JPH0573965B2 - - Google Patents

Info

Publication number
JPH0573965B2
JPH0573965B2 JP17150086A JP17150086A JPH0573965B2 JP H0573965 B2 JPH0573965 B2 JP H0573965B2 JP 17150086 A JP17150086 A JP 17150086A JP 17150086 A JP17150086 A JP 17150086A JP H0573965 B2 JPH0573965 B2 JP H0573965B2
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
gas
fluidizing gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17150086A
Other languages
Japanese (ja)
Other versions
JPS6329108A (en
Inventor
Naoki Inumaru
Tsutomu Higo
Takahiro Ooshita
Shigeru Kosugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP17150086A priority Critical patent/JPS6329108A/en
Publication of JPS6329108A publication Critical patent/JPS6329108A/en
Publication of JPH0573965B2 publication Critical patent/JPH0573965B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、都市ごみ、産業廃棄物、石炭その他
の高い発熱量を有する可燃物を燃焼処分する流動
層を持つた、焼却炉或いは可燃物を燃焼すると同
時に、熱エネルギーを回収する目的を持つた流動
層を用いたボイラなどの装置に用いられる散気装
置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an incinerator or a combustible material that has a fluidized bed for burning and disposing of municipal waste, industrial waste, coal, and other combustible materials with a high calorific value. This relates to an air diffuser used in devices such as boilers that use a fluidized bed to burn and recover thermal energy at the same time.

〔従来の技術〕[Conventional technology]

従来の流動層装置では、本発明者等の一部が既
に出願した流動層ボイラないし熱回収装置(特願
昭61−8880、特願昭61−16726、特願昭61−
52559)の伝熱部などの流動媒体を流動させるた
めの流動化ガスを流動層に導入する散気部が用い
られる。そしてこの流動層に空気などの流動化ガ
スを供給する散気装置は単に流動層内に流動化ガ
スを送入するだけのものであつた。
Conventional fluidized bed devices include fluidized bed boilers or heat recovery devices (Japanese Patent Application No. 61-8880, Japanese Patent Application No. 16726, No. 61-1982, Japanese Patent Application No. 61-1672), which some of the present inventors have already applied for.
52559), a heat transfer section is used to introduce a fluidizing gas into the fluidized bed to flow the fluidized medium. The diffuser for supplying a fluidizing gas such as air to this fluidized bed was simply a device for feeding the fluidizing gas into the fluidized bed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、これら本発明者等が考案した流動層
ボイラないし熱回収装置の熱回収用散気装置、例
えば散気管に応用するときのように流動層内の熱
回収部からの伝熱量を減少させるなどの目的で流
動化ガス量を減少ないし供給を停止する場合に散
気管が周囲の最高700〜950℃もある砂温度により
過熱され、散気管に変形や腐食をもたらし散気管
の寿命が短かく不安があつた。
However, these heat recovery diffusers for fluidized bed boilers or heat recovery devices devised by the present inventors, for example, when applied to a diffuser pipe, reduce the amount of heat transferred from the heat recovery section in the fluidized bed. When reducing the amount of fluidizing gas or stopping the supply for the purpose of this, the diffuser pipe is overheated by the surrounding sand temperature, which can reach a maximum of 700 to 950 degrees Celsius, causing deformation and corrosion of the diffuser pipe, resulting in concerns about the short life of the diffuser pipe. It was hot.

また、同一装置内に2つ以上の流動層を形成す
る場合に一つの流動層の流動ガス吹込量を極端に
下げると他の流動層の流動の影響を受けるなどし
て散気管内部に流動媒体が浸入し、散気管を閉塞
する危険性があつた。このため、散気装置は浸入
する流動媒体の対策を考慮した特殊な構造とする
必要があつて極めて複雑で高価となり問題があつ
た。
In addition, when two or more fluidized beds are formed in the same equipment, if the amount of fluidized gas blown into one fluidized bed is extremely reduced, the fluidized gas may be affected by the flow of the other fluidized bed, causing the fluidized gas to flow inside the diffuser tube. There was a risk that the air could enter and clog the air diffuser pipes. For this reason, the diffuser needs to have a special structure that takes countermeasures against the infiltrating fluid medium, making it extremely complicated and expensive.

しかも、伝熱量の任意に変化させようとするな
どの目的で、この散気管から流動層へ供給する流
動ガス量を調節する場合、特に低い流動ガス量の
領域で制御を行なおうとすると散気管に供給する
ガス量は著しく小さくなる。従つて通常の通過ガ
ス圧損による流動調節では特性から微少な流量の
制御はむずかしく、流動ガス量を任意の値に設定
するのが困難であつた。
Moreover, when adjusting the amount of fluidized gas supplied from this diffuser tube to the fluidized bed for the purpose of arbitrarily changing the amount of heat transfer, especially in a region where the amount of fluidized gas is low, the diffuser tube The amount of gas supplied to the area becomes significantly smaller. Therefore, in the normal flow adjustment based on the pressure drop of the passing gas, it is difficult to control a minute flow rate due to its characteristics, and it is difficult to set the flowing gas amount to an arbitrary value.

更に、燃焼を伴なう流動層に応用する場合流動
空気は、同時に燃焼空気であることから流動層に
供給する流動空気量を必要な流動状態を得るため
に変動させると、その分流動層全体に供給する燃
焼空気量が変動することになり空気過剰率が変動
して燃焼に最適な量に保たれなくなる不都合があ
り問題であつた。
Furthermore, when applied to a fluidized bed that involves combustion, the fluidized air is also combustion air, so if the amount of fluidized air supplied to the fluidized bed is varied to obtain the required fluidization state, the entire fluidized bed will be affected accordingly. This has been a problem because the amount of combustion air supplied to the combustion chamber fluctuates, causing the excess air ratio to fluctuate and making it impossible to maintain the optimum amount for combustion.

本発明は、このような問題点を解決し、流動層
への流動ガス吹込を散気装置に供給されたガスが
その散気部を通過してしまう量を増減できるの
で、流動層に流動化ガスを供給する場合はもちろ
ん供給しない場合のどんな運転状態でも一定量以
上のガスを散気装置内に流すことにより散気装置
を冷却し過熱防止を適確にでき、維持管理を容易
にすることを可能とする流動層装置における散気
装置を提供することを目的とするものである。
The present invention solves these problems and can increase or decrease the amount of gas supplied to the aeration device that passes through the aeration section when blowing fluidized gas into the fluidized bed. To facilitate maintenance by cooling the diffuser and accurately preventing overheating by allowing a certain amount of gas to flow into the diffuser in any operating state, whether gas is supplied or not. The object of the present invention is to provide an air diffuser in a fluidized bed apparatus that enables the following.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前記問題点を解決するための手段と
して、底部より上方に向けて供給される流動化ガ
スにより流動媒体を流動化して流動層を形成せし
める流動層装置において、この流動層に流動化ガ
スを供給する流動化ガス吹込用散気部を流動層内
で流動ガスが通過可能の構造とし、かつ該散気部
への流動化ガス供給量調節機構と、流動化ガス通
過量調節機構とを設けたことを特徴とする流動層
装置における散気装置である。
As a means for solving the above-mentioned problems, the present invention provides a fluidized bed apparatus in which a fluidized bed is formed by fluidizing a fluidized medium using a fluidizing gas supplied upward from the bottom. A fluidizing gas blowing diffuser for supplying gas has a structure that allows the fluidized gas to pass within the fluidized bed, and a fluidizing gas supply amount adjustment mechanism to the fluidizing gas diffuser and a fluidizing gas passing amount adjusting mechanism. This is an aeration device in a fluidized bed apparatus characterized by being provided with.

〔実施例〕〔Example〕

本発明の実施例を可燃物燃焼と熱回収をも兼ね
た流動層ボイラに適用した例で図面を参照しなが
ら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which an embodiment of the present invention is applied to a fluidized bed boiler that also performs combustible combustion and heat recovery will be described with reference to the drawings.

第1図及び第2図示例において、炉21内底部
には空気などの流動化ガス23の分散板22が備
えられ、この分散板22は両側縁部が中央部より
低く、炉21の中心線に対してほぼ対称な山形断
面上(屋根状)に形成されている。そして、押込
送風機27から送られる流動化ガス23は、空気
室24,25,26を経て分散板22から上方に
噴出せしめるようになつており、両側縁部の空気
室24,26から噴出する流動化ガス23の質量
速度は、炉21内の流動媒体の流動層を形成する
のに十分な速度とするが、中央部の空気室25か
ら噴出する流動化ガス23の質量速度は前者より
も小さく選ばれている。
In the examples shown in FIGS. 1 and 2, a distribution plate 22 for fluidizing gas 23 such as air is provided at the inner bottom of the furnace 21, and the distribution plate 22 has both side edges lower than the center, and the center line of the furnace 21. It is formed on an almost symmetrical chevron-shaped cross section (roof-like). The fluidizing gas 23 sent from the forced air blower 27 passes through air chambers 24, 25, and 26 and is ejected upward from the dispersion plate 22. The mass velocity of the fluidizing gas 23 is set to be sufficient to form a fluidized bed of the fluidized medium in the furnace 21, but the mass velocity of the fluidizing gas 23 jetting out from the central air chamber 25 is smaller than the former. selected.

両側縁部の空気室24,26の真上には、流動
化ガス23の上向き流路をさえぎり、流動化ガス
23を炉21内中央に向けて反射転向せしめる反
射壁として板状の反射壁28のある仕切壁281
が設けられ、この反射壁28のある仕切壁281
と炉壁間にボイラ室29が形成され、運転中に流
動媒体の一部が反射壁を越えてボイラ室29にふ
りそそぐような形で入り込むようになつている。
また、ボイラ室29の下部の炉底よりも高いレベ
ルには、送風機30から流動化ガス31を散気装
置32から噴出する、例えば分散パイプ等からな
る散気装置32が設けられ、反射壁28の散気装
置32の近傍には開口部33が設けられ、ボイラ
室29に入り込んだ流動媒体は、運転状態によつ
て連続的又は断続的に移動層又は流動層を形成し
つつ沈降する。
Immediately above the air chambers 24 and 26 on both side edges, a plate-shaped reflecting wall 28 is provided as a reflecting wall that blocks the upward flow path of the fluidizing gas 23 and causes the fluidizing gas 23 to reflect and turn toward the center of the furnace 21. Partition wall 28 1
A partition wall 28 1 with this reflective wall 28 is provided.
A boiler chamber 29 is formed between the furnace wall and the furnace wall, and a portion of the fluid medium flows over the reflecting wall and flows into the boiler chamber 29 during operation.
Further, at a level higher than the bottom of the furnace in the lower part of the boiler room 29, there is provided an aeration device 32 made of, for example, a dispersion pipe, which blows out fluidizing gas 31 from a blower 30. An opening 33 is provided near the air diffuser 32, and the fluidized medium that has entered the boiler room 29 settles while forming a moving bed or a fluidized bed, either continuously or intermittently depending on the operating state.

さらに、ボイラ室29内又はその壁面には、内
部に受熱流体34を通じた伝熱管35を配備し、
流動媒体と熱交換を行うようになつている。
Furthermore, a heat transfer tube 35 through which a heat receiving fluid 34 is passed is arranged inside the boiler room 29 or on its wall,
It is designed to exchange heat with a fluidized medium.

そして前記散気装置32に連結される流動化ガ
ス31の配管中に第2図に示すように上流側流量
調節弁V1及び下流側流量調節弁V2を設け、配管
を炉壁に開口した2次空気供給口36に連結して
ある。流量調節弁V1,V2と流量の関係は通常第
3図に示すようになるが、散気管上流側流量調節
弁V1の開度を一定とした場合には第4図に示す
ような供給流量が得られ、特に少流量の時の制御
性がすぐれている。これは、熱伝達率と流動空気
量が第5図の如くであり、熱回収量制御上好まし
い。
As shown in FIG. 2, an upstream flow rate control valve V 1 and a downstream flow rate control valve V 2 were provided in the pipe for the fluidizing gas 31 connected to the aeration device 32, and the pipe opened into the furnace wall. It is connected to the secondary air supply port 36. The relationship between the flow rate control valves V 1 and V 2 and the flow rate is normally as shown in Fig. 3, but if the opening degree of the flow rate control valve V 1 on the upstream side of the diffuser pipe is constant, the relationship between the flow rate control valves V 1 and V 2 and the flow rate is as shown in Fig. 4. The supply flow rate can be obtained, and the controllability is excellent especially when the flow rate is small. In this case, the heat transfer coefficient and the amount of flowing air are as shown in FIG. 5, which is preferable in terms of controlling the amount of heat recovery.

この場合前記流動化ガス吹込用散気装置32
が、複数のガス吹込用ノズル321を有する散気
管であつて、該散気管を通過した流動化ガス31
を流動層より発生するガスに混入させるための開
口部33が、流動層内位置に備えられていて、散
気部に供給する流動化ガス量を検知する検出気3
7を持ちこのガス量を一定値以上の設定値と制御
することができる流動化ガス供給量調節機構とし
て前記上流側流量調節弁V1に関連させて構成し
てある。また下流側流量調節弁V2には散気部流
動ガス通過量調節機構となるように配管中に設け
た流動ガス通過量を検知する検出器38に関連さ
せて弁の開閉動作を制御するようにしてある。
In this case, the fluidizing gas blowing diffuser 32
is an aeration pipe having a plurality of gas blowing nozzles 32 1 , and the fluidizing gas 31 that has passed through the aeration pipe is
An opening 33 for mixing gas generated from the fluidized bed is provided at a position within the fluidized bed, and a detection gas 3 for detecting the amount of fluidized gas supplied to the aeration section is provided.
7, and is constructed in association with the upstream flow rate control valve V1 as a fluidizing gas supply amount adjusting mechanism capable of controlling the gas amount to a set value above a certain value. Further, the downstream flow rate control valve V 2 is configured to control the opening and closing operation of the valve in conjunction with a detector 38 that detects the amount of flowing gas that is provided in the piping so as to function as a mechanism for adjusting the amount of flowing gas passing through the aeration section. It is set as.

なお散気部の散気装置32が流動層熱回収装置
の流動層内に配備される場合には、前記散気部流
動化ガス通過量調節機構を制御して、回収熱量を
調節することができるものである。
Note that when the diffuser 32 of the diffuser section is installed in the fluidized bed of the fluidized bed heat recovery device, the amount of recovered heat can be adjusted by controlling the amount adjustment mechanism of the fluidized gas passing through the diffuser section. It is possible.

例えば回収熱量を検知する検知器(図示せず)
を備え、該検知器の検出値で回収熱量を一定とす
るようにまたは対応するように前記散気部流動化
ガス通過量調節機構を制御することができる。
For example, a detector (not shown) that detects the amount of recovered heat
The gas diffuser fluidizing gas passage amount adjusting mechanism can be controlled so as to keep the amount of recovered heat constant or to correspond to the detected value of the detector.

また、前記散気部が、流動層焼却炉の流動層内
に配備されるものである場合には、該焼却炉の燃
焼排ガス中の酸素濃度を検知する検出器(図示せ
ず)と、該検出器の検出器の検出値で酸素濃度を
一定とするように前記流動化ガス供給量調節機構
制御の設定値を調節するのが有効であり、必要に
応じ前記流動化ガス通過量調節機構を制御したり
併用して制御するようにすることもできる。
In addition, when the aeration section is installed in the fluidized bed of a fluidized bed incinerator, a detector (not shown) for detecting the oxygen concentration in the combustion exhaust gas of the incinerator, and a detector (not shown) for detecting the oxygen concentration in the combustion exhaust gas of the incinerator It is effective to adjust the set value of the fluidizing gas supply amount adjustment mechanism control so that the oxygen concentration is constant according to the detected value of the detector, and the fluidization gas passing amount adjustment mechanism may be adjusted as necessary. It is also possible to control or use them together.

第6図例では前記散気部散気装置32が、ガス
通路として連通した往路311と復路312とを有
する散気管群からなり、即ち、内外二重管構造の
散気管としその挿入管が先端で往路311と復路
312とつながり散気部を往路と復路を有する挿
入管群で、その各々の挿入管が先端で往路と復路
がつながり、その往路311、復路312またはそ
の両者に流動層内への流動化ガス吹込ノズル32
を設け、往路311は流動化ガス供給量調節機構
の調節弁V1に連結し、復路312は流動化ガス通
過量調節機構の調節弁V2に連結してある。そし
て、この散気管の内管に空気を供給し外管と内管
の間を通つて排出される。挿入部を若干低く先端
を高く傾斜して浸入流動媒体の排出を容易にして
いる。吹込ノズルは往路もしくは復路望ましくは
復路の管下側とし流動媒体浸入を防いでいる。
In the example shown in FIG. 6, the diffuser unit 32 is composed of a group of diffuser tubes having an outgoing path 31 1 and a returning path 31 2 communicating as gas passages, that is, a diffuser tube with a double inner and outer pipe structure and an insertion tube thereof. is an insertion tube group having an outgoing path and a return path, which are connected to the outgoing path 31 1 and the incoming path 31 2 at the tip, and the aeration section is connected to the outgoing path and the incoming path at the tip of each insertion tube, and the outgoing path 31 1 , the incoming path 31 2 or the Both have fluidizing gas blowing nozzles 32 into the fluidized bed.
1 , the outgoing path 31 1 is connected to the regulating valve V 1 of the fluidizing gas supply amount regulating mechanism, and the returning path 31 2 is connected to the regulating valve V 2 of the fluidizing gas passing amount regulating mechanism. Then, air is supplied to the inner pipe of the diffuser pipe and is discharged through between the outer pipe and the inner pipe. The insertion part is slightly lowered and the tip is inclined higher to facilitate the discharge of the infiltrating fluid medium. The blowing nozzle is preferably located at the bottom of the pipe on the outward or return route to prevent the fluid medium from entering.

第7図例のように散気管中に管板313で二つ
に仕切り往路311と復路312とに区画構成し前
例と同様に往路311は流動化ガス供給量調節機
構に連結し、また復路312は流動化ガス通過量
調節機構に連結して備えたものでもよい。
As shown in the example in Fig. 7, the diffuser pipe is divided into two parts by a tube plate 313 and divided into an outgoing path 311 and a returning path 312 , and the outgoing path 311 is connected to the fluidizing gas supply amount adjustment mechanism as in the previous example. , and the return path 31 2 may be connected to a fluidizing gas passage amount adjusting mechanism.

さらに第8図例では散気部の散気装置32とし
て前記流動層を貫通させた散気管群で構成され、
その各々の散気管の下側には流動層内への流動化
ガス吹込用ノズル321を設け、管の一端は流動
化ガス供給量調節機構の調節弁V1に連結し、か
つ他端は流動化ガス通過量調節機構の調節弁V2
に連結したものである。
Furthermore, in the example shown in FIG. 8, the aeration device 32 of the aeration section is composed of a group of aeration tubes penetrating the fluidized bed,
A nozzle 32 1 for blowing fluidizing gas into the fluidized bed is provided at the bottom of each diffuser pipe, one end of the pipe is connected to the control valve V 1 of the fluidizing gas supply amount control mechanism, and the other end is connected to the control valve V 1 of the fluidizing gas supply amount control mechanism. Control valve V 2 of fluidizing gas passage amount control mechanism
It is connected to.

すなわち散気管上流側流量調節弁V1を排ガス
の酸素濃度検出器52の値から指示調節警報流量
計53を介して燃焼状態を適正となるように制御
すると共に、散気管下流側流量調節弁V2を伝熱
部の回収熱量が所要の値となるように流動層の温
度検出器54とボイラの積算指示器55の値から
指示調節流量計56を介して制御するようにして
ある。これより都市ごみなどのように不均質な燃
料を使用する場合でも、使用蒸発量が変動して燃
料使用量を変化させる場合でも第5図の様に熱伝
達率を大幅に変化させて流動層温管理や燃焼管理
を行いながら応答の速い熱回収量制御を得ること
ができる。
That is, the upstream flow rate control valve V 1 of the diffuser pipe is controlled so that the combustion state is appropriate based on the value of the exhaust gas oxygen concentration detector 52 via the indication adjustment alarm flowmeter 53, and the flow rate control valve V 1 on the downstream side of the diffuser pipe is controlled to be appropriate. 2 is controlled from the values of the temperature detector 54 of the fluidized bed and the integration indicator 55 of the boiler via an indicator adjustment flowmeter 56 so that the amount of heat recovered in the heat transfer section becomes a required value. From this, even when using a heterogeneous fuel such as municipal waste, or when changing the amount of fuel used due to variations in the amount of evaporation used, the heat transfer coefficient can be changed significantly as shown in Figure 5, and the fluidized bed can be used. It is possible to obtain heat recovery amount control with quick response while performing temperature management and combustion management.

なお前記熱回収部の流動媒体の流動化ガス吹込
用の散気部に応用する場合、例えば底部から上方
に向けて吹き込む酸素を成分に含む流動化ガスに
より流動媒体を流動せしめる流動層を仕切壁によ
つて上下部を連通させた熱回収部と燃焼物を供給
する燃焼部とに区分され、該燃焼部の少なくとも
前記仕切壁近傍におけ単位面積あたりの流動化ガ
ス吹込風量を前記熱回収部の単位面積あたりの流
動化ガス吹込風量よりも大きくとつて、該燃焼部
の流動媒体を前記仕切壁を越えて前記熱回収部に
流入せしめ、かつ前記仕切壁下部から前記熱回収
部の流動媒体を燃焼部に還流せしめられる流動層
熱回収装置に有効に用いられる。
When applied to the aeration section for blowing fluidizing gas into the fluidized medium of the heat recovery section, for example, the fluidized bed in which the fluidized medium is made to flow by the fluidizing gas containing oxygen, which is blown upward from the bottom, is connected to a partition wall. The combustion section is divided into a heat recovery section whose upper and lower portions are communicated with each other and a combustion section which supplies combustible materials, and the flow rate of the fluidizing gas blown per unit area of the combustion section at least in the vicinity of the partition wall is controlled by the heat recovery section. is larger than the fluidizing gas blowing air volume per unit area of , the fluidizing medium of the combustion section is caused to flow into the heat recovery section over the partition wall, and the fluidizing medium of the heat recovery section is flown from the lower part of the partition wall. It is effectively used in a fluidized bed heat recovery device where heat is returned to the combustion section.

図中、57は炉21上部に設けられた原料投入
口、59は排ガス出口58付近に配設された気水
ドラムで、ボイラ室29内の伝熱管35と循環路
を形成している。また、39は炉21底部の分散
板22の両側縁部に接続された不燃物排出口、4
0は逆ねじ方向に配設されたスクリユー41を有
するスクリユーコンベア、42はモータである。
In the figure, 57 is a raw material input port provided at the upper part of the furnace 21, and 59 is an air/water drum provided near the exhaust gas outlet 58, which forms a circulation path with the heat transfer tube 35 in the boiler chamber 29. Further, numeral 39 indicates an incombustible material discharge port connected to both side edges of the dispersion plate 22 at the bottom of the furnace 21;
0 is a screw conveyor having a screw 41 disposed in a reverse screw direction, and 42 is a motor.

しかして、第1図例で説明すると原料投入口5
7より炉21内に投入された可燃物Fは、流動化
ガス23により流動媒体と共に流動しながら燃焼
発熱する。この時、空気室25の上方中央部付近
の流動媒体は激しい上下動は伴わず、弱い流動状
態にある移動層を形成する。この移動層の幅は、
上方は狭いが裾の方は分散板22の傾斜の作用も
相俟つてやや広がつており、裾の一部は両側縁部
の空気室24,26の上方に達しているので、大
きな質量速度の流動化ガス23の噴射を受けて吹
き上げられる。すると、裾の一部の流動媒体が除
かれるので、空気室25の直上の層は自重で下降
する。この層の上方には、後述のように流動層か
らの流動媒体が補給されて堆積し、これを繰り返
して空気室25の上方の流動媒体は徐々に下降す
る移動層を形成する。
However, to explain using the example in Fig. 1, the raw material input port 5
The combustible material F introduced into the furnace 21 from 7 is combusted and generates heat while being fluidized together with the fluidizing medium by the fluidizing gas 23. At this time, the fluidized medium near the upper center of the air chamber 25 does not move violently up and down, and forms a moving layer in a weakly fluidized state. The width of this moving layer is
The upper part is narrow, but the bottom part is slightly wider due to the effect of the slope of the dispersion plate 22, and part of the bottom part reaches above the air chambers 24 and 26 on both sides, so that a large mass velocity can be achieved. It is blown up by the injection of fluidizing gas 23. Then, part of the fluid medium at the bottom is removed, so the layer directly above the air chamber 25 descends under its own weight. Above this layer, the fluidized medium from the fluidized bed is replenished and deposited as will be described later, and by repeating this process, the fluidized medium above the air chamber 25 forms a moving bed that gradually descends.

空気室24,26上に移動した流動媒体は上方
に吹き上げられるが、反射壁28に当つて反射転
向して炉21の中央に向きながらはね上げられ、
中央部の移動層の頂部に落下し、再び前述のよう
に循環されると共に、流動媒体の一部は反射壁2
8を越えてボイラ室29内にふりそそぐように入
り込む。ボイラ室29内に入り込んだ流動媒体
は、散気装置32から吹き込まれる流動化ガス3
1によつて緩やかな流動が行われつつ徐々に下降
する下降移動層が形成され、伝熱管との熱交換が
行われたのち、開口部33から炉21内へ還流さ
れる。
The fluidized medium that has moved onto the air chambers 24 and 26 is blown upward, but when it hits the reflective wall 28, it is reflected and turned and is blown up while facing the center of the furnace 21.
It falls to the top of the moving bed in the center, is circulated again as described above, and a part of the fluid medium reaches the reflecting wall 2.
8 and pours into the boiler room 29. The fluidized medium that has entered the boiler room 29 is fluidized by the fluidized gas 3 blown from the air diffuser 32.
1, a descending moving layer is formed that gradually descends with gentle flow, and after heat exchange with the heat exchanger tubes, it is refluxed into the furnace 21 through the opening 33.

このボイラ室29で散気装置32から噴出され
る流動化ガス31の質量速度は、0.5〜3Gmf、好
ましくは0.5〜2Gmf(ここに1Gmfbは流動化開始
質量速度である)に選ばれる。そしてこの散気装
置32への流動ガス供給量は主として散気装置上
流側の流量調節弁V1により調節される。また散
気装置32から流動層に供給される流動化空気量
は散気装置下流側に流量調節弁V2より調節され
る。すなわちこの調節弁V2の開放時には流動層
の通過抵抗が数百mmAq以上と大きいことから容
易に下流側へと抜けてしまい熱回収部に供給され
る流量ガス量はほぼゼロになる。この時該散気装
置32の周囲に隣接する流動層がある場合これの
流動化ガスにより大幅に減衰した形ではあるが変
動する圧力を被圧している。この周囲のガス圧と
散気管内のガス圧が全く同じであれば散気管から
該流動層へは空気が供給されない。散気管内のガ
ス圧が、周囲のガス圧より高い場合には散気管か
らガスが伝熱部に供給される。ガス散気管供給下
流の調節弁V2の開度調節により、通気風量を調
節すれば散気装置内圧が周囲のガス圧より流動ガ
ス吹込圧損分高い状態で供給と通過の風量差が流
動層へ供給されることになる。従つて、流動化ガ
スを最低でも微量供給して散気管への流動媒体の
浸入を防ぐ効果が容易に得られる。散気管内に流
動媒体が浸入した場合でも、その場合は通過風量
が供給風量に近い大きな風量であるため、通過ガ
スに同伴排出されるので推定して管路をふさぐこ
ともない。
The mass velocity of the fluidizing gas 31 ejected from the diffuser 32 in the boiler room 29 is selected to be 0.5 to 3 Gmf, preferably 0.5 to 2 Gmf (here, 1 Gmfb is the fluidization starting mass velocity). The amount of flowing gas supplied to the diffuser 32 is mainly regulated by the flow rate control valve V 1 on the upstream side of the diffuser. Further, the amount of fluidized air supplied from the aeration device 32 to the fluidized bed is regulated by a flow rate control valve V 2 on the downstream side of the aeration device. That is, when the control valve V2 is opened, the passage resistance of the fluidized bed is as large as several hundred mmAq or more, so that the gas easily escapes to the downstream side, and the flow rate gas amount supplied to the heat recovery section becomes almost zero. At this time, if there is a fluidized bed adjacent to the diffuser 32, it is subjected to a fluctuating pressure, albeit in a significantly attenuated form, due to the fluidized gas of the fluidized bed. If the surrounding gas pressure and the gas pressure inside the aeration tube are exactly the same, air will not be supplied from the aeration tube to the fluidized bed. When the gas pressure within the diffuser tube is higher than the surrounding gas pressure, gas is supplied from the diffuser tube to the heat transfer section. If the aeration air volume is adjusted by adjusting the opening of the control valve V 2 downstream of the gas diffuser pipe supply, the difference in air volume between supply and passage will be adjusted to the fluidized bed when the internal pressure of the diffuser is higher than the surrounding gas pressure by the fluidized gas blowing pressure loss. will be supplied. Therefore, the effect of preventing the fluidizing medium from entering the diffuser pipe can be easily obtained by supplying at least a small amount of fluidizing gas. Even if the fluid medium enters the diffuser pipe, since the passing air volume is close to the supply air volume, it will be discharged along with the passing gas, so it will not block the pipe line.

この様に流動層へ供給される流動化ガス量は任
意調節でき流動媒体の浸入でガス吹込が妨げられ
ることもない。なお、この散気管の上流側及び下
流側の流量調節弁V1,V2で取り扱うガスの流量
は全吹込風量域にわたり比較的大きいため流動層
部に供給する流動ガス量の調節が容易である。す
なわち散気管の上流側流量調節弁V1では伝熱部
の流動化ガス量変動領域の最大量を常時取り扱
う。一方、散気管の下流側の流量調節弁V2では、
伝熱部の流動化ガス量が小さく微妙な流量調節が
必要な状態では取り扱う流量が大きく、弁による
調節が比較的容易である。この調節弁で取り扱う
流量が小さい状態、すなわち散気管から伝熱部へ
供給する流量化ガス量が大きい状態では、この調
節弁で調節する流量が流動化ガス量に及ぼす影響
は相対的に小さく結果として流動化ガス量の調節
は容易である。
In this way, the amount of fluidizing gas supplied to the fluidized bed can be adjusted as desired, and gas blowing is not hindered by the intrusion of the fluidizing medium. Note that the flow rate of gas handled by the flow rate control valves V 1 and V 2 on the upstream and downstream sides of this diffuser pipe is relatively large over the entire blowing air volume range, so it is easy to adjust the amount of fluidized gas supplied to the fluidized bed section. . That is, the upstream flow rate control valve V 1 of the aeration pipe always handles the maximum amount in the fluidizing gas amount fluctuation region of the heat transfer section. On the other hand, in the flow control valve V 2 on the downstream side of the diffuser pipe,
In a state where the amount of fluidizing gas in the heat transfer section is small and delicate flow rate adjustment is required, the flow rate to be handled is large and adjustment using a valve is relatively easy. When the flow rate handled by this control valve is small, that is, the amount of fluidized gas supplied from the diffuser pipe to the heat transfer section is large, the flow rate adjusted by this control valve has a relatively small effect on the amount of fluidized gas. Therefore, it is easy to adjust the amount of fluidizing gas.

また、燃焼を伴なう流動層にて2つ以上の隣接
する流動層の1つを形成するため散気装置の下流
側調節弁の更に下流を燃焼装置内に導入すること
により、同伴した散気装置への浸入流動媒体を流
動層に戻すとともに装置内に供給する全空気量を
該流動層のみの吹込空気量の変動にかかわらず一
定とすることができる。すなわち、装置全体に導
入される全燃焼用空気は燃焼部流動化空気、伝熱
部流動化空気、2次空気であるのが一般的であ
り、この燃焼用空気の合計空気量が燃焼状態に最
適となるように各空気量を調節するのが好まし
く、通常燃焼に消費される酸素量に等しい空気量
である理論空気量の1.1〜1.4倍程度(空気過剰
率)の燃焼物や燃焼装置に応じた値に保つことが
好ましい。2つ以上の隣接する流動層のうちの1
つに供給する流動化空気量を変化させた場合、こ
の散気装置の下流を炉内に導入して2次空気とし
て利用すれば全空気量は常に一定とすることがで
きる。なお、これは、散気装置で奪つた熱を戻す
ことにもなり無駄がない。さらにこの散気管の上
流及び下流の流量調節弁を熱回収装置を持つ流動
層では蒸発量、燃焼を伴う流動層では炉内酸素濃
度などの測定値を用いて制御すればなおよい。す
なわち二次空気及び伝熱部流動化空気の合計空気
量として最適な空気量を炉内酸素濃度、燃料供給
量等から算出し、散気管上流側流量調節弁を制御
して流量を調節し、安定した燃料管理を行うこと
ができる。また、蒸気圧力や流動媒体温度などか
らボイラの伝熱部で回収すべき熱量を検知し、伝
熱部流動化空気量を散気管下流側流量調節弁を調
節して熱回収量を増減すれば応答性の高い蒸発量
制御を行うことができる。これらの制御により、
任意のボイラ負荷で最適な燃焼状態を得ることが
できる。
In addition, in order to form one of two or more adjacent fluidized beds in a fluidized bed that accompanies combustion, the entrained diffused The fluidized medium that has entered the air device can be returned to the fluidized bed, and the total amount of air supplied into the device can be kept constant regardless of fluctuations in the amount of air blown into the fluidized bed alone. In other words, the total amount of combustion air introduced into the entire device is generally fluidized air in the combustion section, fluidized air in the heat transfer section, and secondary air, and the total amount of combustion air is It is preferable to adjust each amount of air to be optimal, and it is preferable to adjust the amount of air to be optimal. It is preferable to maintain the value accordingly. one of two or more adjacent fluidized beds
When changing the amount of fluidizing air supplied to the furnace, the total air amount can always be kept constant by introducing the air downstream of this diffuser into the furnace and using it as secondary air. Note that this also returns the heat taken away by the air diffuser, so there is no waste. Furthermore, it is better to control the flow rate control valves upstream and downstream of the diffuser pipe using measured values such as the amount of evaporation in a fluidized bed having a heat recovery device, or the oxygen concentration in the furnace in a fluidized bed involving combustion. In other words, the optimum amount of air as the total amount of secondary air and heat transfer fluidizing air is calculated from the oxygen concentration in the furnace, fuel supply amount, etc., and the flow rate is adjusted by controlling the flow rate control valve on the upstream side of the air diffuser pipe. Stable fuel management can be performed. In addition, the amount of heat to be recovered in the heat transfer section of the boiler can be detected from the steam pressure, fluidized medium temperature, etc., and the amount of heat recovery can be increased or decreased by adjusting the flow rate control valve on the downstream side of the diffuser pipe. Evaporation amount control can be performed with high responsiveness. With these controls,
Optimal combustion conditions can be obtained at any boiler load.

前記ボイラ室29の上にふりそそがれる流動媒
体は、炉21内燃焼室の特に両側縁部の質量速度
の相対的に大きな部分において、間断なく生成し
ては破裂している多数のウエーク(一種の流動層
内に生じる気泡)の破裂に伴い、多量に流動層外
まで吹き上げられる流動媒体が起源であり、取得
しようとする熱量に対し循環量が不足することは
ない。なお、反射壁28を炉中心側に伸ばすこと
によりボイラ室29に入る流動媒体の量を多くす
ることができるし、空気室24,26の流動化ガ
ス23の量を多くすることによつても調整でき
る。また、ボイラ室29内の伝熱は、直接の流動
媒体との接触による伝熱に加えて、流動媒体の流
動により激しく不規則に振動しながら上昇するガ
スを媒体とした伝熱がある。後者は、通常のガス
−固体間の接触伝熱に対し、伝熱の妨げとなる固
体表面の境界層がほとんど存在せず、また流動媒
体同士が流動によつてよく撹拌されるために、静
止砂等と異なり粉体の中での伝熱が無視できるよ
うになり、極めて大きな伝熱特性を示す。したが
つて、流動層ボイラは通常の燃焼ガスボイラに比
較して10倍以上の伝熱係数をとることができる。
The fluidized medium poured onto the boiler chamber 29 is composed of a large number of wakes (a type of wake) that are continuously generated and burst, especially in the parts of the combustion chamber in the furnace 21 where the mass velocity is relatively high at both side edges. The origin of the heat generation is the fluidized medium that is blown up to the outside of the fluidized bed in large quantities due to the rupture of bubbles (bubbles that occur within the fluidized bed), so the amount of circulation is never insufficient for the amount of heat that is to be obtained. Note that by extending the reflecting wall 28 toward the furnace center, the amount of fluidized medium entering the boiler chamber 29 can be increased, and by increasing the amount of fluidizing gas 23 in the air chambers 24 and 26. Can be adjusted. Furthermore, heat transfer within the boiler chamber 29 involves not only heat transfer through direct contact with the fluid medium, but also heat transfer using gas as a medium, which rises while vibrating violently and irregularly due to the flow of the fluid medium. In contrast to normal contact heat transfer between a gas and a solid, the latter has almost no boundary layer on the surface of the solid that impedes heat transfer, and the fluidized media are well agitated by the flow, so they are stationary. Unlike sand, etc., heat transfer within the powder becomes negligible, and it exhibits extremely high heat transfer characteristics. Therefore, a fluidized bed boiler can have a heat transfer coefficient that is ten times higher than that of a normal combustion gas boiler.

本来、不燃物は炉底部に沈み、不燃物排出口3
9に寄せられてスクリユーコンベア40によつて
排出される訳であるが、空缶等の投影面積の割に
重量の軽いものは、流動媒体の動きによりあおら
れ、流動層表面よりも高く吹き上げられることが
あるために、スクリーン(図示せず)を設けるこ
ともできる。
Normally, non-combustible materials sink to the bottom of the furnace, and the non-combustible materials discharge port 3
9 and are discharged by the screw conveyor 40. However, items that are light in weight relative to their projected area, such as empty cans, are agitated by the movement of the fluidized medium and are blown up higher than the surface of the fluidized bed. A screen (not shown) may also be provided so that the information may be removed.

また、ボイラ室29から不燃物排出口39への
流動媒体の短絡による排出を防止し、伝熱後の媒
体を有効に燃焼室である流動層へ戻すために、仕
切り50を設けることも好ましく、この仕切り5
0は散気装置32を形成する散気管にバンドなど
で取付けた板状のものでもよく、あるいは第1図
示例のように炉壁を利用して形成させることもで
きる。
It is also preferable to provide a partition 50 in order to prevent discharge of the fluidized medium from the boiler chamber 29 to the incombustible material discharge port 39 due to a short circuit, and to effectively return the medium after heat transfer to the fluidized bed that is the combustion chamber. This partition 5
0 may be in the form of a plate attached to the air diffuser pipe forming the air diffuser 32 with a band or the like, or it may be formed using the furnace wall as in the first illustrated example.

さらに、反射壁28の上部を三角形状とするこ
とにより、断面係数を大きくして梁としての構造
体とすることも有利であり、取付構造が簡単でボ
イラ室29の媒体重量を受けることができる。
Furthermore, by making the upper part of the reflecting wall 28 triangular, it is advantageous to increase the section modulus and form a structure as a beam, and the mounting structure is simple and the weight of the medium in the boiler room 29 can be supported. .

さらにまた、反射壁28、散気装置32、仕切
り50などの一部又は全部を、耐熱、耐熱衝撃、
耐摩耗、耐機械的衝撃などの性質をもつたセラミ
ツクス製にすることが好ましく、セラミツクスと
しては各種のものを適宜選択使用することができ
るが、炭化ケイ素は長期間交換不要になるから有
利である。
Furthermore, some or all of the reflective wall 28, the air diffuser 32, the partition 50, etc. may be heat resistant, thermal shock resistant,
It is preferable to use ceramics that have properties such as wear resistance and mechanical shock resistance. Various types of ceramics can be selected and used as appropriate, but silicon carbide is advantageous because it does not require replacement for a long period of time. .

〔発明の効果〕〔Effect of the invention〕

本発明は散気装置を通過型とし散気装置の上流
側及び下流側に流量調節弁を設け、流量を調節す
ることにより流動層への流動ガス吹込を、散気装
置に供給されたガスがその散気装置を通過してし
まう量を増減して行うこととなり、どんな運転状
態でも一定量以上のガスを散気装置内に流すこと
になり、散気装置の冷却効果が得られる。従つて
熱回収部に流動化ガスを供給しない時でも過熱を
防止でき散気装置を常時冷却し、かつ散気装置内
への流動媒体浸入によるトラブルを防ぎ、供給空
気量の調節を容易にして、燃焼制御及び伝熱部流
動空気量による熱回収量の制御を容易とすること
ができ燃焼物の発熱量、含水率、組成などの変動
や燃焼物燃焼量変化に対応しながら、熱回収量や
流動層温管理、空気過剰率を一定に保つ燃焼管理
等の制御を円滑に行うことを可能とし流動層ボイ
ラなどの流動層装置の様々の特徴を容易に引き出
し、その実用化を更におしすすめやすくなる効果
がある。
In the present invention, the aeration device is a pass-through type, and flow control valves are provided on the upstream and downstream sides of the aeration device, and by adjusting the flow rate, the gas supplied to the aeration device can be blown into the fluidized bed. The amount of gas that passes through the aeration device is increased or decreased, and a certain amount or more of gas flows into the aeration device in any operating state, thereby achieving a cooling effect of the aeration device. Therefore, even when fluidizing gas is not supplied to the heat recovery section, overheating can be prevented, the diffuser can be constantly cooled, troubles caused by fluidized medium entering the diffuser can be prevented, and the amount of supplied air can be easily adjusted. , it is possible to easily control the amount of heat recovery by combustion control and the amount of flowing air in the heat transfer section. It enables smooth control of fluidized bed temperature management, combustion management to maintain a constant air excess ratio, etc., and easily brings out the various features of fluidized bed equipment such as fluidized bed boilers, and further promotes their practical use. This has the effect of making it easier to recommend.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体の縦断面
図、第2図は第1図A−A線矢視図、第3図は弁
開度と流量との関係線図、第4図は下流側調節弁
V2と流量との関係線図、第5図は流動空気量と
熱伝達率の関係線図、第6図及び第7図はそれぞ
れ他の実施例の一部の縦断面図、第8図は本発明
を用いた制御の一実施例を示す系統説明図であ
る。 21……炉、22……分散板、23……流動化
ガス、24,25,26……空気室、27……押
込送風機、28……反射壁、29……ボイラ室、
30……送風機、31……流動化ガス、32……
散気装置、321……ノズル、33……開口部、
34……受熱流体、35……伝熱管、36……2
次空気供給口、37,38……検出器、39……
不燃物排出口、52……濃度検出器、53,56
……流量計、54……検出器、55……積算指示
器、57……原料投入口、59……気水ドラム、
58……排ガス出口、V1,V2……流量調節弁。
Fig. 1 is an overall vertical sectional view showing one embodiment of the present invention, Fig. 2 is a view taken along the line A-A in Fig. 1, Fig. 3 is a relationship diagram between valve opening degree and flow rate, and Fig. 4 The figure shows the downstream control valve
Figure 5 is a diagram showing the relationship between V 2 and flow rate, Figure 5 is a diagram showing the relationship between flow rate and heat transfer coefficient, Figures 6 and 7 are longitudinal cross-sectional views of parts of other embodiments, and Figure 8 is a diagram showing the relationship between V 2 and flow rate. FIG. 1 is a system explanatory diagram showing an example of control using the present invention. 21...furnace, 22...dispersion plate, 23...fluidizing gas, 24, 25, 26...air chamber, 27...forced blower, 28...reflection wall, 29...boiler room,
30...Blower, 31...Fluidization gas, 32...
air diffuser, 32 1 ... nozzle, 33... opening,
34...Heat receiving fluid, 35...Heat transfer tube, 36...2
Next air supply port, 37, 38...detector, 39...
Nonflammable material discharge port, 52... Concentration detector, 53, 56
...Flowmeter, 54...Detector, 55...Integration indicator, 57...Raw material input port, 59...Air/water drum,
58...Exhaust gas outlet, V1 , V2 ...Flow control valve.

Claims (1)

【特許請求の範囲】 1 底部より上方に向けて供給される流動化ガス
により流動媒体を流動化して流動層を形成せしめ
る流動層装置において、この流動層に流動化ガス
を供給する流動化ガス吹込用散気部を流動層内
で、該流動化ガスが通過可能の構造とし、かつ該
散気部への流動化ガス供給量調節機構と流動化ガ
ス通過量調節機構とを設けたことを特徴とする流
動層装置における散気装置。 2 前記流動化ガス吹込用散気部が、複数のガス
吹込用ノズルを有する散気管であつて、該散気部
を通過した流動化ガスを流動層より発生するガス
に混入させるための開口部が流動層内位置に備え
られている特許請求の範囲第1項記載の散気装
置。 3 前記散気部が、散気部に供給する流動化ガス
量を検知する検知器を持ち、このガス量を一定値
以上の設定値と制御することができる流動化ガス
供給量調節機構を備えている特許請求の範囲第1
項又は第2項記載の散気装置。 4 前記散気部が、流動層熱回収装置の流動層内
に配備されるものであつて、前記散気部流動化ガ
ス通過量調節機構を制御して回収熱量を調節する
ものである特許請求の範囲第1〜3項のいずれか
一つの項記載の散気装置。 5 前記散気部が、流動層熱回収装置の流動層内
に配備されるものであつて、回収熱量を検知する
検知器を備え、該検知器の検出値で回収熱量を一
定とするように前記散気部流動化ガス通過量調節
機構を制御するものである特許請求の範囲第1〜
4項のいずれか一つの項記載の散気装置。 6 前記散気部が、流動層焼却炉の流動層内に配
備されるものであつて、該焼却炉の燃焼排ガス中
の酸素濃度を検知する検知器と、該検知器の検出
値で酸素濃度を一定とするように前記流動化ガス
供給量調節機構制御の設定値を調節するものであ
る特許請求の範囲第1〜4項のいずれか一つの項
記載の散気装置。 7 前記散気部が、ガス通路として連通した往路
と復路とを有する散気管群からなり、その往路、
復路のいずれかに吹込用ノズルを設けると共に、
往路は流動化ガス供給量調節機構に連結し、また
復路は流動化ガス通過量調節機構に連結して備え
たものである特許請求の範囲第1〜6項のいずれ
か一つの項記載の散気装置。 8 前記散気部が、前記流動層を貫通させた散気
管群で構成され、その各々の散気管の下側には流
動層内への流動化ガス吹込用ノズルを設け、管の
一端は流動化ガス供給量調節機構に連結し、かつ
他端は流動化ガス通過量調節機構に連結したもの
である特許請求の範囲第1〜6項のいずれか一つ
の項記載の散気装置。 9 前記散気部が、前記流動層を仕切壁によつて
上下部を連通させた熱回収部と燃焼物を供給する
燃焼部とに区分され、該燃焼部の少なくとも前記
仕切壁近傍における単位面積あたりの流動化ガス
吹込風量を前記熱回収部の単位面積あたりの流動
化ガス吹込風量よりも大きくとつて、該燃焼部の
流動媒体を前記仕切壁を越えて前記熱回収部に流
入せしめ、かつ前記仕切壁下部から前記熱回収部
の流動媒体を燃焼部に還流せしめられる流動層の
前記熱回収部に備えられるものである特許請求の
範囲第1〜8項のいずれか一つの項記載の散気装
置。
[Claims] 1. In a fluidized bed device that fluidizes a fluidized medium to form a fluidized bed using fluidized gas supplied upward from the bottom, a fluidized gas blower that supplies fluidized gas to the fluidized bed. The air diffuser has a structure that allows the fluidizing gas to pass through within the fluidized bed, and is provided with a fluidizing gas supply amount adjustment mechanism and a fluidizing gas passing amount adjustment mechanism to the air diffuser. Aeration device for fluidized bed equipment. 2. The fluidizing gas blowing diffuser is a diffuser pipe having a plurality of gas blowing nozzles, and has an opening for mixing the fluidizing gas that has passed through the diffuser with the gas generated from the fluidized bed. The air diffuser according to claim 1, wherein the air diffuser is provided at a position within the fluidized bed. 3. The air diffuser has a detector that detects the amount of fluidizing gas supplied to the air diffuser, and is equipped with a fluidizing gas supply amount adjustment mechanism that can control this gas amount to a set value equal to or higher than a certain value. Claim 1
The air diffuser according to item 1 or 2. 4. A patent claim in which the air diffuser is disposed within a fluidized bed of a fluidized bed heat recovery device, and controls the amount of fluidized gas passing through the air diffuser section to adjust the amount of recovered heat. The air diffuser according to any one of the ranges 1 to 3. 5. The air diffuser is disposed within the fluidized bed of the fluidized bed heat recovery device, and is equipped with a detector for detecting the amount of recovered heat, and is configured to keep the amount of recovered heat constant based on the detected value of the detector. Claims 1 to 3 are for controlling the flow rate adjustment mechanism of the fluidizing gas passing through the diffuser section.
The air diffuser described in any one of Item 4. 6. The aeration section is installed in the fluidized bed of a fluidized bed incinerator, and includes a detector for detecting the oxygen concentration in the combustion exhaust gas of the incinerator, and a detector that detects the oxygen concentration based on the detected value of the detector. 5. The air diffuser according to any one of claims 1 to 4, wherein the setting value of the fluidizing gas supply amount adjustment mechanism control is adjusted so that the amount of fluidizing gas supplied is constant. 7. The aeration section is composed of a group of aeration tubes having an outgoing path and an incoming path communicating as a gas passage, and the outgoing path,
In addition to providing a blowing nozzle on either of the return routes,
The dispersion according to any one of claims 1 to 6, wherein the outward path is connected to a fluidizing gas supply amount adjustment mechanism, and the return path is connected to a fluidizing gas passage amount adjustment mechanism. Air device. 8. The aeration section is composed of a group of aeration tubes penetrating the fluidized bed, each of the aeration tubes is provided with a nozzle for blowing fluidizing gas into the fluidized bed below the aeration tube, and one end of the tube is provided with a nozzle for blowing fluidizing gas into the fluidized bed. 7. The air diffuser according to claim 1, wherein the diffuser is connected to a fluidizing gas supply amount adjusting mechanism, and the other end is connected to a fluidizing gas passing amount adjusting mechanism. 9. The aeration section is divided into a heat recovery section in which the upper and lower parts of the fluidized bed are communicated by a partition wall, and a combustion section that supplies combustible materials, and the unit area of the combustion section is at least in the vicinity of the partition wall. The flow rate of the fluidized gas per unit area is set to be larger than the flow rate of the fluidized gas per unit area of the heat recovery section to cause the fluidized medium of the combustion section to flow into the heat recovery section beyond the partition wall, and The dispersion according to any one of claims 1 to 8, which is provided in the heat recovery section of a fluidized bed in which the fluidized medium of the heat recovery section is returned to the combustion section from the lower part of the partition wall. Air device.
JP17150086A 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment Granted JPS6329108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17150086A JPS6329108A (en) 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17150086A JPS6329108A (en) 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment

Publications (2)

Publication Number Publication Date
JPS6329108A JPS6329108A (en) 1988-02-06
JPH0573965B2 true JPH0573965B2 (en) 1993-10-15

Family

ID=15924251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17150086A Granted JPS6329108A (en) 1986-07-23 1986-07-23 Diffuser in fluidized bed equipment

Country Status (1)

Country Link
JP (1) JPS6329108A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103888A (en) * 1990-12-28 1992-04-14 Tachikawa Corporation Blind slats lifting device

Also Published As

Publication number Publication date
JPS6329108A (en) 1988-02-06

Similar Documents

Publication Publication Date Title
US4938170A (en) Thermal reactor
US4400150A (en) Fluidized bed combustor distributor plate assembly
JPS6124632B2 (en)
JPH0260932B2 (en)
KR20030019364A (en) Waste incinerator and method of operating the incinerator
JPS61122406A (en) Boiler plant and control method thereof
KR950007013B1 (en) Internal circulation type fluidized bed boiler & method of controlling same
US4345894A (en) Light fuel start-up fluidized bed combustor
JPH0573965B2 (en)
EP0028458B1 (en) Fluidised-bed boilers
CN101311626B (en) Integral fluid bed ash cooler
EP1062030B1 (en) Method and apparatus for controlling heat transfer from solid particles in a fluidized bed
JPS6131761B2 (en)
EP2933557B1 (en) Swirling type fluidized bed furnace
JP2901752B2 (en) Fluidized bed combustion device
JP2989783B2 (en) Heat recovery device from fluidized bed
JP2528711B2 (en) Double bed fluidized bed boiler
JPS62272089A (en) Method and apparatus for retrieving heat from fluidized bed
JPH0567875B2 (en)
JPH0639226Y2 (en) Fluidized bed equipment
JPH0297805A (en) Fluidized-bed boiler
JPH02290403A (en) Fluidized bed heat recovery device and diffusion device thereof
KR850000950B1 (en) Control method for a heater with fluidised bed
JPH0756362B2 (en) Steam temperature raising device for fluidized bed boiler
JPS58139737A (en) Fludized bed heat reaction furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term