JPS6328858A - Thermally decomposed boron nitride crucible for evaporating metal and its production - Google Patents

Thermally decomposed boron nitride crucible for evaporating metal and its production

Info

Publication number
JPS6328858A
JPS6328858A JP17094186A JP17094186A JPS6328858A JP S6328858 A JPS6328858 A JP S6328858A JP 17094186 A JP17094186 A JP 17094186A JP 17094186 A JP17094186 A JP 17094186A JP S6328858 A JPS6328858 A JP S6328858A
Authority
JP
Japan
Prior art keywords
crucible
layers
boron nitride
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17094186A
Other languages
Japanese (ja)
Inventor
Shojiro Watanabe
祥二郎 渡辺
Kenji Nomura
謙二 野村
Yoshimitsu Kawagoe
美満 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP17094186A priority Critical patent/JPS6328858A/en
Publication of JPS6328858A publication Critical patent/JPS6328858A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Abstract

PURPOSE:To prevent the damage of a crucible having a multilayered structure due to a shrinkage strain produced between a metal to be evaporated and the crucible during cooling by forming one or more layers so that they are hot bonded to other constituent layers of the crucible. CONSTITUTION:A thermally decomposed boron nitride crucible consisting of weakly joined two or more layers is produced. External force is applied to the crucible to separate the layers from the weakly joined parts and surface treatment is carried out by ultrasonic cleaning with an org. solvent such as ethanol and drying. After the surface treatment, the layers are combined to obtain a multilayered crucible. When the resulting crucible is used to evaporate a metal, it withstands force applied by the difference in coefft. of thermal expansion between the crucible and the metal during cooling. In case where the inner layer is damaged, the crucible is not entirely damaged, so the service life is prolonged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱分解窒化ホウ素製蒸発用ルツざ及びその製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pyrolytic boron nitride evaporation furnace and a method for manufacturing the same.

熱分解窒化ホウ素(以下P−BNという)tit、高純
度・高品質の窒化ホウ素として、化合物半導体や特殊合
金の製造など幅広い分野で用いられている工業材料であ
る。特に()aAs単結晶ウェハー上+CGap−XA
IX As  などの混晶化合物半導体を二ビタキシャ
ル成長させる一方法である分子ビームエぎタキシー(以
下M B Eという)法における金属蒸発用ルツボとし
てP −B Nルツボは独占的に用いられている。
Pyrolytic boron nitride (hereinafter referred to as P-BN) is a high-purity, high-quality boron nitride that is an industrial material used in a wide range of fields such as the production of compound semiconductors and special alloys. Especially ()aAs single crystal wafer+CGap-XA
A P-BN crucible is used exclusively as a crucible for metal evaporation in the molecular beam evacuation (hereinafter referred to as MBE) method, which is a method for bibitaxially growing a mixed crystal compound semiconductor such as IX As.

〔従来の技術〕[Conventional technology]

P−BNルツボは、他の基材に金属を蒸着させる際に、
それらの俗融金属を入れておく容器として用いられる。
P-BN crucibles are used when depositing metals on other base materials.
It is used as a container to hold these common metals.

蒸着操作を行なう場合、ルツボは著しい高温にさらされ
続けた後、室温まで冷却される。ルツボ内に存在する金
属は高温時には溶融状態であるが、冷却時に固化する際
、ルツボと金属との間の熱膨張率が異なるためにルツボ
には大きな応力がかかる。このため、ルツボが破損する
現象がしばしば見られる6%に金属がAlの場合、ルツ
ボとの付着性がより大きいため、冷却時におけるルツざ
の破損が非常に高い。
When performing a vapor deposition operation, the crucible is continuously exposed to significantly high temperatures and then cooled to room temperature. The metal present in the crucible is in a molten state at high temperatures, but when it solidifies during cooling, a large stress is applied to the crucible due to the difference in thermal expansion coefficient between the crucible and the metal. For this reason, when the metal in the 6% metal is Al, which often causes damage to the crucible, the crucible is very likely to be damaged during cooling because of its greater adhesion to the crucible.

そこで、P−BNルツボとしては、連続膜から成る単層
構造ルツボの他に、ルツボ内側層と外側層とが弱く接合
した多層構造ルツボ(特公昭55−44154号公報及
び特公昭5<5−17428号公@)、さらには隣接す
る各層を互いに異なる温度で析出させてなる多層構造ル
ツボ(特開昭61−23759号公報)が提案されてい
る。
Therefore, as P-BN crucibles, in addition to crucibles with a single layer structure made of a continuous film, crucibles with a multilayer structure in which the crucible inner layer and outer layer are weakly bonded (Japanese Patent Publication No. 55-44154 and Japanese Patent Publication No. 5<5- No. 17428 (Japanese Patent Application Laid-Open No. 17428), and furthermore, a multilayered crucible in which adjacent layers are deposited at different temperatures (Japanese Patent Application Laid-open No. 61-23759) has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、連続膜から成る単層構造ルツボは、連続膜の膜
厚が多層構造ルツボの各層に比べより厚いために可撓性
に乏しく、その結果、冷却時において金属とルツボとの
間に生ずる収縮歪によりルツボが破損してしまうことが
多い。このような欠点をなくすために改良されたルツボ
として、2層以上の連続膜が相互に弱く接合した多層構
造ルツボがある。しかし、このルツボにおいても次のよ
うな欠点があった。すなわち、ルツボの各層の膜厚は単
層構造ルツボの膜厚に比べより薄いために可撓性に富み
、より大きな収縮歪に耐え得るが、各層は互いに弱く接
合しているのでハク離性が充分でなかった。このため、
ルツボ冷却時に金属の収縮歪によって内側層がハク離す
る際、ハク離性が充分でない部分ではルツボの外側層の
一部でハク離してしまい、その際ルツボ外側層に亀裂が
入ってルツボが破損してしまうことがあった。また内側
層のみが破損している場合でも内側層のみを取り出して
観察することが出来ないことから、引き続きルツボとし
て使用した際にルツボ全体に破損が及ぶという問題があ
った。さらには、加工・洗浄時に各層の接合面が部分的
にハク離してしまうことがあるため、洗浄に用いる有機
溶剤等が層間に入り込み、不純物が混入しやすくなった
り、蒸着操作時に浸入した有機溶剤が蒸発して必要な高
真空が得られにくくなるという欠点もあった。
However, single-layer crucibles made of a continuous film have poor flexibility because the continuous film is thicker than each layer of a multilayer crucible, and as a result, shrinkage occurs between the metal and the crucible during cooling. Crucibles are often damaged due to distortion. A crucible that has been improved to eliminate such drawbacks is a multilayered crucible in which two or more continuous films are weakly bonded to each other. However, this crucible also had the following drawbacks. In other words, the thickness of each layer of the crucible is thinner than that of a single-layered crucible, making it more flexible and able to withstand greater shrinkage strain, but the layers are weakly bonded to each other, making it difficult to peel. It wasn't enough. For this reason,
When the inner layer peels off due to shrinkage strain of the metal when the crucible is cooled, some of the outer layers of the crucible will peel off in areas where the peeling properties are not sufficient, causing cracks in the outer layer of the crucible and damage to the crucible. There were times when I ended up doing this. Furthermore, even if only the inner layer is damaged, it is not possible to take out and observe only the inner layer, so there is a problem that the entire crucible will be damaged when it is subsequently used as a crucible. Furthermore, during processing and cleaning, the joint surfaces of each layer may be partially peeled off, so organic solvents used for cleaning can enter between the layers, making it easier for impurities to get mixed in, and organic solvents that have penetrated during vapor deposition Another drawback was that it evaporated, making it difficult to obtain the necessary high vacuum.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、単層・多層ルツざにおける上記欠点をな
くするためには、多層構造ルツボにおいて少なくとも1
つの結合していない層間を設ければよいことを見い出し
た3討を加えたところ、その実用性の高い介在法を見い
出したので本発明を提案するに至ったものである。
The present inventors believe that in order to eliminate the above-mentioned drawbacks of single-layer and multi-layer crucibles, at least one
After conducting three studies and discovering that it is sufficient to provide two unconnected layers, we have found a highly practical intervening method, which led us to propose the present invention.

すなわち、本発明は、熱分解窒化ホウ素ルツボよりなる
多層構造ルツボであって、結合していない層間の少なく
とも1つを有してなることを特徴とする金属蒸発用熱分
解窒化ホウ素ルツボ、及び少なくとも1つの弱い接合を
有してなる多層構造の熱分解窒化ホウ素ルツボf:iB
造した後、それに外力を加えて該弱い接合の部分から少
なくとも2層に分離し戎面処゛理後それらを組み合わせ
ることを特徴とする金属蒸発用熱分解窒化ホウ素ルツボ
の製法である。
That is, the present invention provides a pyrolytic boron nitride crucible for metal evaporation, which is a multilayer structure crucible made of a pyrolytic boron nitride crucible, characterized in that it has at least one interlayer that is not bonded, and at least Pyrolytic boron nitride crucible of multilayer structure with one weak bond f:iB
This is a method for producing a pyrolytic boron nitride crucible for metal evaporation, which is characterized in that after the crucible is manufactured, an external force is applied to the crucible to separate it into at least two layers from the weakly bonded portion, and the layers are combined after surface treatment.

以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.

本発明のルツボは、結合していない層間を少なくとも1
つを有してなる多層構造の熱分解窒化ホウ素ルツボであ
る。結合していない層間は、ルツボ壁厚のどの位置に設
けてもよいが、好ましくは内面より14〜l/2の間に
少なくとも1つを設けることである。その理由としては
、該位置に結合していない層間を設けることによって区
分される内側層の膜厚は、外側層のそれよりも必然的に
同等以下になるので、可撓性に富み、かつ、ルツボ冷却
時における金属の収縮歪に対して最も大きな可撓性を示
すルツボが得られるからである。また、この場合におけ
る内側層と外側層のそれぞれの構造は、単層であっても
、あるいは弱い接合もしくは結合をしていない多層であ
ってもよいが、単層で構成するのが望ましい。その理由
は、製造が簡単である、前記のように有機溶剤等が弱い
接合のハク雌部又は結合していない層間に入り込まない
、多層構造に比べて可撓性が若干劣るが、本発明のルツ
ボは少なくとも2層構造となるので実用上問題とならな
い値である、等の理由からである。なお、内側層又は外
側層のいずれか又は両方を、結合していない層間を有す
る構造とした場合、七梠によって得られる本発明のルツ
ボは、結合していない層間を少なくとも2つ有すること
になる。
The crucible of the present invention has at least one bond between unbonded layers.
This is a pyrolytic boron nitride crucible with a multilayer structure. The unbonded interlayers may be provided at any position in the thickness of the crucible wall, but preferably at least one is provided between 14 and 1/2 from the inner surface. The reason for this is that the thickness of the inner layer divided by providing an unbonded layer at the position is necessarily equal to or less than that of the outer layer, so it is highly flexible and This is because a crucible that exhibits the greatest flexibility against shrinkage strain of the metal during crucible cooling can be obtained. Further, in this case, the structure of each of the inner layer and the outer layer may be a single layer or a multilayer structure without weak bonding or bonding, but it is preferable that the inner layer and the outer layer be composed of a single layer. The reasons for this are that it is easy to manufacture, as mentioned above, organic solvents etc. do not get into the weakly bonded areas or between unbonded layers, and the flexibility is slightly inferior to that of a multilayer structure, but the present invention This is because the crucible has at least a two-layer structure, so the value does not pose a practical problem. In addition, when either or both of the inner layer or the outer layer has a structure with unbonded interlayers, the crucible of the present invention obtained by Shichikoku will have at least two unbonded interlayers. .

以上の説明は、結合していない層間を壁厚の内面より1
4〜鳩の位置に設ける場合であったが、本発明では、そ
れよりも内側ないしそれよりも外側に結合していない層
間を設けてもよい。
In the above explanation, the distance between unbonded layers is 1 from the inner surface of the wall thickness.
However, in the present invention, an unbonded layer may be provided inside or outside of this position.

本発明のルツざによる効果は次のとおりである。The effects of the present invention are as follows.

単層ルツボに比べ内側層がより薄いために、より可撓性
に富み、ルツボ冷却時において金属がルッざに及ぼす収
縮歪により耐え得るようになる。また冷却時に受ける収
縮歪を内側層のみが受け、外側層には及ばないようにな
ることから、従来の弱く接合した多層構造ルツボのよう
に、内側層が収縮歪を吸収して外側層からハク離する際
、弱い接としてのルツざの寿命は大きく延びることにな
った。更に、内側層を外側層より分離し得ることから、
内側の破損の有無?容易に調べることができ一ルツボ外
側層の破損を未然に防ぐことができる。
Because the inner layer is thinner than in a single-layer crucible, it is more flexible and better able to withstand the shrinkage strain that the metal exerts on the Lusza as the crucible cools. In addition, only the inner layer receives the shrinkage strain during cooling and does not affect the outer layer, so unlike conventional weakly bonded multilayer crucibles, the inner layer absorbs the shrinkage strain and peels off from the outer layer. When released, Rutsuza's lifespan as a weak contact was greatly extended. Furthermore, since the inner layer can be separated from the outer layer,
Is there any damage inside? This can be easily inspected and damage to the outer layer of the crucible can be prevented.

加工・洗浄時においても、内側層、外側層を各々別々に
加工・洗浄することができ、従来の多層構造ルツボのよ
うに層間が一部ハク離して洗浄時に有機溶剤等がハク離
した層間に侵入するということがない。
Even during processing and cleaning, the inner and outer layers can be processed and cleaned separately, and unlike conventional multilayer crucibles, some of the layers are peeled off, and organic solvents, etc. are removed between the layers during cleaning. There is no intrusion.

次に、本発明のルツボの製法について説明する。Next, a method for manufacturing the crucible of the present invention will be explained.

以上説明した本発明のルツボを製造するには、あらかじ
め内側層と外側層とを別々に作製しておき、それを組み
合わせる方法は勿論採用できるが以下の方法が好適であ
る。
In order to manufacture the crucible of the present invention as described above, it is of course possible to use a method in which the inner layer and the outer layer are prepared separately in advance and then combined, but the following method is preferable.

すなわち、結合しない層間を設けたい部分に弱い接合を
持たせて少なくとも2層構造の熱分解窒化ホウ素ルツボ
を作製する。弱い接合を持たせるには、−旦、析出を中
断する方法、析出温度を変える方法、原料配合比を変え
る方法等がある。なお、析出条件それ自体は、従来の条
件が採用される。次に、得られたルツボに外力全顎え、
弱い接合部分から各層に分離しそれらを表面処理する。
That is, a pyrolytic boron nitride crucible having at least a two-layer structure is manufactured by providing a weak bond in a portion where an unbonded layer is desired to be provided. In order to create a weak bond, there are methods such as temporarily interrupting the precipitation, changing the precipitation temperature, and changing the mixing ratio of raw materials. Note that conventional conditions are employed as the precipitation conditions themselves. Next, apply an external force to the obtained crucible,
Separate each layer from weak joints and surface treat them.

表面処理としては、例えばエチルアルコール等の有機尋
剤を用いて超音波洗浄を行い乾燥する。次いで、それら
全組み合わせ(嵌合)すれば本発明のルツボが得られる
。なお、ルツボ加熱時に内面に温度勾配が生じないよう
に、出来上りルツボの内側層と外側層が十分に接触する
よう、すなわち大きなすき間が生じないように適切な表
面処理条件を選定するのが望ましい。
As surface treatment, for example, ultrasonic cleaning is performed using an organic cleaning agent such as ethyl alcohol, followed by drying. Then, by combining (fitting) all of them, the crucible of the present invention can be obtained. Note that it is desirable to select appropriate surface treatment conditions so that the inner layer and outer layer of the finished crucible are in sufficient contact, that is, so that no large gaps are created, so that a temperature gradient does not occur on the inner surface when heating the crucible.

〔実施例〕〔Example〕

以下、実施例と比較例をあげてさらに具体的に説明する
Hereinafter, a more specific explanation will be given with reference to Examples and Comparative Examples.

実施例1〜3 51幅X60C77L’X1α厚の黒鉛板8枚を、直径
20cmφ×1cIrL厚の円形黒鉛板(底板)の上面
にて8角形の筒状に組み立てて反応室を形成した。
Examples 1 to 3 A reaction chamber was formed by assembling eight graphite plates of 51 width x 60C77L'X1α thickness into an octagonal cylindrical shape on the upper surface of a circular graphite plate (bottom plate) of diameter 20cmφ x 1cIrL thickness.

底板の中央にはガス導入のため直径5cTLの孔をあけ
、原料Gas導入管として黒鉛の内側と外側とを同軸に
なるように接続する一方、反応室に上方から黒鉛基材を
吊り下げ、反応室全体を抵抗加熱方式の真空炉内に装入
した。炉内を10−2zorr 4で排気した後、19
00℃まで加熱し、0.75torrの圧力下に窒素が
スで希釈した三塩化ホウ素とアンモニアを導入し、所定
時間蒸着後冷却しP−BNルツボを得た。
A hole with a diameter of 5 cTL was made in the center of the bottom plate for gas introduction, and the inside and outside of the graphite were coaxially connected as a raw material gas introduction pipe, while the graphite base material was suspended from above in the reaction chamber to conduct the reaction. The entire chamber was placed in a resistance heating type vacuum furnace. After evacuating the furnace at 10-2 zorr 4, 19
Boron trichloride and ammonia diluted with nitrogen gas were introduced into the flask under a pressure of 0.75 torr, and after vapor deposition for a predetermined period of time, it was cooled to obtain a P-BN crucible.

以上において、ルツボ内側層として所定時間蒸着後、−
旦不連続面を形成させるために、三塩化ホウ素とアンモ
ニアの配合比を内側層蒸着時とは異なる値に設定して外
側層の蒸着を行ない、冷却後ルツボを取り出し、外力を
加えて不連続面よりルツボを内側層と外側層とに分離し
、各々をエチルアルコールで超音波洗浄し乾燥後、組み
合わせて2層構造とし実施例1とした。
In the above, after being deposited as the crucible inner layer for a predetermined time, -
In order to form a discontinuous surface, the outer layer was deposited by setting the blending ratio of boron trichloride and ammonia to a value different from that for the inner layer, and after cooling, the crucible was taken out and an external force was applied to form the discontinuous surface. The crucible was separated from the surface into an inner layer and an outer layer, each layer was ultrasonically cleaned with ethyl alcohol, dried, and then combined to form a two-layer structure, which was prepared as Example 1.

実施例1の操作におい又、内側層と外側層との間の不連
続面を形成させる際、原料がスの配合比は変えずに、圧
力を内側層蒸着時とは異なる値に設定して外側層の蒸着
を行なう以外は実施例1と全く同様にして2層構造ルツ
ボを作製し、実施例2とした。
In the operation of Example 1, when forming a discontinuous surface between the inner layer and the outer layer, the pressure was set to a different value from that during vapor deposition of the inner layer without changing the blending ratio of the raw materials. A two-layer crucible was prepared in the same manner as in Example 1 except that the outer layer was vapor-deposited, and Example 2 was prepared.

実施例1の操作において、内側層と外側層との間の不連
続面を形成させる際、原料がスの配合比は変えずに、三
塩化ホウ素の分圧を変えて蒸着速度を内側層蒸着時とは
異なる値に設定して外側層の蒸着を行なう以外は実施例
1と全く同様にして2層構造ルツボを作製し、実施例6
とした。
In the operation of Example 1, when forming a discontinuous surface between the inner layer and the outer layer, the vapor deposition rate was changed by changing the partial pressure of boron trichloride without changing the blending ratio of the raw materials. A two-layer crucible was prepared in the same manner as in Example 1 except that the outer layer was deposited at a value different from that of Example 6.
And so.

実施例1の操作において、内側層と外側層との間の不連
続面を形成させる際、原料がスの配合比は変えずに、内
(Il17w蒸着後10分間以上蒸着を停止し、再び外
側層の蒸着を行なう以外は実施例1と全く同じにして2
層構造ルツボを作製し実施例4とした。
In the operation of Example 1, when forming a discontinuous surface between the inner layer and the outer layer, without changing the mixing ratio of the raw materials, after the inner layer (Il17w) was deposited, the vapor deposition was stopped for at least 10 minutes, and then the outer layer was formed again. Example 2 was carried out in exactly the same manner as in Example 1 except that the layer was deposited.
A layered crucible was prepared as Example 4.

比較例1〜2 1900℃の反応温度で不連続面を形成せずに所定時間
蒸着して単層構造ルツボを作製し、これを比較例1とし
た。
Comparative Examples 1 and 2 A single-layer structure crucible was prepared by vapor deposition at a reaction temperature of 1900° C. for a predetermined time without forming a discontinuous surface, and this was designated as Comparative Example 1.

1900℃の反応温度で内側層を一定時間蒸着した後、
原料がスの供給を停止し炉内温度を1700°Cに下げ
、再び1900°Cに加熱してから原料ガスを供給し外
側層を内側層以上の淳さになるように蒸着し、内側層と
外側層とが弱く結合したルツボを作製し、これを比較例
2とした。
After depositing the inner layer for a certain period of time at a reaction temperature of 1900 °C,
The supply of the raw material gas is stopped, the temperature inside the furnace is lowered to 1700°C, the temperature is heated again to 1900°C, and the raw material gas is supplied to deposit the outer layer so that it is thicker than the inner layer. A crucible in which the outer layer and the outer layer were weakly bonded was prepared, and this was designated as Comparative Example 2.

上記の実施例、比較例の各々の条件において、4個ずつ
ルツボを作製し、 A1を溶融金属として使用し、蒸着
試験を繰り返し行ない、耐用回数を調ゝた・′−0結果
を表9示す・     黛なお、ルツボの寸法は、内径
19.1m、指さ88.9in、膜厚0.8Bであり、
内側層:外側層との膜厚比は6:5である。
Under the conditions of each of the above Examples and Comparative Examples, four crucibles were prepared, A1 was used as the molten metal, and the vapor deposition test was repeated to determine the number of durability.The results are shown in Table 9.・ The dimensions of the crucible are an inner diameter of 19.1 m, a finger length of 88.9 inches, and a film thickness of 0.8 B.
The inner layer:outer layer thickness ratio was 6:5.

〔発明の効果〕 この発明によ、るPBNルツボは、金属蒸発用ルツボと
して使用される際に、冷却時における金属との熱膨張運
の差によってルツボに加わる力に充分耐え、また、内側
層がこの力によって破損した場合でもルツボ全体にわた
って破損することは極めて少なく、長寿命なルツボとな
る。また、使用する前での洗浄においても内側lと外側
層とに完全に分離できるので、洗浄が容易であり、有機
溶剤がルツボ内に残留することはない。
[Effects of the Invention] When the PBN crucible according to the present invention is used as a metal evaporation crucible, it can sufficiently withstand the force applied to the crucible due to the difference in thermal expansion with the metal during cooling, and the inner layer Even if the crucible is damaged by this force, it is extremely unlikely that the entire crucible will be damaged, resulting in a long-life crucible. Further, even in cleaning before use, the inner layer and the outer layer can be completely separated, so cleaning is easy and no organic solvent remains in the crucible.

Claims (1)

【特許請求の範囲】 1、熱分解窒化ホウ素よりなる多層構造ルツボであつて
、結合していない層間を少なくとも1つ有してなること
を特徴とする金属蒸発用熱分解窒化ホウ素ルツボ。 2、結合していない層間を壁厚の内面より1/4〜1/
2の間に有してなることを特徴とする特許請求の範囲第
1項に記載の金属蒸発用熱分解窒化ホウ素ルツボ。 3、結合していない層間を1つ有してなることを特徴と
する特許請求の範囲第2項に記載の金属蒸発用熱分解窒
化ホウ素ルツボ。 4、少なくとも1つの弱い接合を有してなる多層構造の
熱分解窒化ホウ素ルツボを製造した後、それに外力を加
えて該弱い接合部分から少なくとも2層に分離し、表面
処理後それらを組み合わせることを特徴とする金属蒸発
用熱分解窒化ホウ素ルツボの製法。
[Claims] 1. A pyrolytic boron nitride crucible for metal evaporation, which is a multilayer structure crucible made of pyrolytic boron nitride, characterized in that it has at least one unbonded layer. 2. The distance between unbonded layers is 1/4 to 1/2 of the inner wall thickness.
2. The pyrolytic boron nitride crucible for metal evaporation according to claim 1, characterized in that the crucible is comprised between 2 and 3. 3. The pyrolytic boron nitride crucible for metal evaporation according to claim 2, which has one unbonded interlayer. 4. After manufacturing a pyrolytic boron nitride crucible with a multilayer structure having at least one weak bond, apply an external force to separate at least two layers from the weak bond, and combine them after surface treatment. Characteristic manufacturing method of pyrolytic boron nitride crucible for metal evaporation.
JP17094186A 1986-07-22 1986-07-22 Thermally decomposed boron nitride crucible for evaporating metal and its production Pending JPS6328858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17094186A JPS6328858A (en) 1986-07-22 1986-07-22 Thermally decomposed boron nitride crucible for evaporating metal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17094186A JPS6328858A (en) 1986-07-22 1986-07-22 Thermally decomposed boron nitride crucible for evaporating metal and its production

Publications (1)

Publication Number Publication Date
JPS6328858A true JPS6328858A (en) 1988-02-06

Family

ID=15914206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17094186A Pending JPS6328858A (en) 1986-07-22 1986-07-22 Thermally decomposed boron nitride crucible for evaporating metal and its production

Country Status (1)

Country Link
JP (1) JPS6328858A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244735A (en) * 1975-10-06 1977-04-08 Hitachi Ltd Structure for preventing leak of molten metal
JPS5544154A (en) * 1978-09-22 1980-03-28 Ckd Corp Manifold for piping in fluid machine
JPS5617428A (en) * 1979-07-23 1981-02-19 Canon Inc Numeral input display unit of small size electronic computer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244735A (en) * 1975-10-06 1977-04-08 Hitachi Ltd Structure for preventing leak of molten metal
JPS5544154A (en) * 1978-09-22 1980-03-28 Ckd Corp Manifold for piping in fluid machine
JPS5617428A (en) * 1979-07-23 1981-02-19 Canon Inc Numeral input display unit of small size electronic computer

Similar Documents

Publication Publication Date Title
TWI825045B (en) Semiconductor processing equipment with high temperature resistant nickel alloy joints and methods for making same
JPH0456765B2 (en)
US3725110A (en) Process of coating articles with pyrolytic graphite and coated articles made in accordance with the process
US3986822A (en) Boron nitride crucible
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPS6328858A (en) Thermally decomposed boron nitride crucible for evaporating metal and its production
JPH01305580A (en) Monocrystalline wafer material for forming superconductive ceramic thin film for manufacturing semiconductor element
JP2763239B2 (en) Multi-layer ceramic crucible
JPH0456766B2 (en)
JPH01133916A (en) Production of high-density graphite film
JP2837049B2 (en) Method for producing multilayer ceramic crucible
JPH0310076A (en) Method for forming pyrolytic boron nitride film
JPH0356674A (en) Vessel consisting of thermally decomposed boron nitride
JPH03185820A (en) Member for treating semiconductor
JPH04308744A (en) Laminate
JPH02129366A (en) Coated structural material
JPH06140133A (en) Layered ceramic heater
JPS6130042A (en) Semiconductor element loading substrate
JPH06140132A (en) Layered ceramic heater
JPH0383861A (en) Production of sic-coated sic ceramic product
JP2002144470A (en) Multilayered structure and method for manufacturing the same
JPH05132752A (en) Method for thermally spraying ceramic on casting mold
JP2001106573A (en) Manufacturing process of graphite crucible
JPH0431309A (en) Production of thermally decomposed boron nitride formed article
JPH03104866A (en) Boron nitride coating film and formation thereof