内径40m++O1厚さ1 、9
・mのAQ合金基板11の上に20μmの非磁性12w
t%P −N iメッキ層12.12’ を形成した後
、表面を中心線平均面粗さで3nmに鏡面所磨して15
μmとした。この基板上にDCマグネトロンスパッタ装
置により基板温度150’C1Arガス圧15 mTo
rr、 RF投入電力2 W/cdでCr薄膜を250
0人形成して磁性制御非磁性層13゜13′とした後、
同条件で膜厚500人の(Co o、eoN i o、
io) oaaaT i 0.07M Oo会ost(
Co o、eo N i o、io) o、aaHf
Q、07M OOsO81(Co oaeoN i
o、to) o、aa Z ro、zzM o o
、oa*(Coo、eoN io、to) o、asZ
ro、o7A Qo、o5゜(Co oaseN i
o、as) oaezZ ro、oaA Q OsO
4,゛(Coo、aoN i o、io) o、ssZ
ro、xoA Q O,07゜(Co o、so N
i o、ao) o、as T i O,O?W
0.04 t(Co oaaoN i o、go)
o、ssHf 0.07M O、oa @性N11
4,14’ を形成り、り、”:!ラニ、’11J I
:、 D C?グネトロンスバッタ装置により基板温度
150”C。Example 4 Outer diameter 130+mO, inner diameter 40m++ O1 thickness 1,9
・20 μm non-magnetic 12w on the m AQ alloy substrate 11
After forming the t%P-Ni plating layer 12.12', the surface was mirror polished to a center line average surface roughness of 3 nm.
It was set as μm. A substrate temperature of 150'C1Ar gas pressure of 15 mTo was applied onto this substrate using a DC magnetron sputtering device.
rr, 250 Cr thin film with RF input power 2 W/cd
After forming a magnetic control non-magnetic layer 13° 13',
Under the same conditions, the film thickness was 500 people (Co o, eoNio,
io) oaaaT i 0.07M Ookai ost (
Co o, eo N io, io) o, aaHf
Q, 07M OOsO81 (Co oaeoN i
o, to) o, aa Z ro, zzM o o
, oa*(Coo, eoN io, to) o, asZ
ro, o7A Qo, o5゜(Co oaseN i
o, as) oaezZ ro, oaA Q OsO
4,゛(Coo,aoN io,io) o,ssZ
ro, xoA Q O, 07゜ (Co o, so N
i o, ao) o, as T i O, O? W
0.04 t (Co oaaoN io, go)
o, ssHf 0.07M O, oa @N11
4,14' formed, ri,":! Rani, '11J I
:, DC? The substrate temperature was 150"C using the Gnetron Batter apparatus.
Arガス圧5 mTorr、投入電力4W/cdでC保
護潤滑層15.15’を形成した0本ディスクの特性は
いずれもS/Nが6.5以上と高く、耐地性も同条件で
試作したC o o、eoN i 0e40@ Co
O@allN i o、as、 Co o、aoN i
o、aoによる媒体に比べてJa好テtJJ、40’
C,90%RHの高温恒湿テストで4週間の間エラーの
増加は認められなかった。The characteristics of the 0 discs with a C protective lubricant layer of 15.15' formed at an Ar gas pressure of 5 mTorr and input power of 4 W/cd are high with S/N of 6.5 or more, and the earth resistance was also prototyped under the same conditions. C o o,eoN i 0e40@ Co
O@allN io, as, Co o, aoN i
40'
C. No increase in error was observed during 4 weeks in a high temperature and constant humidity test at 90% RH.
実施例5
外径130■φ、内径40+nmφ、厚さ1.9mのA
1合金基板11の上に20μmの非磁性12wt%P
−N iメッキ層12,12’ を形成した後、表面を
円周方向に中心線平均面粗さで4omの微小傷が入るよ
うに研磨して膜厚を15μmとした。この基板上にDC
マグネトロンスパッタ装置により基板温度150℃、A
rガス圧15mTorr、 RF投入電力2W/−でM
oもしくはW薄膜を3000人形成して磁性制御非磁性
層13.13’とした後、同条件で膜厚750人の(C
oo、a。Example 5 A with an outer diameter of 130 mmφ, an inner diameter of 40+nmφ, and a thickness of 1.9 m
1 alloy substrate 11 with 20 μm of non-magnetic 12 wt% P
After forming the -Ni plating layers 12, 12', the surfaces were polished to a thickness of 15 μm by making minute scratches in the circumferential direction with a center line average surface roughness of 4 ohm. DC on this board
The substrate temperature was 150℃ using a magnetron sputtering device.
r Gas pressure 15mTorr, RF input power 2W/-M
After forming a 3,000-layer O or W thin film to form a magnetism control non-magnetic layer 13.13', a film thickness of 750-layer (C) was formed under the same conditions.
oo, a.
Nio、1o)o、5sZro、oyAQo、oa、
(Coo、5oNio、ao) o、sa Z r
O,07M Oo、os* (Co oaaoN i
o、1o)o、5sZro、otWo、os* (C
oo、aoNio、1o)o、a4Z ro、itA
Qo、o+m (Coo、soN io、a
o) o、a4Zro、zzMoo、oa、 (C
oo、aoNio、go)o、aaZ ro、tzWo
eoa磁性層14,14’ を形成した。Nio, 1o)o, 5sZro, oyAQo, oa,
(Coo, 5oNio, ao) o, sa Z r
O, 07M Oo, os* (Co oaaoN i
o, 1o) o, 5sZro, otWo, os* (C
oo, aoNio, 1o)o, a4Z ro, itA
Qo, o+m (Coo, soN io, a
o) o, a4Zro, zzMoo, oa, (C
oo, aoNio, go)o, aaZ ro, tzWo
EOA magnetic layers 14 and 14' were formed.
さらに、DCマグネトロンスパッタ装置により基板温度
150℃、Arガス圧5mTorr、投入電力4W/d
で膜厚500人のC保護潤滑層15゜15′を形成し最
後に膜厚30人の極性液体潤滑層を形成して磁気ディス
クとした0本ディスクの特性はいずれもS/Nが6.5
以上と高く、耐蝕性も同条件で試作したC o o、e
oN i O,40,C。Furthermore, using a DC magnetron sputtering device, the substrate temperature was 150°C, the Ar gas pressure was 5 mTorr, and the input power was 4 W/d.
A C protective lubricant layer 15°15' with a thickness of 500 mm was formed, and finally a polar liquid lubricant layer with a thickness of 30 mm was formed to make a magnetic disk.The characteristics of the 0 disks are that the S/N is 6. 5
C o o, e, which was prototyped under the same conditions with high corrosion resistance.
oN i O,40,C.
。、aoN i o、soによる媒体に比べて良好であ
り、40℃、90℃RHの高温恒湿テストで4週間の間
エラーの増加は認められなかった。. , aoN io, and so, and no increase in errors was observed in a high temperature and constant humidity test at 40° C. and 90° C. RH for 4 weeks.
以上説明したように本発明により、非磁性基板上に金属
系磁性薄膜を有する磁気記録媒体において、前記磁性薄
膜はcoとNiに、Z r * T i*Hfのうち少
なくとも何れか1種とA 11 v M o +Wのう
ち少なくとも何れか1種を添加することにより、Co−
Ni系合金磁性薄膜の有する良好な磁気特性を劣化させ
ずに、ノイズレベルを減少させS/Nを向上させ、かつ
耐蝕性の良好な高性能、高信頼性を有する磁気記録媒体
を提供することができる。As explained above, according to the present invention, in a magnetic recording medium having a metal-based magnetic thin film on a non-magnetic substrate, the magnetic thin film is composed of Co, Ni, at least one of Z r * Ti * Hf, and A. By adding at least one of 11 v M o +W, Co-
To provide a magnetic recording medium that reduces noise level and improves S/N without deteriorating the good magnetic properties of a Ni-based alloy magnetic thin film, and has good corrosion resistance, high performance, and high reliability. Can be done.
第1図は本発明の一実施例の磁気ディスクの新面図、第
2図は本発明の磁気ディスク等に対する磁気特性を示す
図、第3図はそれらの塩水噴霧試験の結果を示す図、第
4図はMoを添加した場合の本発明の磁気ディスク磁気
特性を示す図、第5図は本発明の磁気ディスクのオージ
ェプロファイルを示す図である。
11・・・基板、12.12’・・・非磁性メッキ層、
13.13’・・・磁性制御非磁性層、14.14’□
−−一
第 l の
$2vE3”FIG. 1 is a new view of a magnetic disk according to an embodiment of the present invention, FIG. 2 is a diagram showing the magnetic characteristics of the magnetic disk, etc. of the present invention, and FIG. 3 is a diagram showing the results of a salt spray test. FIG. 4 is a diagram showing the magnetic characteristics of the magnetic disk of the present invention when Mo is added, and FIG. 5 is a diagram showing the Auger profile of the magnetic disk of the present invention. 11...Substrate, 12.12'...Nonmagnetic plating layer,
13.13'...magnetic control nonmagnetic layer, 14.14'□
--First l $2vE3”
Claims (1)
いて、前記磁性層が主にCo及びNi並びにAl、Mo
、Wのうち少なくとも1種とから成り、前記Niの含有
量がCoに対して34at%以上55at%以下、かつ
、Al、Mo、Wの含有量がCoとNiの総量に対して
3.5at%以上30at%以下であることを特徴とす
る磁気記録媒体。 2、前記Al、Mo、Wの含有量が4at%以上11a
t%以下であることを特徴とする特許請求の範囲第1項
に記載の磁気記録媒体。 3、上記磁性層はさらにCo及びNi並びにAl、Mo
、Wのうち少なくとも1種の合計量に対し、2at%以
上15at%以下のZr、Ti、Hfの少なくとも1種
を含むことを特徴とする特許請求の範囲第1項ないし第
2項の何れかに記載の磁気記録媒体。 4、上記磁性層は、さらにCoとNi並びに他の金属の
合計量に対し0.1at%以上20at%以下の酸素を
含むことを特徴とする特許請求の範囲第1項ないし第3
項の何れかに記載の磁気記録媒体。 5、前記磁気記録媒体と非磁性基板との間に100Å以
上、5000Å以下のCr、Mo、Wもしくはこれらを
主たる成分とする合金のうち何れか1種の中間層が介在
することを特徴とする特許請求の範囲第1項ないし第4
項の何れかに記載の磁気記録媒体。[Claims] 1. In a magnetic recording medium in which a magnetic layer is formed on a non-magnetic substrate, the magnetic layer is mainly made of Co, Ni, Al, and Mo.
, W, and the content of Ni is 34 at% or more and 55 at% or less with respect to Co, and the content of Al, Mo, and W is 3.5 at% with respect to the total amount of Co and Ni. % or more and 30 at% or less. 2. The content of Al, Mo, and W is 4 at% or more 11a
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is t% or less. 3. The magnetic layer further includes Co and Ni as well as Al and Mo.
, containing at least one of Zr, Ti, and Hf in an amount of 2 at% or more and 15 at% or less with respect to the total amount of at least one of W. The magnetic recording medium described in . 4. The magnetic layer further contains oxygen in an amount of 0.1 at% to 20 at% based on the total amount of Co, Ni, and other metals.
The magnetic recording medium according to any one of paragraphs. 5. An intermediate layer of 100 Å or more and 5000 Å or more of any one of Cr, Mo, W, or an alloy containing these as main components is interposed between the magnetic recording medium and the nonmagnetic substrate. Claims 1 to 4
The magnetic recording medium according to any one of paragraphs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12378687A JPS63291211A (en) | 1987-05-22 | 1987-05-22 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12378687A JPS63291211A (en) | 1987-05-22 | 1987-05-22 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63291211A true JPS63291211A (en) | 1988-11-29 |
Family
ID=14869262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12378687A Pending JPS63291211A (en) | 1987-05-22 | 1987-05-22 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63291211A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376018A (en) * | 1989-08-16 | 1991-04-02 | Internatl Business Mach Corp <Ibm> | Magnetic recording disc for horizontal recording |
-
1987
- 1987-05-22 JP JP12378687A patent/JPS63291211A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0376018A (en) * | 1989-08-16 | 1991-04-02 | Internatl Business Mach Corp <Ibm> | Magnetic recording disc for horizontal recording |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0130768B1 (en) | Magnetic recording media for longitudinal recording | |
US6627253B2 (en) | Magnetic recording media for longitudinal recording, process for producing the same and magnetic memory apparatus | |
US6440589B1 (en) | Magnetic media with ferromagnetic overlay materials for improved thermal stability | |
JP4380577B2 (en) | Perpendicular magnetic recording medium | |
JP2008276915A (en) | Magnetic recording medium | |
US20090195924A1 (en) | Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same | |
EP0531035B1 (en) | Magnetic recording medium | |
JPH0573881A (en) | Magnetic recording medium and production thereof | |
JP2010102816A (en) | Vertical magnetic recording medium | |
JPS63291211A (en) | Magnetic recording medium | |
JPS59119534A (en) | Magnetic recording medium | |
JP2515771B2 (en) | Magnetic recording media | |
JP4079051B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JP2937199B2 (en) | Intra-surface magnetic recording medium and its production and magnetic storage device | |
JP2001351226A (en) | Magnetic recording medium, method for producing the same and magnetic recorder | |
JPH0817032A (en) | Magnetic recording medium and its production | |
JP2845974B2 (en) | In-plane magnetic recording medium and magnetic storage device using the same | |
JP3029306B2 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic disk drive using the same | |
JPH10289437A (en) | Magnetic recording medium and magnetic storage device | |
JP3901755B2 (en) | Magnetic recording medium | |
JP3429777B2 (en) | Magnetic recording medium and magnetic storage device using the same | |
JPH0258723A (en) | Magnetic recording medium and magnetic memory medium | |
JP2006155844A (en) | Perpendicular magnetic recording medium and its manufacturing method | |
JP2003338027A (en) | Magnetic recording medium | |
JP2000163732A (en) | Magnetic recording medium and its production |