JPH02129366A - Coated structural material - Google Patents

Coated structural material

Info

Publication number
JPH02129366A
JPH02129366A JP63280275A JP28027588A JPH02129366A JP H02129366 A JPH02129366 A JP H02129366A JP 63280275 A JP63280275 A JP 63280275A JP 28027588 A JP28027588 A JP 28027588A JP H02129366 A JPH02129366 A JP H02129366A
Authority
JP
Japan
Prior art keywords
coated
intermediate layer
base material
carbon
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63280275A
Other languages
Japanese (ja)
Other versions
JP2685151B2 (en
Inventor
Chihiro Kawai
千尋 河合
Tadashi Igarashi
五十嵐 廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63280275A priority Critical patent/JP2685151B2/en
Publication of JPH02129366A publication Critical patent/JPH02129366A/en
Application granted granted Critical
Publication of JP2685151B2 publication Critical patent/JP2685151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To prevent the progress of heat cracks occurring in SiC and Si3N4 as an outer layer by coating a carbon-type base material with Ti, etc., forming the above Ti, etc., into TiC, etc., by the carbon allowed to diffuse from the base material by means of heat treatment at the prescribed temp., and forming the above TiC, etc., into a tough intermediate layer. CONSTITUTION:This coated structural material can be formed by coating a base material with TiC or Ti(C.N) as an intermediate layer and also coating the above intermediate layer with SiC and/or Si3N4 as an outer layer. As the above base material, a composite material composed principally of carbon fibers or a carbon/ceramics composite is used. After this base material is coated with the above intermediate layer, the resulting coated base material is held at 1000-1500 deg.C for >=10min. Then, the above base material is coated with SiC and/or Si3N4 at 1200-1800 deg.C by a chemical vapor deposition method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、航空機や宇宙往還機の機体外壁部に用いる構
造材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structural material used for the outer wall of an aircraft or spacecraft.

[従来の技術] カーボン繊維を主原料としたカーボン/カーボン複合材
料、カーボン/セラミックス複合材料は1000℃以上
の高温強度が優れていることから、航空機や宇宙往還機
の機体外壁への応用が最近注目されているが、上記材料
はいずれもカーボンを主原料としているので、高温域で
の耐酸化性に乏しい。そのため、耐酸化性向上のために
化学的蒸着方法(CVD)によりSiCやSi3N4等
の優れて耐酸化性を有するセラミックス層を1300〜
1800℃の高温で被覆している。
[Conventional technology] Carbon/carbon composite materials and carbon/ceramic composite materials made from carbon fiber as the main raw material have excellent high-temperature strength of 1000°C or higher, and have recently been applied to the outer walls of aircraft and spacecraft. Although attracting attention, all of the above-mentioned materials have carbon as their main raw material, and therefore have poor oxidation resistance in high temperature ranges. Therefore, in order to improve oxidation resistance, a ceramic layer with excellent oxidation resistance, such as SiC or Si3N4, is deposited using a chemical vapor deposition method (CVD).
It is coated at a high temperature of 1800°C.

ところが、被覆後、室温まで冷却する時基祠の主原料で
あるカーボン繊維の熱膨張係数(はとんど0)と被覆層
の熱膨張係数(SiC3〜5に一’5t)N+:2〜3
に一’)の差により、被覆層に大きな引張応力が生じ、
熱亀裂が発生し、この亀裂を通して内部の基材が酸化さ
れ、耐酸化性は著しく低下する。この現象は被覆温度が
高いほど顕著である。このため、これを酸化する手段と
して、基材と被覆層間に中間層として比較的低温(95
0〜1050℃)で、熱亀裂の少ないTiC、TiN、
Ti (C,N)をCVD法により被覆しておき、酸化
が内部基材まで進行しないような方法が取られている。
However, when cooling to room temperature after coating, the coefficient of thermal expansion of the carbon fiber, which is the main raw material of the base (almost 0), and the coefficient of thermal expansion of the coating layer (1'5t for SiC 3-5) N+: 2-2 3
A large tensile stress is generated in the coating layer due to the difference in
Thermal cracks occur, and the internal base material is oxidized through these cracks, resulting in a significant decrease in oxidation resistance. This phenomenon becomes more pronounced as the coating temperature increases. For this reason, as a means of oxidizing this, an intermediate layer is formed between the base material and the coating layer at a relatively low temperature (95%).
0~1050℃), TiC, TiN, with few thermal cracks.
A method is used in which Ti (C, N) is coated by CVD to prevent oxidation from progressing to the internal base material.

[発明が解決しようとする課′XJ] しかしながら、CVD法で被覆したTICやTiNにも
依然として引張応力が生じているため、強度が小さく、
外層のSiCやSi3N4に生じる熱亀裂が中間層を通
って進行し、満足できる耐酸化性は得られていない。し
たがって本発明は引張応力の(j ’tE Lない強靭
な中間層を設けることによって、良好な耐酸化性を有す
る被覆構造材料を得るものである。
[Problem to be solved by the invention 'XJ] However, since tensile stress still occurs in TIC and TiN coated by CVD method, the strength is low
Thermal cracks that occur in the outer layer of SiC and Si3N4 propagate through the intermediate layer, making it impossible to obtain satisfactory oxidation resistance. Therefore, the present invention provides a coating structure material having good oxidation resistance by providing a strong intermediate layer with no tensile stress (j'tEL).

中間層として被覆するTiC,Ti  (C,N)層に
、圧縮応力を導入する方法としては、プラズマCVD法
やイオンブレーティング法などがあるが、これらの方法
で得た被覆層にはすでに大きな圧縮応力が存在しており
、該被覆材料を外層のSiCまたはSi3N4の被覆に
必要な温度であるL200−1800℃に昇温するとき
に、被覆層にはさらに圧縮応力が加わることにより、被
覆層が破懐され、剥離する。
Methods for introducing compressive stress into the TiC, Ti (C, N) layer coated as an intermediate layer include plasma CVD and ion blating, but the coating layer obtained by these methods already has a large amount of stress. Compressive stress is present, and when the coating material is heated to L200-1800°C, which is the temperature required for coating the outer layer of SiC or Si3N4, compressive stress is further applied to the coating layer, so that the coating layer is broken and peeled off.

[課題を解決するための手段] 本発明は、カーボン繊維を主体としたカーボン/カーボ
ン複合材料、カーボン/セラミックス複合材料を基材と
し、TiCまたはTi(C−N)を中間層として被覆し
、外層としてSiCまたはSi3N4の少くとも一種以
上を被覆した被覆構造材料において、中間層をTiまた
はTiとT i  (Cx N+−x )の複合相を被
覆した後、1000〜1500℃の温度範囲で少くとも
10分以上保持した後、化学蒸着法により1200〜1
800℃の温度範囲でSiCまたは5ixN+の少くと
も一種以上を被覆してなる被覆構造材料である。
[Means for Solving the Problems] The present invention uses a carbon/carbon composite material mainly composed of carbon fibers or a carbon/ceramic composite material as a base material, and coats TiC or Ti(C-N) as an intermediate layer, In a coated structural material coated with at least one type of SiC or Si3N4 as an outer layer, after coating the intermediate layer with Ti or a composite phase of Ti and Ti (Cx N+-x), After holding both for 10 minutes or more, a chemical vapor deposition method of 1200 to 1
It is a coated structure material coated with at least one type of SiC or 5ixN+ in a temperature range of 800°C.

本発明において、予め中間層として被覆したT1または
TiとTiCの複合相、TiとTiNの複合層、Tiと
Ti (C,N)の複合相をrめ1000〜1500℃
で熱処理すると、基板から中間層に向ってカーボンが拡
散し、被覆層はそれぞれTiC,Ti  (C,N)と
なり、化学蒸着時にも剥離しない、かつ大きな圧縮応力
を有する中間層が得られる。被膜の圧縮応力値は予め被
覆する中間層の組成を制御することにより制御すること
ができる。すなわち、TiとTiCの組成比、TiとT
iNの組成比、TiとTi(C,N)の組成比を制御す
る。
In the present invention, T1 or a composite phase of Ti and TiC, a composite layer of Ti and TiN, or a composite phase of Ti and Ti (C,N) coated in advance as an intermediate layer is heated to 1000 to 1500°C.
Upon heat treatment, carbon diffuses from the substrate toward the intermediate layer, and the coating layers become TiC and Ti(C,N), respectively, resulting in an intermediate layer that does not peel off during chemical vapor deposition and has a large compressive stress. The compressive stress value of the coating can be controlled by controlling the composition of the intermediate layer to be coated in advance. That is, the composition ratio of Ti and TiC, Ti and T
The composition ratio of iN and the composition ratio of Ti and Ti(C,N) are controlled.

予め被覆する中間層はカーボンの拡散しやす1.1Ti
またはTiとTiCの複合相が望ましい。
The pre-coated intermediate layer is made of 1.1Ti, which allows carbon to easily diffuse.
Alternatively, a composite phase of Ti and TiC is desirable.

また、その熱処理は1000℃未満または10分未満で
は効果がなく、1500℃を越えるとTi相に変質が生
じるため好ましくない。
Moreover, the heat treatment is not effective if it is less than 1000°C or for less than 10 minutes, and if it exceeds 1500°C, the Ti phase will be altered, which is not preferable.

さらに、基板からのカーボンの拡散が十分でないと、中
間相にTi相が残存し、Ti相が著しく酸化されるので
好ましくない。
Furthermore, if the diffusion of carbon from the substrate is insufficient, the Ti phase will remain in the intermediate phase and the Ti phase will be significantly oxidized, which is not preferable.

[作 用] 本発明では、外層のSiCや5izN4に生じた熱亀裂
の進行を強靭な中間層で防止することにより、優れた耐
酸化性を発揮する。
[Function] The present invention exhibits excellent oxidation resistance by preventing the progression of thermal cracks that occur in the outer layer of SiC or 5izN4 with a tough intermediate layer.

[実施例コ 実施例I C/Cコンポジットを基材として、イオンブレーティン
グ法によりTiまたはTiCの複合相を50〜60μl
被覆した後、1350℃で1時間熱処理した。その後、
化学蒸着法により1500℃でSiCを180〜200
 utn被覆した。
[Example 1 Example I Using a C/C composite as a base material, 50 to 60 μl of Ti or TiC composite phase was added by ion blating method.
After coating, it was heat treated at 1350°C for 1 hour. after that,
SiC is deposited at 180~200℃ at 1500℃ by chemical vapor deposition method.
utn coated.

得られた試料について4′11400℃で1時間大気中
にさらし、加熱前後の重量減少値を測定した。
The obtained sample was exposed to the atmosphere at 4'11400°C for 1 hour, and the weight loss before and after heating was measured.

(耐酸化試験) また、熱処理前の中間層TiCの残留応力をX線回折に
より測定した。なお、イオンブレーティング法で被覆し
たTiまたはTiとTiCの複合相の組成についてはE
PMAで分析した。
(Oxidation resistance test) Furthermore, the residual stress of the TiC intermediate layer before heat treatment was measured by X-ray diffraction. The composition of the Ti or Ti and TiC composite phase coated by the ion blating method is E.
Analyzed with PMA.

比較として、中間層TiCをCVD法で50μmの厚さ
で被覆し、その上にSiCを190μ麿被覆したものを
作製し、同様の測定を行った。
For comparison, a TiC intermediate layer was coated with a thickness of 50 μm using the CVD method, and SiC was coated thereon with a thickness of 190 μm, and the same measurements were performed.

結果を表1に示す。The results are shown in Table 1.

表1 この前後の重量減少を測定した。Table 1 Weight loss before and after this was measured.

なお、比較例の一部として、CVD法により中間層Ti
Cを35μm被覆後、CVD法により5i)N4を11
0μm被覆したものも作製し評価した。
In addition, as part of the comparative example, the intermediate layer Ti was formed by CVD method.
After coating 35 μm of C, 5i) N4 was applied to 11 by CVD method.
A sample coated with a thickness of 0 μm was also prepared and evaluated.

結果を表2に示す。The results are shown in Table 2.

表2 実施例2 カーボン繊維とSiCセラミックスの複合材料であるC
/セラミックス複合材料を基材として、イオンブレーテ
ィング法によりTiを30〜40μm被覆した後、80
0〜1400℃で0.1〜2時間真空で熱処理後、さら
にCVD法によりSi3N4を100〜120μ信被覆
した。
Table 2 Example 2 C, a composite material of carbon fiber and SiC ceramics
/ After coating a ceramic composite material as a base material with 30 to 40 μm of Ti using the ion blating method,
After heat treatment in vacuum at 0 to 1400°C for 0.1 to 2 hours, a layer of Si3N4 of 100 to 120 μm was coated by CVD.

得られた試料についてX線回折による生成相同定を行い
、1800℃で2時間大気中にさらし、[発明の効果コ 本発明材料は、高温で優れた耐酸化性を有する高温高強
度材料であり、航空機や宇宙往還機の機体外壁部に適用
してa用である。
The resulting sample was identified by X-ray diffraction and exposed to the atmosphere for 2 hours at 1800°C. It is suitable for use on the outer walls of aircraft and spacecraft.

Claims (2)

【特許請求の範囲】[Claims] (1)カーボン繊維を主体としたカーボン/カーボン複
合材料、カーボン/セラミックス複合材料を基材とし、
TiCまたはTi(C・N)を中間層として被覆し、外
層としてSiCまたはSi_3N_4の少くとも一種以
上を被覆した被覆構造材料において、中間層をTiまた
はTiとTi(C_xN_1_−_x)の複合相を被覆
した後、1000〜1500℃の温度範囲で少くとも1
0分以上保持した後、化学蒸着法により 1200〜1800℃の温度範囲でSiCまたはSi_
3N_4の少くとも一種以上を被覆してなることを特徴
とする被覆構造材料。
(1) Carbon/carbon composite material based on carbon fiber, carbon/ceramic composite material as base material,
In a coated structural material coated with TiC or Ti(C/N) as an intermediate layer and at least one type of SiC or Si_3N_4 as an outer layer, the intermediate layer is made of Ti or a composite phase of Ti and Ti (C_xN_1_-_x). After coating, at least 1
After holding for more than 0 minutes, SiC or Si_
A coated structural material characterized by being coated with at least one type of 3N_4.
(2)中間層中に存在する残留応力が圧縮応力である請
求項(1)記載の被覆構造材料。(3)中間層の複合相
の被覆方法が物理蒸着法である請求項(1)記載の被覆
構造材料。
(2) The covering structure material according to claim (1), wherein the residual stress existing in the intermediate layer is compressive stress. (3) The coated structural material according to claim (1), wherein the method for coating the composite phase of the intermediate layer is a physical vapor deposition method.
JP63280275A 1988-11-08 1988-11-08 Coating structural material Expired - Lifetime JP2685151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280275A JP2685151B2 (en) 1988-11-08 1988-11-08 Coating structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280275A JP2685151B2 (en) 1988-11-08 1988-11-08 Coating structural material

Publications (2)

Publication Number Publication Date
JPH02129366A true JPH02129366A (en) 1990-05-17
JP2685151B2 JP2685151B2 (en) 1997-12-03

Family

ID=17622720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280275A Expired - Lifetime JP2685151B2 (en) 1988-11-08 1988-11-08 Coating structural material

Country Status (1)

Country Link
JP (1) JP2685151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521832A (en) * 2011-07-23 2014-08-28 ビーコ・エーエルディー インコーポレイテッド Textiles containing fibers deposited with materials using atomic layer deposition to improve stiffness and strength
CN113387724A (en) * 2021-06-10 2021-09-14 西北工业大学 High-temperature-resistant long-life composite coating on surface of carbon/carbon composite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521832A (en) * 2011-07-23 2014-08-28 ビーコ・エーエルディー インコーポレイテッド Textiles containing fibers deposited with materials using atomic layer deposition to improve stiffness and strength
CN113387724A (en) * 2021-06-10 2021-09-14 西北工业大学 High-temperature-resistant long-life composite coating on surface of carbon/carbon composite material and preparation method thereof
CN113387724B (en) * 2021-06-10 2022-09-02 西北工业大学 High-temperature-resistant long-life composite coating on surface of carbon/carbon composite material and preparation method

Also Published As

Publication number Publication date
JP2685151B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
EP0619801B1 (en) Process for protecting products made of composite material containing carbon against oxydation, and products obtained by said process
US5254397A (en) Carbon fiber-reinforced composite material having a gradient carbide coating
DE69907107T2 (en) CERAMIC WITH OXIDIZABLE LAYER
JP3137371B2 (en) Ceramic-matrix composite structure
US6737120B1 (en) Oxidation-protective coatings for carbon-carbon components
US5354398A (en) Method of manufacturing fiber-reinforced composites having a gradient function
JP2007138298A (en) Coating formation method, coating formation apparatus, and composite material
JPH07157384A (en) Heat and oxidation resistant high strength member and production thereof
JPH0585841A (en) Process for producing precrack fiber coating for reinforcing ceramic fiber matrix composite material
JPH02129366A (en) Coated structural material
JPH03290375A (en) Composite material reinforced with coated carbon fiber
KR100727639B1 (en) Oxidation resistant multi-layer coating film for carbon/carbon composites and its manufacturing process
JPH0789777A (en) Improvement of oxidation stability of composite material containing fibrous reinforcement and glass, glass-ceramic or ceramic matrix
JPH0312377A (en) Coated structural material
JPH02160922A (en) Heat treatment
JPH02289338A (en) Coated heat-resistant carbon composite material
JP2567455B2 (en) Coated carbon material
JPH0211753A (en) Tial-type composite member and its production
JP2855458B2 (en) Processing material for semiconductor
JP3282700B2 (en) Coating film formation method
JPH05163086A (en) Sic-coated c/c composite material
JPH06234570A (en) Oxidation resistant carbon fiber reinforced carbon composite material and its production
JPH04175156A (en) Carbon/carbon fiber composite material having oxidation-resistant layer
JP2545731B2 (en) Method for producing intermetallic compound-coated composite by vapor phase method
JPH04119967A (en) Carbon fiber reinforced composite material having coating