JP2564549B2 - Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents

Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Info

Publication number
JP2564549B2
JP2564549B2 JP62124592A JP12459287A JP2564549B2 JP 2564549 B2 JP2564549 B2 JP 2564549B2 JP 62124592 A JP62124592 A JP 62124592A JP 12459287 A JP12459287 A JP 12459287A JP 2564549 B2 JP2564549 B2 JP 2564549B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
secondary battery
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62124592A
Other languages
Japanese (ja)
Other versions
JPS63289762A (en
Inventor
武仁 見立
元男 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62124592A priority Critical patent/JP2564549B2/en
Publication of JPS63289762A publication Critical patent/JPS63289762A/en
Application granted granted Critical
Publication of JP2564549B2 publication Critical patent/JP2564549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、非水電解質二次電池用電極活物質及びその
の製造法に関する。さらに詳しくは、ことに非水電解質
二次電池の正極活物質として有用な非水電解質二次電池
用電極活物質及びそのの製造法に関するものである。
TECHNICAL FIELD The present invention relates to an electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same. More specifically, it relates to an electrode active material for a non-aqueous electrolyte secondary battery, which is particularly useful as a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same.

(ロ)従来の技術 リチウム、ナトリウム等の軽い金属を活物質として用
いる非水電解質電池は、軽量でかつ、高電圧であり、高
いエネルギー密度の電池となるため、その需要が急速に
伸びてきている。しかし、今日、市販されている非水電
解質電池は、一次電池であり、この電池を再び充填して
使用すると、負極活物質のデンドライト生成による電池
の内部短絡を起こしたり、正極の容量低下により放電不
能となるなどの不都合が生じ、二次電池として使用する
ことは不可能であった。
(B) Conventional technology Non-aqueous electrolyte batteries that use light metals such as lithium and sodium as active materials are lightweight, have high voltage, and have high energy density, so demand for them is growing rapidly. There is. However, the commercially available non-aqueous electrolyte battery is a primary battery today, and if this battery is recharged and used, internal short circuit of the battery may occur due to dendrite generation of the negative electrode active material, or discharge may occur due to reduction in the capacity of the positive electrode. It was impossible to use it as a secondary battery because of inconvenience such as failure.

これに対し、最近、負極としてリチウムアルミニウム
合金、ウッド合金、並びに各種グラファイト材料等が開
発されるに至って、負極活物質のデンドライト生成によ
る電池の内部短絡の心配はなくなった。
On the other hand, recently, lithium aluminum alloys, wood alloys, various graphite materials, and the like have been developed as negative electrodes, and there is no concern about internal short circuit of the battery due to dendrite formation of the negative electrode active material.

一方、従来、正極材料としては、五酸化バナジウム、
八酸化三クロム、硫化チタン、二酸化マンガン、グラフ
ァイト等の各種材料が用いられているが、容量、充放電
サイクル、放電電圧のいずれかに問題があり、負極の優
れた特性に対応するだけの特性を有さないばかりに、優
れた電池特性を得ることができなかった。
On the other hand, conventionally, as a positive electrode material, vanadium pentoxide,
Various materials such as trichrome octaoxide, titanium sulfide, manganese dioxide, and graphite are used, but there is a problem in capacity, charge / discharge cycle, or discharge voltage, and the characteristics are sufficient to correspond to the excellent characteristics of the negative electrode. In addition to not having, it was not possible to obtain excellent battery characteristics.

(ハ)発明が解決しようとする問題点 正極材料について多くの研究がなされ、容量の大き
さ、放電電圧の高さから、五酸化バナジウムが優れた特
性を有する材料であることが見い出されている。しかし
五酸化バナジウムは、放電することにより、電圧が段階
的に減少して、LiV2O5,Li2V2O5,Li3V2O5と組成変化す
る。このとき五酸化バナジウムの結晶性を引きついで生
成される結晶性の複合酸化物は、非常に安定であるた
め、一旦、リチウムを格子内部に取り込んでしまうと、
このリチウムを取り出すことは困難になる。すなわち、
充電が不能な状態に陥ってしまう。これに対し組成でLi
V2O5までのところで使用する限りにおいては、可逆的に
リチウムを取り出すことが可能であるが、放電容量が少
なくなってしまうことや、放電のしすぎによる特性劣化
を考えると、使用し難い材料であった。
(C) Problems to be Solved by the Invention A lot of research has been conducted on positive electrode materials, and it has been found that vanadium pentoxide is a material having excellent properties due to its large capacity and high discharge voltage. . However, the voltage of vanadium pentoxide decreases stepwise by discharging, and the composition changes to LiV 2 O 5 , Li 2 V 2 O 5 , and Li 3 V 2 O 5 . At this time, the crystalline complex oxide generated by attracting the crystallinity of vanadium pentoxide is very stable, and therefore once lithium is incorporated into the lattice,
It is difficult to take out this lithium. That is,
It falls into a state where charging is impossible. In contrast, the composition is Li
As long as it is used up to V 2 O 5 , lithium can be reversibly taken out, but it is difficult to use considering that the discharge capacity will decrease and the characteristics will deteriorate due to excessive discharge. It was a material.

上述の問題点を解決するために、五酸化バナジウムの
結晶性を排除すべく、バナジン酸塩等の焼結による五酸
化バナジウム製造時に異種元素を添加して非晶質化する
手法、急冷により非晶質化する手法(特開昭61−200667
号公報)等が提案されている。そしてかかる手法により
可逆的にリチウムを取り出すことが容易なバナジウム酸
化物系活物質の製造が可能となり、放電容量の多い、可
逆性の優れた電極材料を得ることが可能となった。しか
し、かかる製法では得られた活物質の熱的安定性、製造
コスト等においていまだに解決しなければならない問題
は残されている。
In order to solve the above problems, in order to eliminate the crystallinity of vanadium pentoxide, a method of adding a different element to make it amorphous during the production of vanadium pentoxide by sintering vanadate, etc. Crystallization method (Japanese Patent Laid-Open No. 61-200667)
No. publication) is proposed. With this method, it becomes possible to manufacture a vanadium oxide active material in which lithium can be reversibly taken out easily, and it is possible to obtain an electrode material having a large discharge capacity and excellent reversibility. However, in such a production method, there are still problems to be solved in terms of thermal stability of the obtained active material, production cost and the like.

本発明は、かかる状況に鑑みなされたものであり、こ
とに、充放電特性が通常の五酸化バナジウムに比して改
良されたバナジウム酸化物系の新たな非水電解質二次電
池用電極活物質を提供し、更に、簡便かつ安価に製造す
ることができる非水電解質二次電池用電極活物質の製造
方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and in particular, a new vanadium oxide-based electrode active material for a non-aqueous electrolyte secondary battery whose charge / discharge characteristics are improved as compared with normal vanadium pentoxide. In addition, the present invention aims to provide a method for producing an electrode active material for a non-aqueous electrolyte secondary battery, which can be produced simply and inexpensively.

(ニ)問題点を解決するための手段 かくして本発明によれば、オキシ塩化バナジウムを水
性媒体中で加水分解し、この加水分解溶液を濃縮、アル
カリ添加又はアルカリ添加後に濃縮を行い得られる沈殿
物又は残留固形物を150〜350℃の温度下で熱処理して結
合水を含むバナジウム酸化物からなる電極活物質を得る
ことを特徴とする非水電解質二次電池用電極活物質の製
造法が提供される。
(D) Means for Solving the Problems Thus, according to the present invention, a precipitate obtained by hydrolyzing vanadium oxychloride in an aqueous medium, concentrating the hydrolyzed solution, adding alkali or concentrating after adding alkali Alternatively, there is provided a method for producing an electrode active material for a non-aqueous electrolyte secondary battery, characterized in that the residual solid is heat-treated at a temperature of 150 to 350 ° C. to obtain an electrode active material made of vanadium oxide containing bound water. To be done.

更に本発明によれば、非水電解質二次電池の正極の活
物質として、結合水を含むバナジウム酸化物を用いたこ
とを特徴とする非水電解質二次電池用電極活物質(以
下、電極活物質と称する)が提供される。
Further, according to the present invention, as an active material of a positive electrode of a non-aqueous electrolyte secondary battery, a vanadium oxide containing bound water is used as an electrode active material for a non-aqueous electrolyte secondary battery (hereinafter referred to as electrode active material). Referred to as a substance).

本発明の原料物質のオキシ塩化バナジウムとしては五
価のオキシ塩化バナジウム[オキシ塩化バナジウム
(V)(VOCl3又はVO2Cl)]を用いるのが適している。
ただし、場合によってはバナジウム酸化数のより低いオ
キシ塩化バナジウム[例えば、オキシ塩化バナジウム
(IV)]を用いることができる。
As vanadium oxychloride as the starting material of the present invention, it is suitable to use pentavalent vanadium oxychloride [vanadium oxychloride (V) (VOCl 3 or VO 2 Cl)].
However, vanadium oxychloride having a lower vanadium oxidation number [for example, vanadium oxychloride (IV)] can be used in some cases.

オキシ塩化バナジウムの加水分解は水性媒体中で行な
われる。この水性媒体としては、水、アルカリ水溶液、
酸溶液、含水有機溶媒等が挙げられる。通常、水を用い
ればよいが、オキシ塩化バナジウムは加水分解すると非
常に強い酸性を示すので、この酸性を押えるために弱い
アルカリ溶液(例えばアンモニア水)を用いて加水分解
するのも一つの好ましい態様である。また、具体的な加
水分解方法としては、上記水性媒体中にオキシ塩化バナ
ジウムを加える方法、オキシ塩化バナジウムに上記水性
媒体を加える方法のいずれの方法を採用してもよい。加
水分解は常温下で放置することにより円滑に行なわれ、
通常、数分程度放置することで充分に行なわれるが、加
水分解を促進するために攪拌や加熱を適宜行なってもよ
い。
Hydrolysis of vanadium oxychloride is carried out in an aqueous medium. As the aqueous medium, water, an aqueous alkaline solution,
Examples thereof include acid solutions and water-containing organic solvents. Usually, water may be used, but since vanadium oxychloride exhibits a very strong acidity when hydrolyzed, it is also one preferred embodiment to hydrolyze using a weak alkaline solution (for example, ammonia water) to suppress this acidity. Is. Further, as a specific hydrolysis method, any of a method of adding vanadium oxychloride to the aqueous medium and a method of adding the aqueous medium to vanadium oxychloride may be adopted. Hydrolysis is performed smoothly by leaving it at room temperature,
Usually, it is sufficiently carried out by leaving it for several minutes, but stirring or heating may be appropriately carried out in order to accelerate hydrolysis.

なお、後工程で得られる沈殿物や残留固形物の粒度を
よく小さくして最終的に得られる活物質の表面積を増大
させるために界面活性剤や分散剤等が上記水性媒体中に
含まれていてもよい。さらに、モリブデン、タングステ
ン、クロム等の酸素酸のごときバナジウムと複合酸化物
を形成しうる化合物や、リン、シリカ、ニオブ等の酸素
酸のごとき酸化バナジウムの結晶性を妨げるとされてい
る化合物が上記水性媒体中に任意に添加されていてもよ
い。
In addition, a surfactant, a dispersant, etc. are contained in the aqueous medium in order to reduce the particle size of the precipitate or the residual solid obtained in the subsequent step and increase the surface area of the finally obtained active material. May be. Furthermore, compounds that are capable of forming complex oxides with vanadium, such as oxygen acids such as molybdenum, tungsten, and chromium, and compounds that are said to interfere with the crystallinity of vanadium oxide, such as oxygen acids such as phosphorus, silica, and niobium, are mentioned above. It may be optionally added to the aqueous medium.

このようにして得られる加水分解溶液を濃縮するか、
アルカリを添加するか、あるいはアルカリを添加して濃
縮することにより固形物が沈殿析出又は残留する。この
際の濃縮は、自然蒸発、加熱による蒸発、真空排気によ
る蒸発あるいは、真空排気状態での加熱による蒸発等の
いずれの方法で行なってもよい。またアルカリ添加は、
アンモニア水や水酸化リチウムなどの水酸化物の水溶液
のごときアルカリ溶液を添加して行なわれる。なお液中
からの沈殿物の回収は、濾過法、デカンテーション法等
で行なうのが適しているが、溶媒を留去して行なっても
よく、これらの方法に限定されるものではない。
The hydrolyzed solution thus obtained is concentrated or
By adding an alkali or adding an alkali and concentrating, a solid substance precipitates or remains. Concentration at this time may be carried out by any method such as natural evaporation, evaporation by heating, evaporation by vacuum evacuation, evaporation by heating in a vacuum exhaust state, and the like. The addition of alkali is
It is carried out by adding an alkaline solution such as an aqueous solution of ammonia water or a hydroxide such as lithium hydroxide. It is suitable to collect the precipitate from the liquid by a filtration method, a decantation method, or the like, but the solvent may be distilled off, and the method is not limited to these methods.

このようにして得られる沈殿物又は残留固形物は、不
定形状のものであり、ポリバナジン酸及びその場の含水
物を主体とする。これを150℃〜350℃の温度下で熱処理
することにより、結合水を含んだバナジウム酸化物が主
体とする本発明の電極活物質が得られる。熱処理の温度
が150℃未満では、ポリバナジン酸の縮合が不充分であ
りかつ物理的な吸着水を充分に除去することができず適
さない。一方、350℃を超えると結合水が除去され五酸
化バナジウムに変換されるため適さない。なお、かかる
熱処理は空気中、真空中、不活性雰囲気中、酸化雰囲気
中のいずれで行なってもよい。
The precipitate or residual solid thus obtained has an indefinite shape and is mainly composed of polyvanadic acid and in-situ water-containing material. By heat-treating this at a temperature of 150 ° C. to 350 ° C., an electrode active material of the present invention mainly composed of vanadium oxide containing bound water can be obtained. If the temperature of the heat treatment is less than 150 ° C, the condensation of polyvanadic acid is insufficient and the physically adsorbed water cannot be sufficiently removed, which is not suitable. On the other hand, if the temperature exceeds 350 ° C, bound water is removed and converted to vanadium pentoxide, which is not suitable. The heat treatment may be performed in air, vacuum, an inert atmosphere, or an oxidizing atmosphere.

(ホ)実施例 以下に、本発明を実施例により詳細に説明するが、こ
れにより本発明は限定されるものではない。
(E) Examples Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 オキシ三塩化バナジウム(VOCl3)25gを25℃下500ml
の水に加え、数分間放置して加水分解し、さらに、界面
活性剤(1g:ポリオキシエチレンソルビタンモノパルミ
テート)を加えた。その後、28%アンモニア水30mlを加
えることにより沈殿物が得られた。これにより得られた
沈殿を回収するために、蒸発乾固を行った。次いで得ら
れた物質10gを、空気中、220℃で24時間熱処理した。こ
の方法によって得られたバナジウム酸化物系物質をサン
プルAとした。
Example 1 Vanadium oxytrichloride (VOCl 3 ) (25 g) at 25 ° C. under 500 ml
Was added to the above water and left for several minutes for hydrolysis, and further a surfactant (1 g: polyoxyethylene sorbitan monopalmitate) was added. Then, a precipitate was obtained by adding 30 ml of 28% aqueous ammonia. Evaporation to dryness was carried out in order to recover the precipitate thus obtained. 10 g of the material obtained were then heat treated in air at 220 ° C. for 24 hours. The vanadium oxide-based material obtained by this method was used as sample A.

実施例2 実施例1と同様にして、オキシ三塩化バナジウム25g
を500mlの水で加水分解し、界面活性剤を加えた。その
後、この溶液を80〜100℃で蒸発乾固を行った。これに
より得られた物質を、空気中、220℃で熱処理した。こ
の方法によって得られたバナジウム酸化物系物質をサン
プルBとした。
Example 2 As in Example 1, 25 g of vanadium oxytrichloride
Was hydrolyzed with 500 ml of water and a surfactant was added. Then, the solution was evaporated to dryness at 80 to 100 ° C. The material thus obtained was heat treated at 220 ° C. in air. The vanadium oxide-based material obtained by this method was used as sample B.

実施例3 実施例1と同様にして、オキシ三塩化バナジウム25g
を500mlの水で加水分解し、界面活性剤を加えた。その
後、この溶液に、28%アンモニア水45mlを加え、80〜10
0℃で蒸発乾固を行った。これにより得られた物質を、
空気中で、220℃で熱処理した。この方法によって得ら
れたバナジウム酸化物系物質をサンプルCとした。
Example 3 In the same manner as in Example 1, 25 g of vanadium oxytrichloride
Was hydrolyzed with 500 ml of water and a surfactant was added. After that, 45 ml of 28% ammonia water was added to this solution,
Evaporation to dryness was performed at 0 ° C. The substance obtained by this,
Heat treated at 220 ° C. in air. The vanadium oxide-based material obtained by this method was used as sample C.

各々のサンプルについて以下のようにして電極を作製
した。すなわち、各々のサンプル500mgとアセチレンブ
ラック、ポリテトラフルオロエチレンを重量比で100対1
5対5の割合で各々混合し、ペレット状に成形したの
ち、200℃で減圧乾燥を行った。これら各々をステンレ
スネットで挟んで作用極(正極)として用いた。電解液
には、1Mの過塩素酸リチウムを含むプロピレンカーボネ
ート溶液を用い、負極及び参照極としてはリチウム金属
を用い、0.3mA/cm2の電流密度で充放電を行った。放電
の終了条件は、電極活物質1gに対して150mAh放電したと
きとし、充電の終了条件は、4Vに到達したときとした。
An electrode was produced as follows for each sample. That is, 500 mg of each sample, acetylene black, and polytetrafluoroethylene in a weight ratio of 100: 1
The mixture was mixed at a ratio of 5: 5, molded into pellets, and dried under reduced pressure at 200 ° C. Each of these was sandwiched between stainless nets and used as a working electrode (positive electrode). A propylene carbonate solution containing 1 M lithium perchlorate was used as the electrolytic solution, lithium metal was used as the negative electrode and the reference electrode, and charging / discharging was performed at a current density of 0.3 mA / cm 2 . The discharge termination condition was when 150 mAh was discharged to 1 g of the electrode active material, and the charge termination condition was when 4 V was reached.

以上のようにして行った充放電試験の結果を第1図〜
第3図に示す。第1図、第2図、第3図は、各々サンプ
ルA,B,Cの結果を示している。各図中に示した数字は、
充放電のサイクルの回数を表す。
The results of the charge / discharge test conducted as described above are shown in FIG.
It is shown in FIG. 1, 2 and 3 show the results of samples A, B and C, respectively. The numbers shown in each figure are
Indicates the number of charge / discharge cycles.

以上のことから、本発明の製造法で製造したバナジウ
ム酸化物系の電極活物質は、各々、リチウム電池の正極
として、可逆性よく、良好な充放電特性を示すことがわ
かった。
From the above, it was found that each of the vanadium oxide-based electrode active materials produced by the production method of the present invention exhibits good reversibility and good charge / discharge characteristics as a positive electrode of a lithium battery.

(ヘ)発明の効果 本発明は、結合水を含むバナジウム酸化物からなる電
極活物質を製造する方法として、オキシ塩化バナジウム
を水性媒体中で加水分解し、この加水分解溶液を濃縮、
アルカリ添加又はアルカリ添加後に濃縮を行い、得られ
る沈殿物又は残留固形物を150〜350℃の温度下で熱処理
するという簡便な工程からなるため、活物質を効率よく
得ることができ、量産化、コストの低廉化を図ることが
できる。また、本発明の電極活物質は、その充放電特性
において、五酸化バナジウムに比して優れた特性を有し
ている。
(F) Effect of the Invention The present invention is a method for producing an electrode active material composed of vanadium oxide containing bound water, wherein vanadium oxychloride is hydrolyzed in an aqueous medium, and the hydrolyzed solution is concentrated,
Concentration is carried out after addition of alkali or addition of alkali, and the resulting precipitate or residual solid is composed of a simple process of heat treatment at a temperature of 150 to 350 ° C., so that the active material can be efficiently obtained and mass produced, The cost can be reduced. Further, the electrode active material of the present invention has excellent charge / discharge characteristics as compared with vanadium pentoxide.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は各々、本発明の実施例1〜3で得られ
たバナジウム酸化物系の電極活物質についての充放電曲
線を示すグラフ図であり、図内に示した数字は、各々充
放電のサイクルの回数を示すものである。
1 to 3 are graphs each showing a charge / discharge curve of the vanadium oxide-based electrode active material obtained in Examples 1 to 3 of the present invention, and the numbers shown in the figures are: Each shows the number of charging and discharging cycles.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】オキシ塩化バナジウムを水性媒体中で加水
分解し、この加水分解溶液を濃縮、アルカリ添加又はア
ルカリ添加後に濃縮を行い、得られる沈殿物又は残留固
形物を150〜350℃の温度下で熱処理して結合水を含むバ
ナジウム酸化物からなる電極活物質を得ることを特徴と
する非水電解質二次電池用電極活物質の製造法。
1. Vanadium oxychloride is hydrolyzed in an aqueous medium, and the hydrolyzed solution is concentrated, alkali-added or alkali-added and then concentrated, and the resulting precipitate or residual solid is heated at a temperature of 150 to 350 ° C. A method for producing an electrode active material for a non-aqueous electrolyte secondary battery, which comprises heat-treating to obtain an electrode active material composed of vanadium oxide containing bound water.
【請求項2】水性媒体が、界面活性剤を含む請求項1記
載の製造法。
2. The method according to claim 1, wherein the aqueous medium contains a surfactant.
【請求項3】水性媒体が、分散剤を含む請求項1又は2
記載の製造法。
3. An aqueous medium containing a dispersant.
The manufacturing method described.
【請求項4】水性媒体が、酸素酸を含む請求項1〜3い
ずれか1つに記載の製造法。
4. The production method according to claim 1, wherein the aqueous medium contains an oxygen acid.
【請求項5】非水電解質二次電池の正極の活物質とし
て、結合水を含むバナジウム酸化物を用いたことを特徴
とする非水電解質二次電池用電極活物質。
5. An electrode active material for a non-aqueous electrolyte secondary battery, wherein vanadium oxide containing bound water is used as an active material for a positive electrode of the non-aqueous electrolyte secondary battery.
JP62124592A 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Fee Related JP2564549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124592A JP2564549B2 (en) 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124592A JP2564549B2 (en) 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63289762A JPS63289762A (en) 1988-11-28
JP2564549B2 true JP2564549B2 (en) 1996-12-18

Family

ID=14889269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124592A Expired - Fee Related JP2564549B2 (en) 1987-05-21 1987-05-21 Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP2564549B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342566B (en) * 2019-08-09 2023-09-19 株式会社大阪曹达 Method for manufacturing electrode for electrolysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460421A (en) * 1977-10-24 1979-05-15 Hitachi Ltd Battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460421A (en) * 1977-10-24 1979-05-15 Hitachi Ltd Battery

Also Published As

Publication number Publication date
JPS63289762A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
JP4113517B2 (en) Electrochemical cell, cathode material and method for producing the same
CA2038631C (en) Lithiated nickel dioxide and secondary cells prepared therefrom
JP4016429B2 (en) Non-aqueous electrolyte secondary battery
CA2067286C (en) Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom
JP4403244B2 (en) Method for producing positive electrode material for lithium battery, and lithium battery
CA2747406C (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
JPH0746607B2 (en) Non-aqueous secondary battery
JP2002231227A (en) Surface treatment method for positive electrode layer phase structure oxide for lithium secondary battery
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JPH01209663A (en) Nonaqueous secondary battery
JP4052695B2 (en) Lithium secondary battery
JP2564549B2 (en) Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN115043430B (en) Preparation method and application of praseodymium-doped porous spherical titanium niobate material
CA2129716A1 (en) Process for producing a positive electrode for lithium secondary batteries
JP2001167762A (en) Lithium ion battery
Sugawara et al. Molybdic oxides as cathode active materials in secondary lithium batteries
JPH07107850B2 (en) Method for manufacturing electrode active material
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JPH04253161A (en) Manufacture of positive electrode for nonaqueous electrolyte battery
JP3968773B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery including the same
JP4121534B2 (en) Lithium secondary battery
JP2796839B2 (en) Positive active material for lithium battery, its manufacturing method and its positive plate
JPH02139863A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees