JPS63289762A - Manufacture of electrode active material - Google Patents

Manufacture of electrode active material

Info

Publication number
JPS63289762A
JPS63289762A JP62124592A JP12459287A JPS63289762A JP S63289762 A JPS63289762 A JP S63289762A JP 62124592 A JP62124592 A JP 62124592A JP 12459287 A JP12459287 A JP 12459287A JP S63289762 A JPS63289762 A JP S63289762A
Authority
JP
Japan
Prior art keywords
temperature
active material
electrode active
vanadium
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62124592A
Other languages
Japanese (ja)
Other versions
JP2564549B2 (en
Inventor
Takehito Mitachi
武仁 見立
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62124592A priority Critical patent/JP2564549B2/en
Publication of JPS63289762A publication Critical patent/JPS63289762A/en
Application granted granted Critical
Publication of JP2564549B2 publication Critical patent/JP2564549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To form an electrode active material of excellent charge discharge characteristics in a simple method and at a low cost by heat processing at a specified temperature a deposit or residual solid material obtained from hydrolysis solution of oxyvanadium chloride. CONSTITUTION:Oxybanadium chloride is hydrolyzed in an aqueous solution. Hydrolysis solution thus obtained is concentrated or alkali is added to, or alkali is added to and concentrated; then a solid substance is deposited or remains. The deposited or the residual solid substance is heat-treated at a temperature of 150 to 350 deg.C. If the temperature of heat treatment is lower than 150 deg.C, the condensation of vanadic acid is not enough and also the removal of physically absorbed water is not enough thereby the temperature is improper. If the temperature exceeds 350 deg.C crystal water is removed and the substance is transformed to vanadium pentoxide thereby the temperature is also improper. By the use of this method the production process becomes very simple, so that mass production and cost reduction become possible and moreover an active material of excellent charge discharge characteristics can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、電極活物質の製造法に関する。ざらに詳しく
は、ことに非水電解質二次電池の正極活物質として有用
な電極活物質の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing an electrode active material. More specifically, the present invention relates to a method for producing an electrode active material that is particularly useful as a positive electrode active material for non-aqueous electrolyte secondary batteries.

(ロ)従来の技術 リチウム、ナトリウム等の軽い金属を活物質として用い
る非水電解質電池は、軽量でかつ、高電圧であり、高い
エネルギー密度の電池となるため、その需要が2速に伸
びてきている。しかし、今日、市販されている非水電解
質電池は、−次電池であり、この電池を再び充電して使
用すると、負極活物質のデンドライト生成による電池の
内部短絡を起こしたり、正極の容量低下により放電不能
となるなどの不都合が生じ、二次電池として使用するこ
とは不可能であった。
(b) Conventional technology Nonaqueous electrolyte batteries that use light metals such as lithium and sodium as active materials are lightweight, high voltage, and have high energy density, so demand for them is growing at the second fastest pace. ing. However, the non-aqueous electrolyte batteries commercially available today are secondary batteries, and if these batteries are recharged and used again, they may cause internal short circuits due to the formation of dendrites in the negative electrode active material, or a decrease in the capacity of the positive electrode. This caused inconveniences such as the inability to discharge, making it impossible to use it as a secondary battery.

これに対し、最近、負極としてリチウムアルミニウム合
金、ウッド合金、並びに各種グラファイト材料等が開発
されるに至って、負極活物質のデンドライト生成による
電池の内部短絡の心配はなくなった。
In contrast, with the recent development of lithium aluminum alloys, wood alloys, various graphite materials, and the like as negative electrodes, there is no longer any concern about internal short circuits in batteries due to the formation of dendrites in negative electrode active materials.

一方、従来、正極材料としては、五酸化バナジウム、へ
酸化三クロム、硫化チタン、二酸化マンガン、グラファ
イト等の各種材料が用いられているが、容量、充放電サ
イクル、放電電圧のいずれかに問題があり、負極の優れ
た特性に対応するだけの特性を有さないばかりに、優れ
た電池特性を得ることができなかった。
On the other hand, conventionally, various materials such as vanadium pentoxide, trichromium hexoxide, titanium sulfide, manganese dioxide, and graphite have been used as positive electrode materials, but these have problems with capacity, charge/discharge cycles, and discharge voltage. Therefore, it was not possible to obtain excellent battery characteristics because it did not have the characteristics that corresponded to the excellent characteristics of the negative electrode.

(ハ)発明が解決しようとする問題点 正極材料について多くの研究がなされ、容量の大きさ、
放電電圧の高さから、五酸化バナジウムが優れた特性を
有する材料であることが見い出されている。しかし五酸
化バナジウムは、放電することにより、電圧が段階的に
減少して、しi V205 、L! 2 V205・1
.13V20sと組成変化する。このとき五酸化バナジ
ウムの結晶性を引きついで生成される結晶性の複合醇化
物は、非常に安定であるため、一旦、リチウムを格子内
部に取り込んでしまうと、このリチウムを取り出すこと
は困難になる。すなわち、充電が不能な状態に陥ってし
まう。これに対し組成でL!VzOsまでのところで使
用する限りにおいては、可逆的にリチウムを取り出すこ
とが可能であるが、放電容量が少なくなってしまうこと
や、放電のしすぎによる特性劣化を考えると、使用し難
い材料であった。
(c) Problems to be solved by the invention A lot of research has been done on positive electrode materials.
Vanadium pentoxide has been found to be a material with excellent properties due to its high discharge voltage. However, when vanadium pentoxide is discharged, the voltage decreases step by step, i V205 , L! 2 V205・1
.. The composition changes to 13V20s. At this time, the crystalline composite infusate produced by taking over the crystallinity of vanadium pentoxide is extremely stable, so once lithium is incorporated into the lattice, it is difficult to extract it. . In other words, charging becomes impossible. On the other hand, the composition is L! As long as it is used up to VzOs, it is possible to extract lithium reversibly, but it is a difficult material to use because the discharge capacity will decrease and the characteristics will deteriorate due to excessive discharge. Ta.

上述の問題点を解決するために、五酸化バナジウムの結
晶性を排除すべく、バナジン酸塩等の焼結による五酸化
バナジウム製造時に異種元素を添加して非晶質化する手
法、急冷により非晶質化する手法(特開昭61−200
667号公報)等が提案されている。そしてかかる手法
により可逆的にリチウムを取り出すことが容易なバナジ
ウム酸化物系活物質の製造が可能となり、放電容量の多
い、可逆性の浸れた電極材料を得ることが可能となった
In order to solve the above-mentioned problems, in order to eliminate the crystallinity of vanadium pentoxide, a method of adding a different element during the production of vanadium pentoxide by sintering vanadate, etc., and a method of making it amorphous by rapid cooling were developed. Method of crystallization (JP-A-61-200
No. 667), etc. have been proposed. Using this method, it has become possible to produce a vanadium oxide active material from which lithium can be easily extracted reversibly, and it has become possible to obtain a reversibly immersed electrode material with a large discharge capacity.

しかし、かかる製法では得られた活物質の熱的安定性、
製造コスト等においていまだに解決しなければならない
問題は残されている。
However, with this manufacturing method, the thermal stability of the obtained active material
There are still problems that need to be solved, such as manufacturing costs.

本発明は、かかる状況に鑑みなされたものであり、こと
に、充放電特性が通常の五酸化バナジウムに比して改良
されたバナジウム酸化物系の電極活物質を、簡便かつ安
価に製造することができる新たな電極活物質の製造方法
を提供しようとするものである。
The present invention was made in view of the above circumstances, and specifically, it is an object of the present invention to easily and inexpensively produce a vanadium oxide-based electrode active material that has improved charge-discharge characteristics compared to ordinary vanadium pentoxide. The purpose of this study is to provide a new method for producing electrode active materials that can be used.

(ニ)問題点を解決するための手段 かくして本発明によればオキシ塩化バナジウムを水性媒
体中で加水分解し、この加水分解溶液を濃縮及び/又は
アルカリ添加処理に付し、得られる沈殿物又は残留固形
物を約150〜350℃の温度下で熱処理してバナジウ
ム酸化物系の電極活物質を得ることを特徴とする電極活
物質の製造法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, vanadium oxychloride is hydrolyzed in an aqueous medium, the hydrolyzed solution is subjected to concentration and/or alkali addition treatment, and the resulting precipitate or A method for producing an electrode active material is provided, which comprises heat-treating the residual solid matter at a temperature of about 150 to 350°C to obtain a vanadium oxide-based electrode active material.

本発明の原料物質のオキシ塩化バナジウムとしては万両
のオキシ塩化バナジウム[オキシ塩化バナジ’)ム(V
)(VOCI 3又はVO2CI)]を用いるのが適し
ている。ただし、場合によってはバナジウム酸化数のよ
り低いオキシ塩化バナジウム[例えば、オキシ塩化バナ
ジウム(■)]を用いることができる。
As the vanadium oxychloride of the raw material of the present invention, vanadium oxychloride [vanadium oxychloride]um (V
) (VOCI 3 or VO2CI)] is suitable. However, in some cases, vanadium oxychloride having a lower vanadium oxidation number [for example, vanadium oxychloride (■)] may be used.

オキシ塩化バナジウムの加水分解は水性媒体中で行なわ
れる。この水性媒体としては、水、アルカリ水溶液、解
溶液、含水有機溶媒等が挙げられる。通常、水を用いれ
ばよいが、オキシ塩化バナジウムは加水分解すると非常
に強い酸性を示すので、この酸性を押えるために弱いア
ルカリ溶液(例えばアンモニア水)を用いて加水分解す
るのも一つの好ましい態様である。また、具体的な加水
分解方法としては、上記水性媒体中にオキシ塩化バナジ
ウムを加える方法、オキシ塩化バナジウムに上記水性媒
体を加える方法のいずれの方法を採用してもよい。加水
分解は常温下で放置することにより円滑に行なわれ、通
常、数分程度放置することで充分に行なわれるが、加水
分解を促進するために撹拌や加熱を適宜行なってもよい
Hydrolysis of vanadium oxychloride is carried out in an aqueous medium. Examples of the aqueous medium include water, aqueous alkaline solutions, dissolved solutions, and water-containing organic solvents. Normally, water can be used, but since vanadium oxychloride exhibits very strong acidity when hydrolyzed, one preferred embodiment is to use a weak alkaline solution (for example, ammonia water) to suppress this acidity. It is. Further, as a specific hydrolysis method, either a method of adding vanadium oxychloride to the above aqueous medium or a method of adding the above aqueous medium to vanadium oxychloride may be adopted. Hydrolysis is carried out smoothly by standing at room temperature, and is usually sufficiently carried out by standing for several minutes, but stirring or heating may be carried out as appropriate to promote hydrolysis.

なお、後工程で得られる沈殿物や残留固形物の粒度をよ
く小さくして最終的に得られる活物質の表面積を増大さ
せるために界面活性剤や分散剤等が上記水性媒体中に含
まれていてもよい。さらに、モリブデン、タングステン
、クロム等の酸素酸のごときバナジウムと複合酸化物を
形成しうる化合物や、リン、シリカ、ニオブ等の酸素酸
のごとき酸化バナジウムの結晶性を妨げるとされている
化合物が上記水性媒体中に任意に添加されていてもよい
In addition, surfactants, dispersants, etc. are included in the above aqueous medium in order to reduce the particle size of precipitates and residual solids obtained in subsequent steps and increase the surface area of the final active material. It's okay. Furthermore, the above-mentioned compounds that can form composite oxides with vanadium, such as oxyacids such as molybdenum, tungsten, and chromium, and compounds that are said to interfere with the crystallinity of vanadium oxide, such as oxyacids such as phosphorus, silica, and niobium, are included. It may be optionally added to the aqueous medium.

口のようにして得られる加水分解溶液を濃縮するか、ア
ルカリを添加するか、あるいはアルカリを添加して濃縮
することにより固形物が沈殿析出又は残留する。この際
の濃縮は、自然蒸発、加熱による蒸発、真空排気による
蒸発あるいは、真空排気状態での加熱による蒸発等のい
ずれの方法で行なってもよい。またアルカリ添加は、ア
ンモニア水や水酸化リチウムなどの水酸化物の水溶液の
ごときアルカリ溶液を添加して行なわれる。なお液中か
らの沈殿物の回収は、i11過法、デカンテーション法
等で行なうのが適しているが、溶媒を留去して行なって
もよく、これらの方法に限定されるものではない。
By concentrating the resulting hydrolyzed solution, adding an alkali, or adding an alkali and concentrating, solids precipitate or remain. Concentration at this time may be carried out by any method such as natural evaporation, evaporation by heating, evaporation by vacuum evacuation, or evaporation by heating in a vacuum evacuation state. Further, the alkali addition is carried out by adding an alkaline solution such as aqueous ammonia or an aqueous solution of a hydroxide such as lithium hydroxide. It should be noted that recovery of the precipitate from the liquid is preferably carried out by an i11 filtration method, a decantation method, etc., but it may also be carried out by distilling off the solvent, and the method is not limited to these methods.

このようにして得られる沈殿物又は残留固形物は、不定
形状のものであり、ポリバナジン酸及びその塩の含水物
を主体とするものと考えられる。
The precipitate or residual solid thus obtained has an irregular shape and is thought to be mainly composed of hydrated polyvanadic acid and its salt.

これを約150〜350℃の温度下で熱処理することに
より、結合水を含んだバナジウム酸化物が主体と考えら
れる本発明の電極活物質が得られる。熱処理の温度が約
150℃未満では、バナジン酸の縮合が不充分でありか
つ物理的な吸着水を充分に除去することができず適さな
い。一方、約350℃を超えると結合水が除去され五酸
化バナジウムに変換されるため適さない。なお、かかる
熱処理は空気中、真空中、不活性雰囲気中、酸化雰囲気
中のいずれで行なってもよい。
By heat-treating this at a temperature of about 150 to 350°C, the electrode active material of the present invention, which is considered to be mainly composed of vanadium oxide containing bound water, can be obtained. If the temperature of the heat treatment is less than about 150° C., the condensation of vanadate will be insufficient and physically adsorbed water cannot be removed sufficiently, which is not suitable. On the other hand, if the temperature exceeds about 350°C, bound water is removed and converted to vanadium pentoxide, which is not suitable. Note that this heat treatment may be performed in air, vacuum, inert atmosphere, or oxidizing atmosphere.

(ホ)実施例 以下に、本発明を実施例により詳細に説明するが、これ
により本発明は限定されるものではない。
(e) Examples The present invention will be explained in detail by Examples below, but the present invention is not limited thereby.

実施例1 オキシ三塩化バナジウム(V OCl :l ) 25
(lを25℃下5001!の水に加え、数分間放置して
加水分解し、さらに、界面活性剤(1g:ポリオキシエ
チレンソルどタンモノパルミテート)を加えた。
Example 1 Vanadium oxytrichloride (V OCl :l) 25
(1 liter) was added to 5,001! of water at 25° C., left to stand for several minutes to hydrolyze, and a surfactant (1 g: polyoxyethylene solute monopalmitate) was added.

その後、28%アンモニア水301!を加えることによ
り沈殿物が得られた。これにより得られた沈殿を回収す
るために、蒸発乾固を行った。次いで得られた物質10
Qを、空気中、220℃で24時間熱処理した。この方
法によって得られたバナジウム酸化物系物質をサンプル
Aとした。
After that, 28% ammonia water 301! A precipitate was obtained by adding . Evaporation to dryness was performed to recover the resulting precipitate. Then the obtained substance 10
Q was heat treated at 220°C in air for 24 hours. A vanadium oxide-based material obtained by this method was designated as Sample A.

実施例2 実施例1と同様にして、オキシ三塩化バナジウム25g
を500 xiの水で加水分解し、界面活性剤を加えた
。その後、この溶液を80〜100℃で蒸発乾固を行っ
た。これにより得られた物質を、空気中、220℃で熱
処理した。この方法によって得られたバナジウム酸化物
系物質をサンプルBとした。
Example 2 25 g of vanadium oxytrichloride was prepared in the same manner as in Example 1.
was hydrolyzed with 500 xi of water and a surfactant was added. Thereafter, this solution was evaporated to dryness at 80 to 100°C. The material thus obtained was heat treated at 220° C. in air. A vanadium oxide-based material obtained by this method was designated as Sample B.

実施例3 実施例1と同様にして、オキシ三塩化バナジウム25g
を500ν!の水で加水分解し、界面活性剤を加えた。
Example 3 25 g of vanadium oxytrichloride in the same manner as in Example 1
500ν! of water and added a surfactant.

その後、この溶液に、28%アンモニア水4511を加
え、80〜100℃で蒸発乾固を行った。これにより得
られた物質を、空気中で、220℃で熱処理した。この
方法によって得られたバナジウム酸化物系物質をサンプ
ルCとした。
Thereafter, 28% aqueous ammonia 4511 was added to this solution and evaporated to dryness at 80 to 100°C. The material thus obtained was heat treated at 220° C. in air. A vanadium oxide-based material obtained by this method was designated as Sample C.

各々のサンプルについて以下のようにして電極を作製し
た。すなわち、各々のサンプル50mgとアセチレンブ
ラック、ポリテトラフルオロエチレンを短日比で100
対15対5の割合で各々混合し、ベレット状に成形した
のち、200℃で減圧乾燥を行った。これら各々をステ
ンレスネットで挾んで作用極(正極)として用いた。電
解液には、1Mの過塩素酸リチウムを含むプロピレンカ
ーボネート溶液を用い、負極及び参照極としてはリチウ
ム金属を用い、0.3 mA / cm 2の電流密度
で充放電を行った。放電の終了条件は、電極活物質1g
に対して150mAh放電したときとし、充電の終了条
件は、4vに到達したときとした。
Electrodes were produced for each sample as follows. That is, 50 mg of each sample, acetylene black, and polytetrafluoroethylene were mixed at a short daily ratio of 100 mg.
The mixture was mixed at a ratio of 15:5, formed into a pellet shape, and then dried under reduced pressure at 200°C. Each of these was sandwiched between stainless steel nets and used as a working electrode (positive electrode). A propylene carbonate solution containing 1M lithium perchlorate was used as the electrolytic solution, lithium metal was used as the negative electrode and reference electrode, and charging and discharging were performed at a current density of 0.3 mA/cm2. The discharge termination conditions are: 1g of electrode active material
The charging termination condition was when 150mAh was discharged to 4V.

以上のようにして行った充放電試験の結果を第1図〜第
3図に示す。第1図、第2図、第3図は、各々サンプル
A、B、Cの結果を示している。各図中に示した数字は
、充放電のサイクルの回数を表す。
The results of the charge/discharge tests conducted as described above are shown in FIGS. 1 to 3. FIGS. 1, 2, and 3 show the results for samples A, B, and C, respectively. The numbers shown in each figure represent the number of charge/discharge cycles.

以上のことから、本発明の製造法で製造したバナジウム
酸化物系の電極活物質は、各々、リチウム電池の正極と
して、可逆性よく、良好な充放電特性を示すことがわか
った。
From the above, it was found that each of the vanadium oxide-based electrode active materials produced by the production method of the present invention exhibits good reversibility and good charge-discharge characteristics as a positive electrode for a lithium battery.

(へ)発明の効果 本発明は、バナジウム酸化物系の電極活物質を製造する
方法として、オキシ塩化バナジウムの加水分解溶液から
得られる物質に熱処理を行うという簡便な工程からなる
ため、量産化、コストの低廉化ができ、ざらに、活物質
の充放電特性において、五酸化バナジウムに比して優れ
た特性をもつ活物質を効率良く得ることが可能となる。
(f) Effects of the Invention The present invention is a method for producing a vanadium oxide-based electrode active material, and it involves a simple process of heat-treating a material obtained from a hydrolyzed solution of vanadium oxychloride. The cost can be reduced, and in general, it becomes possible to efficiently obtain an active material that has superior charge-discharge characteristics compared to vanadium pentoxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は各々、本発明の実施例1〜3で得られ
たバナジウム酸化物系の電極活物質についての充放電曲
線を示すグラフ図であり、区内に示した数字は、各々充
放電のサイクルの回数を示すものである。 代理人  弁理士  野 河 信太部、1゛i・、ノー
椰 E/  Vvs  Li/L+
FIGS. 1 to 3 are graphs showing charge-discharge curves for vanadium oxide-based electrode active materials obtained in Examples 1 to 3 of the present invention, and the numbers shown in the sections are as follows: Each indicates the number of charge/discharge cycles. Agent: Patent Attorney Shintabe Nogawa, 1゛i・, No Yai E/Vvs Li/L+

Claims (1)

【特許請求の範囲】[Claims] (1)オキシ塩化バナジウムを水性媒体中で加水分解し
、この加水分解溶液を濃縮及び/又はアルカリ添加処理
に付し、得られる沈殿物又は残留固形物を約150〜3
50℃の温度下で熱処理してバナジウム酸化物系の電極
活物質を得ることを特徴とする電極活物質の製造法。
(1) Hydrolyze vanadium oxychloride in an aqueous medium, subject the hydrolyzed solution to concentration and/or alkali addition treatment, and reduce the resulting precipitate or residual solid to approximately 150 to 30%
A method for producing an electrode active material, the method comprising obtaining a vanadium oxide electrode active material by heat treatment at a temperature of 50°C.
JP62124592A 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Fee Related JP2564549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124592A JP2564549B2 (en) 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124592A JP2564549B2 (en) 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63289762A true JPS63289762A (en) 1988-11-28
JP2564549B2 JP2564549B2 (en) 1996-12-18

Family

ID=14889269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124592A Expired - Fee Related JP2564549B2 (en) 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP2564549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342566A (en) * 2019-08-09 2021-02-09 株式会社大阪曹达 Method for manufacturing electrode for electrolysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460421A (en) * 1977-10-24 1979-05-15 Hitachi Ltd Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460421A (en) * 1977-10-24 1979-05-15 Hitachi Ltd Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342566A (en) * 2019-08-09 2021-02-09 株式会社大阪曹达 Method for manufacturing electrode for electrolysis

Also Published As

Publication number Publication date
JP2564549B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
EP2953901B1 (en) Mixed oxide of titanium and niobium comprising a trivalent element
JP4403244B2 (en) Method for producing positive electrode material for lithium battery, and lithium battery
TWI568067B (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
JPH06342657A (en) Lithium nickel dioxide cathode active substance its preparation and electrochemical battery
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
KR102136682B1 (en) Layered and spinel lithium titanates and processes for preparing the same
JPS5834414B2 (en) MnO↓2 induced from LiM↓2O↓4
JP2010123283A (en) Method of manufacturing active material and electrode, active material, electrode, and lithium-ion secondary battery
JP2005085635A (en) Nonaqueous electrolyte secondary battery
CN114604894B (en) Ammonium vanadate electrode material, preparation method and application thereof in water-based zinc ion battery
CN113666420A (en) Bimetal niobium oxide and carbon composite material thereof, preparation method and application
US11932554B2 (en) Method of recovering high nickel content cathode material from recycled lithium ion and nickel metal hydride batteries
JP4052695B2 (en) Lithium secondary battery
JPS63289762A (en) Manufacture of electrode active material
JP3625629B2 (en) Nickel oxide cathode material manufacturing method and battery using nickel oxide manufactured by the method
JP2001167762A (en) Lithium ion battery
RU2703629C1 (en) Anode material for lithium-ion accumulator and method of its production
JPS63289763A (en) Manufacture of electrode active material
JP2004506299A (en) Trivanadium oxide hydrate composition
KR101418065B1 (en) Positive composition for lithium secondary battery comprising lithium-manganese based metal oxide substituted other metal and preparation method thereof
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
CN112251812A (en) Single crystal NaNbO3Cube, preparation method and application thereof
RU2730001C1 (en) Anode material for lithium- and sodium-ion accumulators and a method for production thereof
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees