JPH07107850B2 - Method for manufacturing electrode active material - Google Patents

Method for manufacturing electrode active material

Info

Publication number
JPH07107850B2
JPH07107850B2 JP62124593A JP12459387A JPH07107850B2 JP H07107850 B2 JPH07107850 B2 JP H07107850B2 JP 62124593 A JP62124593 A JP 62124593A JP 12459387 A JP12459387 A JP 12459387A JP H07107850 B2 JPH07107850 B2 JP H07107850B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
discharge
acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62124593A
Other languages
Japanese (ja)
Other versions
JPS63289763A (en
Inventor
武仁 見立
元男 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62124593A priority Critical patent/JPH07107850B2/en
Publication of JPS63289763A publication Critical patent/JPS63289763A/en
Publication of JPH07107850B2 publication Critical patent/JPH07107850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、電極活物質の製造法に関する。さらに詳しく
は、ことに非水電解質二次電池の正極活物質として有用
な電極活物質の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an electrode active material. More specifically, it relates to a method for producing an electrode active material, which is particularly useful as a positive electrode active material for a non-aqueous electrolyte secondary battery.

(ロ)従来の技術 リチウム・ナトリウム等の軽い金属を活物質として用い
る非水電解質電池は、軽量でかつ、高電圧であり、高い
エネルギー密度の電池となるため、その需要が急速に伸
びてきている。しかし、今日、市販されている非水電解
質電池は、一次電池であり、この電池を再び充電して使
用すると、負極活物質のデンドライト生成による電池の
内部短絡を起こしたり、正極の容量低下により放電不能
となるなどの不都合が生じ、二次電池として使用するこ
とは不可能であった。
(B) Conventional technology Non-aqueous electrolyte batteries that use light metals such as lithium and sodium as active materials are lightweight, have high voltage, and have high energy density, so demand for them is growing rapidly. There is. However, commercially available non-aqueous electrolyte batteries are primary batteries today, and if these batteries are recharged and used, an internal short circuit of the battery may occur due to dendrite formation of the negative electrode active material, or the capacity of the positive electrode may decrease, resulting in discharge. It was impossible to use it as a secondary battery because of inconvenience such as failure.

これに対し、最近、負極としてリチウムアルミニウム合
金、ウッド合金、並びに各種グラファイト材料等が開発
されるに至って、負極活物質のデンドライト生成による
電池の内部短絡の心配はなくなった。
On the other hand, recently, lithium aluminum alloys, wood alloys, various graphite materials, and the like have been developed as negative electrodes, and there is no concern about internal short circuit of the battery due to dendrite formation of the negative electrode active material.

一方、従来、正極材料としては、五酸化バナジウム、八
酸化三クロム、硫化チタン、二酸化マンガン、グラファ
イト等の各種材料が用いられているが、容量、充放電サ
イクル、放電電圧のいずれかに問題があり、負極の優れ
た特性に対応するだけの特性を有さないばかりに、優れ
た電池特性を得ることができなかった。
On the other hand, conventionally, various materials such as vanadium pentoxide, trichrome octaoxide, titanium sulfide, manganese dioxide, and graphite have been used as the positive electrode material, but there is a problem in capacity, charge / discharge cycle, or discharge voltage. However, the battery does not have the characteristics corresponding to the excellent characteristics of the negative electrode, and the excellent battery characteristics cannot be obtained.

(ハ)発明が解決しようとする問題点 正極材料について多くの研究がなされ、容量の大きさ、
放電電圧の高さから、五酸化バナジウムが優れた特性を
有する材料であることが見い出されている。しかし五酸
化バナジウムは、放電することにより、電圧が段階的に
減少して、LiV2O5,Li2V2O5,Li3V2O5と組成変化する。こ
のとき五酸化バナジウムの結晶性を引きついで生成され
る結晶性の複合酸化物は、非常に安定であるため、一
旦、リチウムを格子内部に取り込んでしまうと、このリ
チウムを取り出すことは困難になる。すなわち、充電が
不能な状態に陥ってしまう。これに対し、組成でLiV2O5
までのところで使用する限りにおいては、可逆的にリチ
ウムを取り出すことが可能であるが、放電容量が少なく
なってしまうことや、放電のしすぎによる特性劣化を考
えると、使用し難い材料であった。
(C) Problems to be solved by the invention Many studies have been conducted on the positive electrode material,
From the high discharge voltage, it has been found that vanadium pentoxide is a material with excellent properties. However, the voltage of vanadium pentoxide decreases stepwise by discharging, and the composition changes to LiV 2 O 5 , Li 2 V 2 O 5 , and Li 3 V 2 O 5 . At this time, the crystalline complex oxide formed by attracting the crystallinity of vanadium pentoxide is very stable, and once lithium is taken into the lattice, it becomes difficult to take out this lithium. . That is, charging is impossible. In contrast, the composition is LiV 2 O 5
As long as it is used up to now, it is possible to reversibly extract lithium, but it is a material that is difficult to use considering that the discharge capacity will decrease and the characteristics will deteriorate due to excessive discharge. .

上述の問題点を解決するために、五酸化バナジウムの結
晶性を排除すべく、バナジン酸塩等の焼結による五酸化
バナジウム製造時に異種元素を添加して非晶質化する手
法、急冷により非晶質化する手法(特開昭61−200667号
公報)等が提案されている。そしてかかる手法により可
逆的にリチウムを取り出すことが容易なバナジウム酸化
物系活物質の製造が可能となり、放電容量の大きい、可
逆性の優れた電極材料を得ることが可能となった。しか
し、かかる製法では得られた活物質の熱的安定性、製造
コスト等においていまだに解決しなければならない問題
は残されている。
In order to solve the above problems, in order to eliminate the crystallinity of vanadium pentoxide, a method of adding a different element to make it amorphous during the production of vanadium pentoxide by sintering vanadate, etc. A crystallization method (Japanese Patent Laid-Open No. 61-200667) has been proposed. With this method, it becomes possible to manufacture a vanadium oxide active material in which lithium can be reversibly taken out easily, and an electrode material having a large discharge capacity and excellent reversibility can be obtained. However, in such a production method, there are still problems to be solved in terms of thermal stability of the obtained active material, production cost and the like.

本発明は、かかる状況に鑑みてなされたものであり、こ
とに、充放電特性が通常の五酸化バナジウムに比して改
良されたバナジウム酸化物系の電極活物質を、簡便かつ
安価に製造することができる新たな電極活物質の製造方
法を提供しようとするものである。
The present invention has been made in view of such circumstances, and in particular, a vanadium oxide-based electrode active material having charge / discharge characteristics improved as compared with normal vanadium pentoxide is produced easily and inexpensively. The present invention is intended to provide a new method for producing an electrode active material that can be produced.

(ニ)問題点を解決するための手段 かくして本発明によればバナジン酸のアルカリ金属又は
アンモニウム塩を水性媒体に溶解した後、この溶液を濃
縮し、得られる沈殿物又は残留固形物を約150〜350℃の
温度下で熱処理してバナジウム酸化物系の電極活物質を
得ることを特徴とする電極活物質の製造法が提供され
る。
(D) Means for Solving the Problems Thus, according to the present invention, after dissolving the alkali metal or ammonium salt of vanadic acid in an aqueous medium, the solution is concentrated, and the resulting precipitate or residual solid is about 150 Provided is a method for producing an electrode active material, characterized by obtaining a vanadium oxide-based electrode active material by heat treatment at a temperature of ~ 350 ° C.

上記バナジン酸のアルカリ金属又はアンモニウム塩とし
ては、オルトバナジン酸の塩のみならず、メタバナジン
酸、ピロバナジン酸、五バナジン酸等のいわゆるポリバ
ナジン酸のアルカリ金属又はアンモニウム塩が挙げら
れ、ポリバナジン酸塩を用いるのが好ましい。これらは
通常、固定である。また上記アルカリ金属塩としては、
リチウム塩、ナトリウム塩、カリウム塩等が適してい
る。なお、これらアルカリ金属塩を用いる場合のアルカ
リ金属の選定は、通常、目的とする二次電池で組合せる
負極活物質に対応するように行なうとよい。これらは後
述の熱処理後においても活物質中に残存しうるからであ
る。アンモニウム塩を用いる場合には熱処理時にアンモ
ニアとして除去されるためかかる制限はない。従ってア
ンモニウム塩を用いるのが好ましい。
Examples of the alkali metal or ammonium salt of vanadic acid include not only salts of orthovanadic acid, but also metavanadic acid, pyrovanadic acid, alkali metal or ammonium salts of so-called polyvanadic acid such as pentavanadic acid, and polyvanadate is used. Is preferred. These are usually fixed. As the alkali metal salt,
Lithium salt, sodium salt, potassium salt and the like are suitable. In the case of using these alkali metal salts, it is usually preferable to select the alkali metal so as to correspond to the negative electrode active material to be combined in the intended secondary battery. This is because these can remain in the active material even after the heat treatment described below. When an ammonium salt is used, it is removed as ammonia during the heat treatment, so there is no such limitation. Therefore, it is preferable to use an ammonium salt.

上記パナジン酸塩を溶解する水性媒体としては、少なく
とも水を含みかつバナジン酸塩を溶解しうるに足る液状
媒体であればよく、水自体であってもよく、例えばアン
モニア水等のアルカリ溶液や塩酸等の酸溶液などであっ
てもよい。これらのうち水又はアンモニア水を用いるの
が好ましい。
The aqueous medium for dissolving the panadate may be a liquid medium containing at least water and capable of dissolving vanadate, and may be water itself, for example, an alkaline solution such as ammonia water or hydrochloric acid. It may be an acid solution such as. Of these, it is preferable to use water or ammonia water.

なお、後工程で得られる沈殿物や残留固形物の粘度をよ
り小さくして最終的に得られる活物質の表面積を増大す
るために界面活性剤や分散剤等が上記水性媒体中に含ま
れていてもよい。さらに、モリブデン、タングステン、
クロム等の酸素酸のごとき酸化バナジウムと複合酸化物
を形成しうる化合物や、リン、シリカ、ニオブ等の酸素
酸のごとき酸化バナジウムの結晶性を妨げるとされてい
る化合物が必要に応じて上記水性媒体中に任意に添加さ
れていてもよい。
In addition, a surfactant, a dispersant or the like is contained in the aqueous medium in order to further reduce the viscosity of the precipitate or the residual solid obtained in the subsequent step and increase the surface area of the finally obtained active material. May be. In addition, molybdenum, tungsten,
A compound capable of forming a complex oxide with vanadium oxide such as oxygen acid such as chromium, or a compound that is said to interfere with the crystallinity of vanadium oxide such as oxygen acid such as phosphorus, silica, niobium, etc. It may be optionally added to the medium.

上記溶液の濃縮は、自然蒸発、加熱による蒸発、真空排
気による蒸発、あるいは、真空排気状態での加熱による
蒸発等のいずれの方法で行なってもよい。
Concentration of the solution may be performed by any method such as natural evaporation, evaporation by heating, evaporation by evacuation, or evaporation by heating in a vacuum exhaust state.

濃縮により沈殿物が生成し、これを進めることにより残
留固形物が得られる。沈殿物の回収は、濾過法デカンテ
ーション法等で行なうのが適しているが、これらの方法
に限定されるものではない。
A precipitate is formed by concentration, and by proceeding this, a residual solid substance is obtained. It is suitable to collect the precipitate by a filtration method, a decantation method, or the like, but the method is not limited to these methods.

このようにして得られる沈殿物又は残留固形物は、不定
形状のものであり、ポリバナジン酸及びその塩の含水物
を主体とするものと考えられる。これを約150〜350℃の
温度下で熱処理することにより、不定形の結合水を含ん
だバナジウム酸化物が主体と考えられる本発明の電極活
物質が得られる。熱処理の温度が約150℃未満では、バ
ナジン酸の縮合が不充分でありかつ物理的な吸着水を充
分に除去することができず適さない。一方、約350℃を
超えると結合水が除去され五酸化バナジウムに変換され
るため適さない。なお、かかる熱処理は空気中、真空
中、不活性雰囲気中、酸化雰囲気中のいずれで行なって
もよい。
The thus-obtained precipitate or residual solid has an indefinite shape, and is considered to be mainly composed of a hydrous substance of polyvanadic acid and its salt. By heat-treating this at a temperature of about 150 to 350 ° C., the electrode active material of the present invention, which is considered to be mainly composed of vanadium oxide containing amorphous bound water, can be obtained. If the temperature of the heat treatment is less than about 150 ° C., the condensation of vanadic acid is insufficient and the physically adsorbed water cannot be sufficiently removed, which is not suitable. On the other hand, if the temperature exceeds about 350 ° C, bound water is removed and converted to vanadium pentoxide, which is not suitable. The heat treatment may be performed in air, vacuum, an inert atmosphere, or an oxidizing atmosphere.

(ホ)実施例 以下に、本発明を実施例により説明するが、これにより
本発明は限定されるものではない。
(E) Examples Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto.

メタバナジン酸アンモニウム(NH4VO3)5gを10%アンモ
ニア水500mlで溶解させた。さらに、この溶液に、界面
活性剤(1g;ポリオキシエチレンソルビタンモノパルミ
テート)を加えた。その後、80〜100℃で溶液を蒸発濃
縮することにより、沈殿物を得た。これにより得られた
沈殿を回収するために、蒸発乾固を行った。この沈殿物
を、空気中、220℃で24時間熱処理を施し、バナジウム
酸化物系物質(粒径1〜10μm)を得た。
5 g of ammonium metavanadate (NH 4 VO 3 ) was dissolved in 500 ml of 10% aqueous ammonia. Further, a surfactant (1 g; polyoxyethylene sorbitan monopalmitate) was added to this solution. Then, the precipitate was obtained by evaporating and concentrating the solution at 80 to 100 ° C. Evaporation to dryness was carried out in order to recover the precipitate thus obtained. This precipitate was heat-treated in air at 220 ° C. for 24 hours to obtain a vanadium oxide-based substance (particle size 1 to 10 μm).

以上のようにして製造した本発明のバナジウム酸化物系
電極活物質(以下試料)の熱重量法(TG)による減量曲
線、及び示差熱分析(DTA)による示差熱分析曲線を第
1図に示す。この結果により、この試料を350℃以上で
熱処理すると、結晶性の五酸化バナジウムが生成するこ
とが確認された。
The vanadium oxide-based electrode active material of the present invention (hereinafter referred to as a sample) produced as described above shows a weight loss curve by a thermogravimetric method (TG) and a differential thermal analysis curve by a differential thermal analysis (DTA). . From this result, it was confirmed that crystalline vanadium pentoxide was generated when this sample was heat-treated at 350 ° C. or higher.

上記のようにして得られた試料を用いて電極を、以下の
方法で作製した。すなわち、この試料50mgとアセチレン
ブラック、ポリテトラフルオロエチレンを重量比で100
対15対5の割合で混合し、ペレット状に成形したのち、
200℃で減圧乾燥を行った。これをステンレスネットで
挾んで作用極(正極)として用いた。電解液には、1Mの
過塩素酸リチウムを含むプロピレンカーボネート溶液を
用い、負極及び参照極としてはリチウム金属を用い、0.
3mA/cm2の電流密度で充放電を行った。放電の終了条件
は、電極活物質1gに対して150mAh放電したときとし、充
電の終了条件は、4Vに到達したときとした。
An electrode was produced by the following method using the sample obtained as described above. That is, 50 mg of this sample, acetylene black, and polytetrafluoroethylene were used in a weight ratio of 100.
After mixing in a ratio of 15: 5 and forming into pellets,
Vacuum drying was performed at 200 ° C. This was sandwiched with a stainless net and used as a working electrode (positive electrode). As the electrolytic solution, a propylene carbonate solution containing 1M lithium perchlorate was used, and lithium metal was used as the negative electrode and the reference electrode.
Charge / discharge was performed at a current density of 3 mA / cm 2 . The discharge termination condition was when 150 mAh was discharged to 1 g of the electrode active material, and the charge termination condition was when 4 V was reached.

以上のようにして行った充放電試験の結果を第2図に示
す。図内に示した数字は、充放電のサイクルの回数を表
す。これにより、本発明の製造法で製造した電極活物質
は、リチウム電池の正極として、可逆性よく、良好な充
放電特性を示すことがわかった。
The result of the charge / discharge test conducted as described above is shown in FIG. The numbers shown in the figure represent the number of charge / discharge cycles. From this, it was found that the electrode active material manufactured by the manufacturing method of the present invention has good reversibility and good charge / discharge characteristics as a positive electrode of a lithium battery.

(ヘ)発明の効果 本発明は、バナジウム酸化物系の電極活物質を製造する
方法として、バナジン酸塩を溶解し、蒸発して得られる
物質に熱処理を行うという簡便な工程からなるため、量
産化、コストの低廉化ができ、さらに、活物質の充放電
特性において、五酸化バナジウムに比して優れた特性を
もつ活物質を効率良く得ることが可能となる。
(F) Effect of the Invention The present invention is a method for producing a vanadium oxide-based electrode active material, which comprises a simple process of dissolving vanadate and subjecting the substance obtained by evaporation to heat treatment. In addition, it is possible to reduce the cost and cost, and further, it is possible to efficiently obtain an active material having excellent charge / discharge characteristics as compared with vanadium pentoxide.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の製造方法で得られるバナジウム酸化
物系電極活物質のTG及びDTA曲線を示すグラフ図、第2
図は、本発明の製造方法で得られた電極活物質を用いて
作製した電極の充放電曲線を例示するグラフ図である。
FIG. 1 is a graph showing TG and DTA curves of a vanadium oxide electrode active material obtained by the production method of the present invention,
The figure is a graph illustrating the charge / discharge curve of an electrode manufactured using the electrode active material obtained by the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バナジン酸のアルカリ金属又はアンモニウ
ム塩を水性媒体に溶解した後、この溶液を濃縮し、得ら
れる沈殿物又は残留固形物を約150〜350℃の温度下で熱
処理してバナジウム酸化物系の電極活物質を得ることを
特徴とする電極活物質の製造法。
1. A solution of an alkali metal or ammonium salt of vanadic acid in an aqueous medium, the solution is concentrated, and the resulting precipitate or residual solid is heat treated at a temperature of about 150 to 350 ° C. for vanadium oxidation. A method for producing an electrode active material, which comprises obtaining a physical electrode active material.
JP62124593A 1987-05-21 1987-05-21 Method for manufacturing electrode active material Expired - Fee Related JPH07107850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124593A JPH07107850B2 (en) 1987-05-21 1987-05-21 Method for manufacturing electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124593A JPH07107850B2 (en) 1987-05-21 1987-05-21 Method for manufacturing electrode active material

Publications (2)

Publication Number Publication Date
JPS63289763A JPS63289763A (en) 1988-11-28
JPH07107850B2 true JPH07107850B2 (en) 1995-11-15

Family

ID=14889292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124593A Expired - Fee Related JPH07107850B2 (en) 1987-05-21 1987-05-21 Method for manufacturing electrode active material

Country Status (1)

Country Link
JP (1) JPH07107850B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123822A (en) * 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Electrode material, manufacturing method therefor, and nonaqueous lithium secondary battery

Also Published As

Publication number Publication date
JPS63289763A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
JP4403244B2 (en) Method for producing positive electrode material for lithium battery, and lithium battery
CA2747406C (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
JP4113517B2 (en) Electrochemical cell, cathode material and method for producing the same
JPH0746607B2 (en) Non-aqueous secondary battery
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
JPS63114064A (en) Nonaqueous secondary battery
JP2002231227A (en) Surface treatment method for positive electrode layer phase structure oxide for lithium secondary battery
JP2013503102A (en) Method for preparing lithium metal oxides using fluidized bed technology
JPH01209663A (en) Nonaqueous secondary battery
JPH07107850B2 (en) Method for manufacturing electrode active material
JP2564549B2 (en) Electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP7329696B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
JPH07114125B2 (en) Non-aqueous secondary battery
KR20210080081A (en) Cathode active material, method for manufacturing the same, and lithium ion battery including the same
JP2845150B2 (en) Rechargeable battery
JPH0260056A (en) Manufacture of nonaqueous secondary battery and its positive electrode active mateiral
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JPS63218156A (en) Nonaqueous secondary battery
JPH02220357A (en) Nonaqueous secondary battery
JPH034445A (en) Nonaqueous medium secondary battery
JP2003187800A (en) Positive pole active material and its manufacturing method, and secondary non-aqueous electrolyte battery provided thereof
JPH0773883A (en) Secondary battery
JPH02139862A (en) Non-aqueous electrolyte secondary battery
JP2000357512A (en) Graphite particle for lithium secondary battery negative electrode, negative electrode for lithium secondary battery, and lithium secondary battery
JPH01289066A (en) Manufacture of positive electrode for non-acqueous secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees