JPS6329108A - Diffuser in fluidized bed equipment - Google Patents

Diffuser in fluidized bed equipment

Info

Publication number
JPS6329108A
JPS6329108A JP17150086A JP17150086A JPS6329108A JP S6329108 A JPS6329108 A JP S6329108A JP 17150086 A JP17150086 A JP 17150086A JP 17150086 A JP17150086 A JP 17150086A JP S6329108 A JPS6329108 A JP S6329108A
Authority
JP
Japan
Prior art keywords
fluidized bed
gas
fluidizing gas
diffuser
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17150086A
Other languages
Japanese (ja)
Other versions
JPH0573965B2 (en
Inventor
Naoki Inumaru
犬丸 直樹
Tsutomu Higo
勉 肥後
Takahiro Oshita
孝裕 大下
Shigeru Kosugi
茂 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP17150086A priority Critical patent/JPS6329108A/en
Publication of JPS6329108A publication Critical patent/JPS6329108A/en
Publication of JPH0573965B2 publication Critical patent/JPH0573965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To prevent overheat by cooling a diffuser and make maintenance easy, and control of the title equipment by a method wherein a diffusing part for blowing fluidizing gas is made to have a structure through which fluidizing gas is able to pass in a fluidized bed and control mechanisms for the fluidizing gas supply quantity and the fluidizing gas passing quantity to the diffuser are installed and gas having a constant volume or more is forced to flow in the diffuser. CONSTITUTION:The fluidizing gas quantity supplied to a diffuser 32 is controlled mainly by a flow control valve V1 installed at the upper stream of the diffuser. The fluidizing air quantity supplied to a fluidized bed is controlled by a flow control valve V2 at the down stream of the diffuser. At that time, when there is an adjacent fluidized bed around the diffuser, the bed is subjected to the changed pressure though the pressure is brought into a largely reduced form caused by the fluidizing gas. When the gas pressure in a diffusing pipe is higher than that of the surrounding gas, the gas is supplied to a heat transfer part from the diffusing pipe. When a very small amount of the fluidizing gas is supplied even at the lowest value by controlling the opening degree of the valve V2 installed at the down stream of the gas diffusing pipe, the effect of preventing the invasion of fluidizing medium into the diffusing pipe is easily obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市ごみ、産業廃棄物、石炭その他の高い発
熱量を有する可燃物を燃焼処分する流動層を持った、焼
却炉或いは可燃物を燃焼すると同時に、熱エネルギーを
回収する目的を持った流動層を用いたボイラなどの装置
に用いられる散気装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an incinerator or combustible material having a fluidized bed for burning and disposing of municipal waste, industrial waste, coal, and other combustible materials with a high calorific value. This relates to an air diffuser used in devices such as boilers that use a fluidized bed to burn and recover thermal energy at the same time.

〔従来の技術〕[Conventional technology]

従来の流動層装置では、本発明者等の一部が既に出願し
た流動層ボイラないし熱回収装置(特願昭61−888
0、特願昭61−16726 、特願昭6l−5255
9)の伝熱部などの流動媒体を流動させるための流動化
ガスを流動層に導入する散気部が用いられる。そしてこ
の流動層に空気などの流動化ガスを供給する散気装置は
単に流動層内に流動化ガスを送入するだけのものであっ
た。
In conventional fluidized bed equipment, there is a fluidized bed boiler or heat recovery equipment (Japanese Patent Application No. 61-888) which some of the present inventors have already applied for.
0, Patent application 1986-16726, Patent application 61-5255
A diffuser section for introducing fluidizing gas into the fluidized bed to flow the fluidized medium, such as the heat transfer section 9), is used. The diffuser for supplying a fluidizing gas such as air to this fluidized bed simply introduces the fluidizing gas into the fluidized bed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、これら本発明者等が考案した流動層ボイラな
いし熱回収装置の熱回収部用散気装置、例えば散気管に
応用するときのように流動層内の熱回収部からの伝熱量
を減少させるなどの目的で流動化ガス量を減少ないし供
給を停止する場合に散気管が周囲の最高700〜950
℃もある砂温度により過熱され、散気管に変形や腐食を
もたらし散気管の寿命が短かく不安があった。
However, when applied to the air diffuser for the heat recovery section of a fluidized bed boiler or heat recovery device devised by the present inventors, for example, to an aeration pipe, the amount of heat transferred from the heat recovery section within the fluidized bed is reduced. When reducing the amount of fluidizing gas or stopping the supply for purposes such as
The sand was overheated by the temperature of the sand, which reached ℃, causing deformation and corrosion of the air diffuser pipes, leading to concerns that the lifespan of the air diffuser pipes would be shortened.

また、同一装置内に2つ以上の流動層を形成する場合に
一つの流動層の流動ガス吹込量を極端に下げると他の流
動層の流動の影ツを受けるなどして散気管内部に流動媒
体が浸入し、散気管を閉塞する危険性があった。このた
め、散気装置は浸入する流動媒体の対策を考慮した特殊
な構造とする必要があって極めて複雑で商値となり問題
があった。
In addition, when two or more fluidized beds are formed in the same device, if the amount of fluidized gas blown into one fluidized bed is extremely reduced, the flow will be affected by the flow of the other fluidized bed and the gas will flow inside the diffuser tube. There was a risk that media could enter and clog the diffuser pipe. For this reason, the diffuser needs to have a special structure that takes into account countermeasures against the infiltrating fluid medium, resulting in extremely complex and commercially expensive problems.

しかも、伝熱量を任意に変化させようとするなどの目的
で、この散気管から流動層へ供給する流動ガス量を調節
する場合、特に低い流動ガス量の領域で制御を行なおう
とすると散気管に供給するガス量は著しく小さくなる。
Moreover, when adjusting the amount of fluidized gas supplied from this diffuser tube to the fluidized bed for the purpose of arbitrarily changing the amount of heat transfer, especially in the region of low fluidized gas amount, the diffuser tube The amount of gas supplied to the area becomes significantly smaller.

従って通常の通過ガス圧損による流量調節では特性から
微少な流量の制御はむずかしく、流動ガス量を任意の値
に設定するのが困難であった。
Therefore, in the normal flow rate adjustment based on the pressure drop of the passing gas, it is difficult to control a minute flow rate due to the characteristics, and it is difficult to set the flowing gas amount to an arbitrary value.

更に、燃焼を伴なう流動層に応用する場合流動空気は、
同時に燃焼空気でもあることから流動層に供給する流動
空気量を必要な流動状態を得るために変動させると、そ
の分流動層全体に供給する燃7”走空気星が変動するこ
とになり空気過剰率が変動して燃焼に最適な景に保たれ
なくなる不都合があり問題であった。
Furthermore, when applied to a fluidized bed involving combustion, fluidized air
At the same time, it is also combustion air, so if the amount of fluidized air supplied to the fluidized bed is varied in order to obtain the necessary fluidization state, the amount of air traveling to the entire fluidized bed will vary accordingly, resulting in an excess of air. This was a problem because the combustion rate fluctuated, making it impossible to maintain the optimum view for combustion.

本発明は、このような問題点を解決し、流動層への流動
ガス吹込を散気装置に供給されたガスがその散気部を通
過してしまう量を増減できるので、流動層に流動化ガス
を供給する場合はもちろん供給しない場合のどんな運転
状態でも一定量以上のガスを散気装置内に流すことによ
り散気装置を冷却し過熱防止を適確にでき、維持管理を
容易にすることを可能とする流動N装置における散気装
置を堤供することを目的とするものである。
The present invention solves these problems and can increase or decrease the amount of gas supplied to the aeration device that passes through the aeration section when blowing fluidized gas into the fluidized bed. To facilitate maintenance by cooling the diffuser and accurately preventing overheating by allowing a certain amount of gas to flow into the diffuser in any operating state, whether gas is supplied or not. The purpose of this invention is to provide an air diffuser in a flow N device that enables the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記問題点を解決するための手段として、底
部より上方に向けて供給される流動化ガスにより流動媒
体を流動化して流動層を形成せしめる流動層装置におい
て、この流動層に流動化ガスを供給する流動化ガス吹込
用散気部を流動層内で流動ガスが通過可能の構造とし、
かつ該散気部への流動化ガス供給量調節機構と、流動化
ガス通過量調節機構とを設けたことを特徴とする流動層
装置における散気装置である。
As a means for solving the above-mentioned problems, the present invention provides a fluidized bed apparatus in which a fluidized bed is formed by fluidizing a fluidized medium using a fluidizing gas supplied upward from the bottom. The aeration part for blowing the fluidizing gas that supplies the gas has a structure that allows the fluidized gas to pass through within the fluidized bed,
The present invention provides an aeration device for a fluidized bed apparatus, characterized in that a mechanism for adjusting the amount of fluidizing gas supplied to the aeration section and a mechanism for adjusting the amount of fluidizing gas passing through the aeration section are provided.

〔実施例〕〔Example〕

本発明の実施例を可燃物燃焼と熱回収をも兼ねた流動層
ボイラに適用した例で図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which an embodiment of the present invention is applied to a fluidized bed boiler that also performs combustible combustion and heat recovery will be described with reference to the drawings.

第1図及び第2図示例において、炉21内底部には空気
などの流動化ガス23の分散板22が備えられ、この分
散板22は両側縁部が中央部より低く、炉21の中心線
に対してほぼ対称な山形断面状(屋根状)に形成されて
いる。そして、押込送風機27から送られる流動化ガス
23は、空気室24,25.26を経て分散板22から
上方に噴出せしめるようになっており、両側縁部の空気
室24.26から噴出する流動化ガス23の質量速度は
、炉21内の流動媒体の流動層を形成するのに十分な速
度とするが、中央部の空気室25から噴出する流動化ガ
ス23の質量速度は前者よりも小さく選ばれている。
In the examples shown in FIGS. 1 and 2, a distribution plate 22 for fluidizing gas 23 such as air is provided at the inner bottom of the furnace 21, and the distribution plate 22 has both side edges lower than the center, and the center line of the furnace 21. It is formed in a chevron-shaped cross section (roof-like) that is almost symmetrical with respect to the roof. The fluidizing gas 23 sent from the forced air blower 27 passes through the air chambers 24, 25.26 and is ejected upward from the dispersion plate 22. The mass velocity of the fluidizing gas 23 is set to be sufficient to form a fluidized bed of the fluidized medium in the furnace 21, but the mass velocity of the fluidizing gas 23 jetting out from the central air chamber 25 is smaller than the former. selected.

両側縁部の空気室24.26の真上には、流動化ガス2
3の上向き流路をさえぎり、流動化ガス23を炉21内
中央に向けて反射転向せしめる反射壁として板杖の反射
壁28のある仕切壁28゜が設けられ、この反射壁28
のある仕切壁28゜と炉壁間にボイラ室29が形成され
、運転中に流動媒体の一部が反射壁を越えてボイラ室2
9にふりそそぐような形で入り込むようになっている。
Directly above the air chambers 24 and 26 on both side edges, a fluidizing gas 2 is placed.
A partition wall 28° with a board-shaped reflecting wall 28 is provided as a reflecting wall that blocks the upward flow path of 3 and reflects and diverts the fluidizing gas 23 toward the center of the furnace 21.
A boiler room 29 is formed between a certain partition wall 28° and the furnace wall, and during operation, a part of the fluidized medium crosses the reflecting wall and enters the boiler room 2.
It's designed to fit into 9 in a similar way.

また、ボイラ室29の下部の炉底よりも高いレベルには
、送風a30から流動化ガス31を散気装置32から噴
出する、例えば分散パイプ等からなる散気装置32が設
けられ、反射壁28の散気装置32の近傍には開口部3
3が設けられ、ボイラ室29に入り込んだ流動媒体は、
運転状態によって連続的又は断続的に移動層又は流動層
を形成しつつ沈降する。
Further, at a level higher than the bottom of the furnace in the lower part of the boiler room 29, an aeration device 32 made of, for example, a dispersion pipe is provided, which blows out the fluidizing gas 31 from the air blower a30 from the aeration device 32. There is an opening 3 near the air diffuser 32.
3 is provided, and the fluid medium that has entered the boiler room 29 is
Depending on the operating conditions, it settles while forming a moving bed or a fluidized bed, either continuously or intermittently.

さらに、ボイラ室29内又はその壁面には、内部に受熱
流体34を通じた伝熱管35を配備し、流動媒体と熱交
換を行うようになっている。
Further, heat transfer tubes 35 are disposed inside the boiler chamber 29 or on the wall surface thereof, through which the heat receiving fluid 34 is passed, so as to perform heat exchange with the fluidized medium.

そして前記散気装置32に連結される流動化ガス31の
配管中ムこ第2図に示すように上流側流量調節弁V、及
び下流側流1羽節弁■2を設け、配管を炉壁に開口した
2次空気供給口36に連結しである。流量調節弁V、、
Vtと流量の関係はJ常第3図に示すようになるが、散
気管上流側流量調節弁■1の開度を一定とした場合には
第4図に示すような供給流量が得られ、特に少2Jt蛍
の時の1制御性がすぐれている。これは、熱伝達率と流
動空気量が第5図の如くであり、熱回収量制御上好まし
い。
As shown in FIG. 2, an upstream flow control valve V and a downstream flow control valve 2 are provided in the piping for the fluidizing gas 31 connected to the aeration device 32, and the piping is connected to the furnace wall. The secondary air supply port 36 is connected to the secondary air supply port 36 which is opened to the side. Flow control valve V,,
The relationship between Vt and flow rate is as shown in Figure 3, but if the opening degree of the flow rate control valve 1 on the upstream side of the diffuser pipe is kept constant, the supplied flow rate as shown in Figure 4 is obtained. In particular, the controllability when using a small 2Jt firefly is excellent. In this case, the heat transfer coefficient and the amount of flowing air are as shown in FIG. 5, which is preferable in terms of controlling the amount of heat recovery.

この場合前記流動化ガス吹込用散気装置32が、複数の
ガス吹込用ノズル321を有する散気管であって、該散
気部を通過した流動化ガス31を流動層より発生するガ
スに混入させる流動署内位置に備えられていて、散気部
に供給する流動化ガス量を検知する検出器37を持ちこ
のガス量を一定値以上の設定値と制御することができる
流動化ガス供給量調節機構として前記上流側流量調節弁
V1に関連させて構成しである。また上流側流量調節弁
■2には散気部流動ガス通過量調節機構となるように配
管中に設けた流動ガス通過量を検知する検出器38に関
連させて弁の開閉動作を制御するようにしである。
In this case, the fluidizing gas blowing diffuser 32 is a diffuser pipe having a plurality of gas blowing nozzles 321, and mixes the fluidizing gas 31 that has passed through the diffuser into the gas generated from the fluidized bed. A fluidizing gas supply amount adjustment device that is provided at a position within the flow station and has a detector 37 that detects the amount of fluidizing gas supplied to the aeration section, and is capable of controlling this gas amount to a set value above a certain value. As a mechanism, it is configured in relation to the upstream flow rate control valve V1. In addition, the upstream flow rate control valve 2 is designed to control the opening and closing operation of the valve in conjunction with a detector 38 that detects the amount of flowing gas that is installed in the piping so as to function as a mechanism for adjusting the amount of flowing gas passing through the aeration section. It's Nishide.

なお散気部の散気装置32が流動M熱回収装置の流動層
内に配備される場合には、前記散気部流動化ガス通過量
調節機構を制御して、回収熱量を調節することができる
ものである。
Note that when the diffuser 32 of the diffuser section is installed in the fluidized bed of the fluidized M heat recovery device, the amount of recovered heat can be adjusted by controlling the amount adjustment mechanism of the fluidized gas passing through the diffuser section. It is possible.

例えば回収熱量を検知する検知器(図示せず)を備え、
該検知器の検出値で回収熱量を一定とするようにまたは
対応するように前記散気部流動化ガス通過量調節機構を
制御することができる。
For example, it is equipped with a detector (not shown) that detects the amount of recovered heat,
The gas diffuser fluidizing gas passage amount adjusting mechanism can be controlled so as to keep the amount of recovered heat constant or to correspond to the detected value of the detector.

また、前記散気部が、流動層焼却炉の流動層内に配備さ
れるものである場合には、該焼却炉の燃焼排ガス中の酸
素濃度を検知する検出器(図示せず)と、該検出器の検
出値で酸素濃度を一定とするように前記流動化ガス供給
i調節機構制御の設定値を調節するのが有効であり、必
要に応じ前記流動化ガス通過N調節機構を制御したり併
用して制御するようにすることもできる。
In addition, when the aeration section is installed in the fluidized bed of a fluidized bed incinerator, a detector (not shown) for detecting the oxygen concentration in the combustion exhaust gas of the incinerator, and a detector (not shown) for detecting the oxygen concentration in the combustion exhaust gas of the incinerator It is effective to adjust the setting value of the fluidizing gas supply i adjustment mechanism control so that the oxygen concentration is constant according to the detected value of the detector, and the fluidizing gas passage N adjustment mechanism may be controlled as necessary. They can also be used together for control.

第6図例では前記散気部散気装置32が、ガス通路とし
て連通した往路31.と復路31□とを有する散気管群
からなり、即ち、内外二重管構造の散気管としその挿入
管が先端で往路311 と復路31gとつながり散気部
を往路と復路を有する挿入管群で、その各々の挿入管が
先端で往路と復路がつながり、その往路311、復路3
1□またはその両者に流動層内への流動化ガス吹込ノズ
ルを設け、往路31.は流動化ガス供給量調節機構のt
A節弁V、に連結し、復路31□は流動化ガス通過量調
節機構の調節弁V2に連結しである。そして、この散気
管の内管に空気を供給し外管と内管の間を通って排出さ
れる。挿入部を若干低く先端を窩<傾斜して浸入流動媒
体の排出を容易にしている。吹込ノズルは往路もしくは
復路望ましくは復路の管下側とし流動媒体浸入を防いで
いる。
In the example shown in FIG. 6, the air diffuser 32 has an outgoing path 31. which is connected as a gas passage. In other words, it is a diffuser tube having an inner and outer double pipe structure, and its insertion tube is connected to an outgoing path 311 and an incoming path 31g at its tip, and the aeration part is made up of an insertion tube group having an outgoing path and a returning path 31□. , the outgoing path and the incoming path are connected at the tip of each insertion tube, and the outgoing path 311 and the incoming path 3
1□ or both are provided with a fluidizing gas blowing nozzle into the fluidized bed, and the outgoing path 31. is t of the fluidizing gas supply amount adjustment mechanism.
The return path 31□ is connected to the control valve V2 of the fluidizing gas passage amount control mechanism. Then, air is supplied to the inner pipe of the aeration pipe and is discharged through between the outer pipe and the inner pipe. The insertion part is slightly lowered and the tip is sloped to facilitate the discharge of the infiltrating fluid medium. The blowing nozzle is preferably located at the bottom of the pipe on the outward or return route to prevent the fluid medium from entering.

第7図例のように散気管中に管板31.で二つに仕切り
往路31.と復路31□とに区画構成し前例と同様に往
路31.は流動化ガス供給量調節機構に連結し、また復
路31□は流動化ガス通過量調節機構に連結して備えた
ものでもよい。
As shown in the example in FIG. 7, a tube plate 31. Divided into two parts, outward route 31. and the return trip 31□, and the outbound trip 31. may be connected to the fluidizing gas supply amount adjusting mechanism, and the return path 31□ may be connected to the fluidizing gas passing amount adjusting mechanism.

さらに第8図例では散気部の散気装置32として前記流
動層を貫通させた散気管群で構成され、その各々の散気
管の下側には流動層内への流動化ガス吹込用ノズル32
.を設け、管の一端は流動化ガス供給量調節機構の調節
弁V1に連結し、かつ他端は流動化ガス通過量調節機構
の調節弁■2に連結したものである。
Furthermore, in the example shown in FIG. 8, the diffuser 32 of the diffuser section is composed of a group of diffuser tubes penetrating the fluidized bed, and a nozzle for blowing fluidizing gas into the fluidized bed is provided below each diffuser tube. 32
.. One end of the pipe is connected to the control valve V1 of the fluidizing gas supply amount regulating mechanism, and the other end is connected to the regulating valve V2 of the fluidizing gas passage amount regulating mechanism.

すなわち散気管上流側流ffi調節弁■1を排ガスの酸
素濃度検出器52の値から指示調節警報流量計53を介
して燃焼状態を適正となるように制御すると共に、散気
管下流側流量調節弁■2を伝熱部の回収熱量が所要の値
となるように流動層の温度検出器54とボイラの積算指
示器55の値から指示調節流量計56を介して制御する
ようにしである。これより都市ごみなどのように不均質
な燃料を使用する場合でも、使用蒸発量が変動して燃料
使用量を変化させる場合でも第5図の様に熱伝達率を大
幅に変化させて流動層温管理や燃焼管理を行いながら応
答の速い熱回収量制御を得ることができる。
That is, the diffuser pipe upstream flow ffi control valve (1) is controlled so that the combustion state is appropriate based on the value of the exhaust gas oxygen concentration detector 52 via the indication adjustment alarm flow meter 53, and the diffuser pipe downstream flow control valve (2) is controlled from the values of the temperature detector 54 of the fluidized bed and the integration indicator 55 of the boiler via the indicator adjustment flowmeter 56 so that the amount of heat recovered in the heat transfer section becomes the required value. From this, even when using a heterogeneous fuel such as municipal waste, or when changing the amount of fuel used due to variations in the amount of evaporation used, the heat transfer coefficient can be changed significantly as shown in Figure 5, and the fluidized bed can be used. It is possible to obtain heat recovery amount control with quick response while performing temperature management and combustion management.

なお前記熱回収部の流動媒体の流動化ガス吹込用の散気
部に応用する場合、例えば底部から上方に向けて吹き込
む酸素を成分に含む/X動化ガスにより流動媒体を流動
せしめる流動層を仕切壁によって上下部を連通させた熱
回収部と燃焼物を供給する燃焼部とに区分され、該燃焼
部の少なくとも前記仕切壁近傍における単位面積あたり
の流動化ガス吹込風量を前記熱回収部の単位面積あたり
の流動化ガス吹込風量よりも大きくとって、該燃焼部の
流動媒体を前記仕切壁を越えて前記熱回収部に流入せし
め、かつ前記仕切壁下部から前記熱回収部の流動媒体を
燃焼部に還流せしめられる流動層熱回収装置に有効に用
いられる。
When applied to the aeration section for blowing fluidizing gas into the fluidized medium of the heat recovery section, for example, a fluidized bed in which the fluidized medium is made to flow by the /X fluidizing gas containing oxygen as a component, which is blown upward from the bottom. The combustion section is divided into a heat recovery section whose upper and lower parts are communicated with each other by a partition wall, and a combustion section which supplies combustible materials. The fluidizing gas blowing air volume per unit area is set to be larger than that of the fluidizing gas blowing air volume, so that the fluidized medium of the combustion section flows into the heat recovery section over the partition wall, and the fluidized medium of the heat recovery section is introduced from the lower part of the partition wall. It is effectively used in fluidized bed heat recovery equipment where the heat is returned to the combustion section.

図中、57は炉21上部に設けられた原料投入口、59
は排ガス出口58付近に配設された気水ドラムで、ボイ
ラ室29内の伝熱管35と循環路を形成している。また
、39は炉21底部の分散板22の両側録部に接続され
た不燃物排出口、40は逆ねじ方向に配設されたスクリ
ュー41を有するスクリューコンベア、42はモータで
ある。
In the figure, 57 is a raw material inlet provided at the top of the furnace 21, and 59
is an air/water drum disposed near the exhaust gas outlet 58, which forms a circulation path with the heat transfer tube 35 in the boiler chamber 29. Further, 39 is an incombustible material discharge port connected to both sides of the distribution plate 22 at the bottom of the furnace 21, 40 is a screw conveyor having a screw 41 disposed in a reverse thread direction, and 42 is a motor.

しかして、第1図例で説明すると原料投入口57より炉
21内に投入された可燃物Fは、流動化ガス23により
流動媒体と共に流動しながら燃焼発熱する。この時、空
気室25の上方中央部付近の流動媒体は激しい上下動は
伴わず、弱い流動状態にある移動層を形成する。この移
動層の幅は、上方は狭いが裾の方は分散板22の傾斜の
作用も相俟ってやや広がっており、裾の一部は両側縁部
の空気室24.26の上方に達しているので、大きな質
量速度の流動化ガス23の噴射を受けて吹き上げられる
。すると、裾の一部の流動媒体が除かれるので、空気室
25の直上の層は自重で下降する。この層の上方には、
後述のように流動層からの流動媒体が補給されて堆積し
、これを繰り返して空気室25の上方の流動媒体は徐々
に下降する移動層を形成する。
To explain using the example shown in FIG. 1, the combustible material F introduced into the furnace 21 from the raw material input port 57 burns and generates heat while being fluidized together with the fluidizing medium by the fluidizing gas 23. At this time, the fluidized medium near the upper center of the air chamber 25 does not move violently up and down, and forms a moving layer in a weakly fluidized state. The width of this moving layer is narrow at the top, but becomes slightly wider at the bottom due to the effect of the slope of the dispersion plate 22, and part of the bottom reaches above the air chambers 24 and 26 on both side edges. Therefore, it is blown up by the injection of the fluidizing gas 23 at a large mass velocity. Then, part of the fluid medium at the bottom is removed, so the layer directly above the air chamber 25 descends under its own weight. Above this layer,
As will be described later, the fluidized medium from the fluidized bed is replenished and deposited, and by repeating this process, the fluidized medium above the air chamber 25 forms a moving bed that gradually descends.

空気室24.26上に移動した流動媒体は上方に吹き上
げられるが、反射壁28に当って反射転向して炉21の
中央に向きながらはね上げられ、中央部の移動層の頂部
に落下し、再び前述のように循環されると共に、流動媒
体の一部は反射壁28を越えてボイラ室29内にふりそ
そぐように入り込む。ボイラ室29内に入り込んだ流動
媒体は、散気装置32から吹き込まれる流動化ガス31
によって緩やかな流動が行われつつ徐々に下降する下降
移動層が形成され、伝熱管との熱交換が行われたのち、
開口部33から炉21内へ還流される。
The fluidized medium that has moved onto the air chambers 24 and 26 is blown upward, but it hits the reflective wall 28 and is reflected and flipped up toward the center of the furnace 21, falling onto the top of the moving bed in the center and being blown up again. While being circulated as described above, a portion of the fluid medium spills over the reflecting wall 28 into the boiler chamber 29. The fluidized medium that has entered the boiler room 29 is blown into the fluidized gas 31 from the diffuser 32.
A descending moving layer is formed that gradually descends with gentle flow, and after heat exchange with the heat transfer tube,
It is refluxed into the furnace 21 through the opening 33 .

このボイラ室29内で散気装置32から噴出される流動
化ガス31の質量速度は、0.5〜3 Gmf、好まし
くは0.5〜2G+!If(ここにIG麟「は流動化開
始質量速度である)に選ばれる。そしてこの散気装置3
2への流動ガス供給量は主として散気装置上流側の流量
調節弁v1により調節される。また散気装置32から流
動層に供給される流動化空気量は散気装置下流側の流量
調節弁v2により調節される。すなわちこの調節弁V2
の開放時には流動層の通過抵抗が数百−■^q以上と大
きいことから容易に下流側へと抜けてしまい熱回収部に
供給される流動ガス量はほぼゼロになる。この時該散気
装置の周囲に隣接する流動層がある場合これの流動化ガ
スにより大幅に減衰した形ではあるが変動する圧力を被
圧している。この周囲のガス圧と散気管内のガス圧が全
く同じであれば散気管から該流動層へは空気が供給され
ない。散気管内のガス圧が、周囲のガス圧より襄い場合
には散気管からガスが伝熱部に供給される。ガス散気管
下流の調節弁v2の開麿調節により、通過風量を調節す
れば散気装置内圧が周囲のガス圧より流動ガス吹込孔圧
…分高い状態で供給と通過の風量差が流動層へ供給され
ることになる。従つて、流動化ガスを最低でも微量供給
して散気管への流動媒体の浸入を防ぐ効果が容易に得ら
れる。散気管内に流動媒体が浸入した場合でも、その場
合ばi!li通風景が供給量it量に近い大きな風量で
あるため、通過ガスに同伴排出されるので推定して管路
をふさぐこともない。
The mass velocity of the fluidizing gas 31 ejected from the diffuser 32 in the boiler chamber 29 is 0.5 to 3 Gmf, preferably 0.5 to 2 G+! If (where IGrin' is the mass velocity at which fluidization starts) is selected. Then, this diffuser 3
The amount of fluidized gas supplied to the air diffuser 2 is mainly regulated by the flow rate control valve v1 on the upstream side of the diffuser. Further, the amount of fluidized air supplied from the air diffuser 32 to the fluidized bed is regulated by the flow rate control valve v2 on the downstream side of the air diffuser. In other words, this control valve V2
When the fluidized bed is opened, the passage resistance of the fluidized bed is as large as several hundred −■^q or more, so it easily escapes to the downstream side, and the amount of fluidized gas supplied to the heat recovery section becomes almost zero. At this time, if there is a fluidized bed adjacent to the diffuser, it is subjected to fluctuating pressure, albeit in a greatly attenuated form, due to the fluidizing gas of this bed. If the surrounding gas pressure and the gas pressure inside the aeration tube are exactly the same, air will not be supplied from the aeration tube to the fluidized bed. When the gas pressure within the diffuser tube is lower than the surrounding gas pressure, gas is supplied from the diffuser tube to the heat transfer section. If the passing air volume is adjusted by adjusting the opening of the control valve v2 downstream of the gas diffuser pipe, the air volume difference between the supply and passing air flows into the fluidized bed when the internal pressure of the diffuser is higher than the surrounding gas pressure by the fluidized gas blowing hole pressure. will be supplied. Therefore, the effect of preventing the fluidizing medium from entering the diffuser pipe can be easily obtained by supplying at least a small amount of fluidizing gas. Even if the fluid medium enters the air diffuser pipe, i! Since the amount of air flowing through li is large and close to the amount of supply it, it is discharged along with the passing gas, so there is no possibility of blocking the pipe line.

この様に流動層へ供給される流動化ガス量は任意調節で
き流動媒体の浸入でガス吹込が妨げられることもない、
なお、この散気管の上流側及び下t* @の流量調節弁
V、、V、で取り扱うガスの流量は全吹込夙量城にわた
り比較的大きいため澁動層部に供給する流動ガス量の調
節が容易である。
In this way, the amount of fluidizing gas supplied to the fluidized bed can be adjusted arbitrarily, and gas blowing is not hindered by the infiltration of the fluidizing medium.
Note that the flow rate of gas handled by the flow rate control valves V, , V on the upstream and lower sides of the diffuser pipe is relatively large over the entire blown volume, so the amount of flowing gas supplied to the tidal layer section must be adjusted. is easy.

すなわち散気管の上流側流量調節弁■1では伝熱部の流
動化ガス量変動領域の最大量を常時取り扱う。一方、散
気管の下流側の流量調節弁V、では、伝熱部の流動化ガ
ス量が小さく微妙な流量調節が必要な状態では取り扱う
流量が大きく、弁による調節が比較的容易である。この
調節弁で取り扱う流量が小さい状態、すなわち散気管か
ら伝熱部へ供給する流動化ガス量が大きい状態では、こ
の調節弁で調節する流量が流動化ガス量に及ぼす影響は
相対的に小さく結果として流動化ガス量のjFI if
fは容易である。
That is, the upstream flow rate control valve (1) of the air diffuser pipe always handles the maximum amount in the fluidizing gas amount fluctuation range of the heat transfer section. On the other hand, the flow rate control valve V on the downstream side of the diffuser pipe handles a large flow rate when the amount of fluidizing gas in the heat transfer section is small and delicate flow rate adjustment is required, and the valve can relatively easily adjust the flow rate. When the flow rate handled by this control valve is small, that is, when the amount of fluidizing gas supplied from the diffuser pipe to the heat transfer section is large, the flow rate adjusted by this control valve has a relatively small effect on the fluidizing gas amount. jFI of fluidizing gas amount as
f is easy.

また、燃焼を伴なう流動層にて2つ以上の隣接する流動
層の1つを形成するため散気装置の下流側調節弁の更に
下流を燃焼装置内に導入することにより、同伴した散気
装置への浸入流動媒体を流動層に戻すとともに装置内に
供給する全空気量を該流動層のみの吹込空気量の変動に
かかわらず一定とすることができる。すなわち、装置全
体に導入される全燃焼用空気は燃焼部流動化空気、伝熱
部流動化空気、2次空気であるのが一般的であり、この
燃焼用空気の合計空気量が燃焼状態に最適となるように
各空気量を調節するのが好ましく、通常燃焼に消費され
る酸素量に等しい空気量である理論空気量の1.1〜1
.4倍程度(空気過剰率)の燃焼物や燃焼装置に応じた
値に保つことが好ましい。2つ以上の隣接する流動層の
うちの1つに供給する流動化空気量を変化させた場合、
この散気装置の下流を炉内に導入して2次空気として利
用すれば全空気量は常に一定とすることができる。
In addition, in order to form one of two or more adjacent fluidized beds in a fluidized bed that accompanies combustion, the entrained diffused The fluidized medium that has entered the air device can be returned to the fluidized bed, and the total amount of air supplied into the device can be kept constant regardless of fluctuations in the amount of air blown into the fluidized bed alone. In other words, the total amount of combustion air introduced into the entire device is generally fluidized air in the combustion section, fluidized air in the heat transfer section, and secondary air, and the total amount of combustion air is It is preferable to adjust each air amount to be optimal, and the theoretical air amount is 1.1 to 1, which is the air amount equal to the amount of oxygen consumed in normal combustion.
.. It is preferable to maintain the value at a value corresponding to the combustible material and combustion device of about 4 times (excess air ratio). When changing the amount of fluidizing air supplied to one of two or more adjacent fluidized beds,
If the downstream air of this air diffuser is introduced into the furnace and used as secondary air, the total amount of air can be kept constant at all times.

なお、これは、散気装置で奪った熱を戻すことにもなり
無駄がない。さらにこの散気管の上流及び下流の流量調
節弁を熱回収装置を持つ流動層では蒸発量、燃焼を伴う
流動層では炉内酸素濃度などの測定値を用いて制御すれ
ばなおよい。すなわち二次空気及び伝熱部流動化空気の
合計空気量として最適な空気量を炉内酸素濃度、燃料供
給量等から算出し、散気管下流側流量調節弁を制御して
流量を調節し、安定した燃焼管理を行うことができる。
Note that this also returns the heat taken away by the air diffuser, so there is no waste. Furthermore, it is better to control the flow rate control valves upstream and downstream of the diffuser pipe using measured values such as the amount of evaporation in a fluidized bed having a heat recovery device, or the oxygen concentration in the furnace in a fluidized bed involving combustion. In other words, the optimum amount of air as the total amount of secondary air and heat transfer fluidizing air is calculated from the oxygen concentration in the furnace, the amount of fuel supplied, etc., and the flow rate is adjusted by controlling the flow rate control valve on the downstream side of the diffuser pipe. Stable combustion management can be performed.

また、蒸気圧力や流動媒体温度などからボイラの伝熱部
で回収すべき熱量を検知し、伝熱部流動化空気量を散気
管下流側流量調節弁を調節して熱回収量を増減すれば応
答性の高い蒸発量制御を行うことができる。これらの制
御により、任意のボイラ負荷で最適な燃焼状態を得るこ
とができる。
In addition, the amount of heat to be recovered in the heat transfer section of the boiler can be detected from the steam pressure, fluidized medium temperature, etc., and the amount of heat recovery can be increased or decreased by adjusting the flow rate control valve on the downstream side of the diffuser pipe. Evaporation amount control can be performed with high responsiveness. These controls make it possible to obtain optimal combustion conditions at any boiler load.

前記ボイラ室29の上にふりそそがれる流動媒体は、炉
21内燃焼室の特に両側縁部の質量速度の相対的に大き
な部分において、間断なく生成しては破裂している多数
のウェーク(一種の流動層内に生じる気泡)の破裂に伴
い、多量に流動層外まで吹き上げられる流動媒体が起源
であり、取得しようとする熱量に対し循環量が不足する
ことはない。なお、反射壁28を炉中心側に伸ばすこと
によりボイラ室29に入る流動媒体の量を多くすること
ができるし、空気室24.26の流動化ガス23の景を
多くすることによっても調整できる。
The fluidized medium poured onto the boiler chamber 29 is composed of a large number of wakes (a type of wake) that are continuously generated and burst in the parts of the combustion chamber in the furnace 21, especially in the parts of the combustion chamber on both sides where the mass velocity is relatively high. The origin of the heat generation is the fluidized medium that is blown up to the outside of the fluidized bed in large quantities due to the rupture of bubbles (bubbles that occur within the fluidized bed), so the amount of circulation is never insufficient for the amount of heat that is to be obtained. The amount of fluidized medium entering the boiler chamber 29 can be increased by extending the reflecting wall 28 toward the furnace center, and adjustment can also be made by increasing the visibility of the fluidized gas 23 in the air chambers 24 and 26. .

また、ボイラ室29内の伝熱は、直接の流動媒体との接
触による伝熱に加えて、流動媒体の流動により激しく不
規則に振動しながら上昇するガスを媒体とした伝熱があ
る。後者は、通常のガス−固体間の接触伝熱に対し、伝
熱の妨げとなる固体表面の境界層がほとんど存在せず、
また流動媒体同士が流動によってよく攪拌されるために
、静止砂等と異なり粉体の中での伝熱が無視できるよう
になり、極めて大きな伝熱特性を示す、したがって、流
動層ボイラは通常の燃焼ガスボイラに比較して10倍以
上の伝熱係数をとることができる。
Furthermore, heat transfer within the boiler chamber 29 involves not only heat transfer through direct contact with the fluid medium, but also heat transfer using gas as a medium, which rises while vibrating violently and irregularly due to the flow of the fluid medium. The latter has almost no boundary layer on the solid surface that impedes heat transfer compared to normal contact heat transfer between gas and solid.
In addition, since the fluidized media are well agitated by the flow, unlike static sand, heat transfer within the powder becomes negligible, and exhibits extremely high heat transfer characteristics. Therefore, the fluidized bed boiler It can have a heat transfer coefficient that is 10 times or more compared to a combustion gas boiler.

本来、不燃物は炉底部に沈み、不燃物排出口39に寄せ
られてスクリヱーコンベア40によって排出される訳で
あるが、空缶等の投影面積の割に重量の軽いものは、流
動媒体の動きによりあおられ、2it動層表面よりも高
く吹き上げられることがあるために、スクリーン(図示
せず)を設けることもできる。
Normally, non-combustible materials sink to the bottom of the furnace, are collected at the non-combustible material discharge port 39, and are discharged by the screen conveyor 40.However, if the weight is light relative to the projected area, such as empty cans, the fluidized medium A screen (not shown) can also be provided because the air may be blown up higher than the surface of the 2it dynamic layer due to the movement of the air.

また、ボイラ室29から不燃物排出D39への流動媒体
の短絡による排出を防止し、伝熱後の媒体を有効に燃焼
室である流01層へ戻すために、仕切り50を設けるこ
とも好ましく、この仕切り50は散気装U32を形成す
る散気管にバンドなどで取付けた板状のものでもよく、
あるいは第1図示例のように炉壁を利用して形成させる
こともできる。
It is also preferable to provide a partition 50 in order to prevent discharge of the fluidized medium from the boiler chamber 29 to the incombustible material discharge D39 due to a short circuit, and to effectively return the medium after heat transfer to the flow 01 layer which is the combustion chamber. This partition 50 may be a plate-shaped one attached with a band or the like to the diffuser pipe forming the diffuser U32,
Alternatively, it can also be formed using the furnace wall as in the first illustrated example.

さらに、反射壁28の上部を三角形状とすることにより
、断面係数を大きくして梁としての構造体とすることも
有利であり、取付構造が油層でボイラ室29の媒体重量
を受けることができる。
Furthermore, by making the upper part of the reflecting wall 28 triangular, it is advantageous to increase the section modulus and form a beam structure, and the mounting structure can receive the weight of the medium in the boiler room 29 with an oil layer. .

さらにまた、反射壁28、散気装置32、仕切り50な
どの一部又は全部を、耐熱、耐熱衝撃、耐摩耗、耐機械
的衝撃などの性質をもったセラミックス製にすることが
好ましく、セラミックスとしては各種のものを適宜選択
使用することができるが、炭化ケイ素は長期間交換不要
になるから有利である。
Furthermore, it is preferable that some or all of the reflective wall 28, the air diffuser 32, the partition 50, etc. be made of ceramic having properties such as heat resistance, thermal shock resistance, abrasion resistance, and mechanical shock resistance. Although various materials can be selected and used as appropriate, silicon carbide is advantageous because it does not require replacement for a long period of time.

〔発明の効果〕〔Effect of the invention〕

本発明は散気!j装置を通過型とし散気装置の上流側及
び下流側に流量調節弁を設け、流量を調節することによ
り流動層への流動ガス吹込を、散気装置に供給されたガ
スがその散気装置を通過してしまう量を増減して行うこ
ととなり、どんな運転状態でも一定量以上のガスを散気
装置内に流すことになり、散気装置の冷却効果が得られ
る。従って熱回収部に流動化ガスを供給しない時でも過
熱を防止でき散気装置を常時冷却し、かつ敗気装置内ヘ
の流動媒体浸入によるトラブルを防ぎ、供給空気量の調
節を容易にして、燃焼制御及び伝熱部流動空気量による
熱回収量の制御を容易とすることができ燃焼物の発熱量
、含水率、組成などの変動や燃焼物燃焼量変化に対応し
ながら、熱回収量や流動層温管理、空気過剰率を一定に
保つ燃焼管理等の制御を円滑に行うことを可能とし流動
層ボイラなどの流動層装置の様々の特徴を容易に引き出
し、その実用化を更におしすすめやすくなる効果がある
This invention diffuses air! j The device is a pass-through type, and flow control valves are provided on the upstream and downstream sides of the diffuser, and by adjusting the flow rate, the fluidized gas is blown into the fluidized bed, and the gas supplied to the diffuser is This is done by increasing or decreasing the amount of gas that passes through the air diffuser, so that a certain amount or more of gas flows into the diffuser regardless of the operating state, and the cooling effect of the diffuser can be obtained. Therefore, even when fluidizing gas is not supplied to the heat recovery section, overheating can be prevented, the diffuser can be constantly cooled, troubles caused by fluidized medium entering the degassing device can be prevented, and the amount of supplied air can be easily adjusted. The amount of heat recovered can be easily controlled by combustion control and the amount of flowing air in the heat transfer section.The amount of heat recovered and It makes it possible to smoothly control fluidized bed temperature management, combustion management to keep the excess air ratio constant, and easily brings out the various features of fluidized bed equipment such as fluidized bed boilers, and further promotes their practical use. It has the effect of making it easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体の縦断面図、第2
図は第1図A−A線矢視図、第3図は弁開度と流量との
関係線図、第4図は下流側調節弁■2とi!AIとの関
係線図、第5図は流動空気量と熱伝達率の関係線図、第
6図及び第7図はそれぞれ他の実施例の一部の縦断面図
、第8図は本発明を用いた制御の一実施例を示す系統説
明図である。 21・・・炉、22・・・分散板、23・・・流動化ガ
ス、24.25.26・・・空気室、27・・・押込送
風機、28・・・反射壁、29・・・ボイラ室、30・
・・送風機、31・・・流動化ガス、32・・・散気装
置、32、・・・ノズル、33・・・開口部、34・・
・受熱流体、35・・・伝熱管、36・・・2次空気供
給口、37.38・・・検出器、39・・・不燃物排出
口、52・・・濃度検出器、53.56・・・流量針、
54・・・検出器、55・・・積算指示器、57・・・
原料投入口、59・・・気水ドラム、58・・・排ガス
出口、V、、V、・・・流量調節弁。
Fig. 1 is an overall vertical cross-sectional view showing one embodiment of the present invention;
The figures are a view taken along the line A-A in Fig. 1, Fig. 3 is a diagram showing the relationship between valve opening and flow rate, and Fig. 4 is a diagram showing the relationship between the downstream control valve ■2 and i! Figure 5 is a relationship diagram with AI, Figure 5 is a relationship diagram between flowing air amount and heat transfer coefficient, Figures 6 and 7 are longitudinal sectional views of parts of other embodiments, and Figure 8 is a diagram of the present invention. It is a system explanatory diagram showing an example of control using. 21... Furnace, 22... Dispersion plate, 23... Fluidizing gas, 24.25.26... Air chamber, 27... Forced blower, 28... Reflecting wall, 29... Boiler room, 30・
...Blower, 31...Fluidizing gas, 32...Diffuser, 32,...Nozzle, 33...Opening, 34...
・Heat receiving fluid, 35...Heat transfer tube, 36...Secondary air supply port, 37.38...Detector, 39...Incombustible material discharge port, 52...Concentration detector, 53.56 ...Flow rate needle,
54...Detector, 55...Integration indicator, 57...
Raw material input port, 59...Air/water drum, 58...Exhaust gas outlet, V,,V,...Flow rate control valve.

Claims (1)

【特許請求の範囲】 1、底部より上方に向けて供給される流動化ガスにより
流動媒体を流動化して流動層を形成せしめる流動層装置
において、この流動層に流動化ガスを供給する流動化ガ
ス吹込用散気部を流動層内で該流動化ガスが通過可能の
構造とし、かつ該散気部への流動化ガス供給量調節機構
と流動化ガス通過量調節機構とを設けたことを特徴とす
る流動層装置における散気装置。 2、前記流動化ガス吹込用散気部が、複数のガス吹込用
ノズルを有する散気管であって、該散気部を通過した流
動化ガスを流動層より発生するガスに混入させる流動層
内位置に備えられている特許請求の範囲第1項記載の散
気装置。 3、前記散気部が、散気部に供給する流動化ガス量を検
知する検知器を持ちこのガス量を一定値以上の設定値と
制御することができる流動化ガス供給量調節機構を備え
ている特許請求の範囲第1項又は第2項記載の散気装置
。 4、前記散気部が、流動層熱回収装置の流動層内に配備
されるものであって、前記散気部流動化ガス通過量調節
機構を制御して回収熱量を調節するものである特許請求
の範囲第1〜3項のいずれか一つの項記載の散気装置。 5、前記散気部が、流動層熱回収装置の流動層内に配備
されるものであって、回収熱量を検知する検知器を備え
、該検知器の検出値で回収熱量を一定とするように前記
散気部流動化ガス通過量調節機構を制御するものである
特許請求の範囲第1〜4項のいずれか一つの項記載の散
気装置。 6、前記散気部が、流動層焼却炉の流動層内に配備され
るものであって、該焼却炉の燃焼排ガス中の酸素濃度を
検知する検知器と、該検知器の検出値で酸素濃度を一定
とするように前記流動化ガス供給量調節機構制御の設定
値を調節するものである特許請求の範囲第1〜4項のい
ずれか一つの項記載の散気装置。 7、前記散気部が、ガス通路として連通した往路と復路
とを有する散気管群からなり、その往路、復路のいずれ
かに吹込用ノズルを設けると共に、往路は流動化ガス供
給量調節機構に連結し、また復路は流動化ガス通過量調
節機構に連結して備えたものである特許請求の範囲第1
〜6項のいずれか一つの項記載の散気装置。 8、前記散気部が、前記流動層を貫通させた散気管群で
構成され、その各々の散気管の下側には流動層内への流
動化ガス吹込用ノズルを設け、管の一端は流動化ガス供
給量調節機構に連結し、かつ他端は流動化ガス通過量調
節機構に連結したものである特許請求の範囲第1〜6項
のいずれか一つの項記載の散気装置。 9、前記散気部が、前記流動層を仕切壁によって上下部
を連通させた熱回収部と燃焼物を供給する燃焼部とに区
分され、該燃焼部の少なくとも前記仕切壁近傍における
単位面積あたりの流動化ガス吹込風量を前記熱回収部の
単位面積あたりの流動化ガス吹込風量よりも大きくとっ
て、該燃焼部の流動媒体を前記仕切壁を越えて前記熱回
収部に流入せしめ、かつ前記仕切壁下部から前記熱回収
部の流動媒体を燃焼部に還流せしめられる流動層の前記
熱回収部に備えられるものである特許請求の範囲第1〜
8項のいずれか一つの項記載の散気装置。
[Claims] 1. In a fluidized bed device that fluidizes a fluidized medium to form a fluidized bed using fluidized gas supplied upward from the bottom, a fluidized gas that supplies the fluidized gas to the fluidized bed. The blowing diffuser has a structure that allows the fluidizing gas to pass through within the fluidized bed, and is provided with a mechanism for adjusting the amount of fluidizing gas supplied to the diffuser and a mechanism for adjusting the amount of fluidizing gas passing through. Aeration device for fluidized bed equipment. 2. The fluidizing gas blowing diffuser is a diffuser pipe having a plurality of gas blowing nozzles, and the fluidizing gas that has passed through the diffuser is mixed into the gas generated from the fluidized bed. The air diffuser according to claim 1, which is provided at a location. 3. The air diffuser has a detector that detects the amount of fluidizing gas supplied to the air diffuser, and is equipped with a fluidizing gas supply amount adjustment mechanism that can control the amount of gas to a set value above a certain value. An air diffuser according to claim 1 or 2. 4. A patent in which the aeration section is arranged in a fluidized bed of a fluidized bed heat recovery device, and the amount of recovered heat is adjusted by controlling a mechanism for adjusting the amount of fluidized gas passing through the aeration section. An air diffuser according to any one of claims 1 to 3. 5. The air diffuser is disposed within the fluidized bed of the fluidized bed heat recovery device, and is equipped with a detector for detecting the amount of recovered heat, and is configured to keep the amount of recovered heat constant based on the detected value of the detector. The air diffuser according to any one of claims 1 to 4, wherein the air diffuser fluidizing gas passage amount adjusting mechanism is controlled to control the air diffuser fluidizing gas passage amount adjusting mechanism. 6. The aeration section is installed in the fluidized bed of the fluidized bed incinerator, and includes a detector that detects the oxygen concentration in the combustion exhaust gas of the incinerator, and a detector that detects the oxygen concentration based on the detected value of the detector. The air diffuser according to any one of claims 1 to 4, wherein a setting value of the fluidizing gas supply amount adjustment mechanism control is adjusted so that the concentration is constant. 7. The aeration section is composed of a group of aeration tubes having an outgoing path and an incoming path communicating as a gas passage, and a blowing nozzle is provided on either the outgoing path or the incoming path, and the outgoing path is connected to a fluidizing gas supply amount adjustment mechanism. claim 1, wherein the return path is connected to a fluidizing gas passage amount adjusting mechanism.
The air diffuser according to any one of items 1 to 6. 8. The aeration section is composed of a group of aeration tubes penetrating the fluidized bed, each of which is provided with a nozzle for blowing fluidizing gas into the fluidized bed below the aeration tube, and one end of the tube is provided with a nozzle for blowing fluidizing gas into the fluidized bed. 7. The air diffuser according to claim 1, wherein the diffuser is connected to a fluidizing gas supply amount adjusting mechanism, and the other end is connected to a fluidizing gas passing amount adjusting mechanism. 9. The aeration section is divided into a heat recovery section in which the upper and lower parts of the fluidized bed are communicated by a partition wall, and a combustion section that supplies combustible material, and the combustion section has at least a per unit area in the vicinity of the partition wall. The fluidizing gas blowing air volume is set to be larger than the fluidizing gas blowing air volume per unit area of the heat recovery section to cause the fluidized medium of the combustion section to flow into the heat recovery section beyond the partition wall, and the Claims 1 to 3 are provided in the heat recovery section of a fluidized bed in which the fluidized medium of the heat recovery section is returned to the combustion section from the lower part of the partition wall.
An air diffuser according to any one of Item 8.
JP17150086A 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment Granted JPS6329108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17150086A JPS6329108A (en) 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17150086A JPS6329108A (en) 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment

Publications (2)

Publication Number Publication Date
JPS6329108A true JPS6329108A (en) 1988-02-06
JPH0573965B2 JPH0573965B2 (en) 1993-10-15

Family

ID=15924251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17150086A Granted JPS6329108A (en) 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment

Country Status (1)

Country Link
JP (1) JPS6329108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103888A (en) * 1990-12-28 1992-04-14 Tachikawa Corporation Blind slats lifting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103888A (en) * 1990-12-28 1992-04-14 Tachikawa Corporation Blind slats lifting device

Also Published As

Publication number Publication date
JPH0573965B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
RU2300415C2 (en) Method and the device for the heat recovery in the reactor with the fluidized layer
KR20040035880A (en) Ash melting type u-firing combustion boiler and method of operating the boiler
US4614167A (en) Combustion chamber having beds located one above the other and a method of controlling it
KR950007013B1 (en) Internal circulation type fluidized bed boiler & method of controlling same
KR20030019364A (en) Waste incinerator and method of operating the incinerator
JPS6329108A (en) Diffuser in fluidized bed equipment
JP3913229B2 (en) Circulating fluid furnace
EP0028458A2 (en) Fluidised-bed boilers
CN101311626B (en) Integral fluid bed ash cooler
EP2933557B1 (en) Swirling type fluidized bed furnace
JP2901752B2 (en) Fluidized bed combustion device
EP1062030B1 (en) Method and apparatus for controlling heat transfer from solid particles in a fluidized bed
JP2775586B2 (en) Method and apparatus for promoting mixing of fluid substances
JPS6131761B2 (en)
JP2891996B1 (en) Fluidized bed partitioning method and apparatus
JP2989783B2 (en) Heat recovery device from fluidized bed
JPH0639226Y2 (en) Fluidized bed equipment
JPS62272089A (en) Method and apparatus for retrieving heat from fluidized bed
JPH0567875B2 (en)
JP2528711B2 (en) Double bed fluidized bed boiler
JPH0297805A (en) Fluidized-bed boiler
JPH02290403A (en) Fluidized bed heat recovery device and diffusion device thereof
JPH0756362B2 (en) Steam temperature raising device for fluidized bed boiler
JP3310814B2 (en) Melt combustion equipment
JPS63131916A (en) Fluidized bed type heat reaction equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term