JPS63288036A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63288036A
JPS63288036A JP62123292A JP12329287A JPS63288036A JP S63288036 A JPS63288036 A JP S63288036A JP 62123292 A JP62123292 A JP 62123292A JP 12329287 A JP12329287 A JP 12329287A JP S63288036 A JPS63288036 A JP S63288036A
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
metal base
hole
fitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62123292A
Other languages
Japanese (ja)
Inventor
Takeshi Sekiguchi
剛 関口
Katsunori Nishiguchi
勝規 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62123292A priority Critical patent/JPS63288036A/en
Publication of JPS63288036A publication Critical patent/JPS63288036A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To make possible a highly integrated wiring and to obtain a semiconductor device having superior heat dissipation characteristics by a method wherein the device is provided with a plurality of pieces of semiconductor device subassemblies, each provided with an Si wiring board and a semiconductor chip which are connected to each other by a wire, and these subassemblies are each fitted into the second hole parts of ceramics bases. CONSTITUTION:Gallium-arsenic chips 81 are die-bonded on a metal base 71 through hole parts 73 of Si wiring boards 71 to form semiconductor device subassemblies. Then, the subassemblies are each fitted into hole parts 52 of ceramics bases 51 and are fixed with a low-melting point metal, a bonding agent and so on. After then, electrodes on the chips 81 and wirings on the boards 71 are connected to each other by wires 82 and the wirings on the boards 71 and wirings 53 on the bases 51 are connected to each other by wires 75. As the subassemblies are fitted into the ceramics bases in such a way, the heat dissipation characteristics from the compound semiconductor chips are improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガリウムヒ素等からなる素子のように、高速か
つ高集積度の化合物半導体素子を用いるマルチチップの
半導体装置に関し、特に高速度の信号処理に用いられる
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to multi-chip semiconductor devices using high-speed, highly integrated compound semiconductor devices such as devices made of gallium arsenide, etc. It is used for processing.

(従来の技術) 高周波帯域、特にGHz帯での高速信号処理に適した半
導体装置として、ガリウムヒ素を用いる半導体装置が多
用されている。このようなガリウムヒ素による半導体装
置における従来の実装形態を、チップキャリアを例とし
て第3図に示す。
(Prior Art) Semiconductor devices using gallium arsenide are often used as semiconductor devices suitable for high-speed signal processing in high frequency bands, particularly in the GHz band. A conventional mounting form of such a semiconductor device using gallium arsenide is shown in FIG. 3 using a chip carrier as an example.

第3図(a)は従来のガリウムヒ素による半導体装置の
、第1の例の構成を示す断面図である。
FIG. 3(a) is a sectional view showing the structure of a first example of a conventional semiconductor device using gallium arsenide.

図示の通り、アルミナ等のセラミックス類のベース1の
中央部には凹部2が形成され、この凹部2にはガリウム
ヒ素チップ3が載置して固着されている。このガリウム
ヒ素チップ3上の電極(図示せず。)とベース1の凹部
2の周囲に形成された厚膜印刷配線4とは、金、アルミ
ニウム等の金属配線5により接続されている。しかしな
がらこの従来装置では、セラミックスの表面は凹凸が多
く、高精度の配線は困難である。このため、厚膜印刷配
線4は例えば最小幅100μm程度であり、高密度の実
装は不可能である。特に、グランド配線の形成が困難で
あることからインピーダンス整合を行なえず、配線パタ
ーンの自由度が少ない。
As shown in the figure, a recess 2 is formed in the center of a base 1 made of ceramics such as alumina, and a gallium arsenide chip 3 is placed and fixed in the recess 2. The electrode (not shown) on the gallium arsenide chip 3 and the thick film printed wiring 4 formed around the recess 2 of the base 1 are connected by a metal wiring 5 made of gold, aluminum, or the like. However, in this conventional device, the ceramic surface has many irregularities, making it difficult to perform highly accurate wiring. For this reason, the thick film printed wiring 4 has a minimum width of, for example, about 100 μm, making high-density packaging impossible. In particular, since it is difficult to form ground wiring, impedance matching cannot be performed, and there is little freedom in wiring patterns.

第3図(b)は従来の他の実装形態を示ず断面図である
。図示の通り、平坦なセラミックス類のベース11の上
面に薄膜配線12が形成され、中央部にダイボンディン
グされたガリウムヒ素デツプ13との間で、金属配線(
ワイヤ)14により接続がなされている。しかしながら
この場合にも、ベースにセラミックスを用いているため
、wJ膜配線であっても最小幅10μ■程度の配線が可
能であるに過ぎず、多層配線も不可能であるので高密度
実装には適していなり。
FIG. 3(b) is a sectional view showing another conventional mounting form. As shown in the figure, a thin film wiring 12 is formed on the upper surface of a flat ceramic base 11, and a metal wiring (
The connection is made by a wire) 14. However, even in this case, since ceramics are used for the base, wiring with a minimum width of about 10μ■ is only possible even with wJ film wiring, and multilayer wiring is not possible, so high-density mounting is not possible. Not suitable.

第3図(C)は更に伯の従来の実装形態を示す断面図で
ある。図示の通りこの場合には、表面に薄膜配線層22
を形成したシリコン基板21上の中央部に、ガリウムヒ
素チップ23がダイボンディングされ、これと薄膜配線
層22との間で金属配線24による接続がなされている
。この場合には、シリコン基板を採用したことにより表
面の平坦度が大幅に改善されるため、最小幅3μm程度
の薄膜配線層の形成が可能である。
FIG. 3(C) is a sectional view showing a further conventional mounting form. As shown in the figure, in this case, there is a thin film wiring layer 22 on the surface.
A gallium arsenide chip 23 is die-bonded to the center of the silicon substrate 21 on which the gallium arsenide chip 23 is formed, and a connection is made between the gallium arsenide chip 23 and the thin film wiring layer 22 by a metal wiring 24. In this case, since the surface flatness is greatly improved by employing a silicon substrate, it is possible to form a thin film wiring layer with a minimum width of about 3 μm.

一方、高度の情報処理等を行うためには、多数のチップ
を高密度に実装する必要があり、マルチチップパッケー
ジ化が要求されている。
On the other hand, in order to perform advanced information processing, etc., it is necessary to mount a large number of chips at high density, and multi-chip packaging is required.

(発明が解決しようとする問題点) しかしながら、前述したいずれの場合も放熱特性が良好
ではなく、マルチチップパッケージには適さない。一般
に、500MHz以上の高速動作をする半導体装置では
発熱が多く、従来の半導体装置では十分な放熱ができな
いために動作に悪影響を与え、高速動作には適さない。
(Problems to be Solved by the Invention) However, in any of the cases described above, the heat dissipation characteristics are not good, making them unsuitable for multi-chip packages. Generally, semiconductor devices that operate at high speeds of 500 MHz or higher generate a lot of heat, and conventional semiconductor devices cannot dissipate heat sufficiently, which adversely affects operation and is not suitable for high-speed operation.

そして、このような半導体装置の集合体(マルチチップ
の半導体装置)では、ざらに放熱が困難となる。
In such an assembly of semiconductor devices (multi-chip semiconductor devices), it becomes difficult to dissipate heat.

そこで本発明は、高密度配線が可能で放熱特性に優れ、
かつ高速動作特性にもすぐれた半導体装置を提供するこ
とを目的とする。
Therefore, the present invention enables high-density wiring and has excellent heat dissipation characteristics.
It is an object of the present invention to provide a semiconductor device which also has excellent high-speed operation characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体装置は、少なくとも表面に配線が形
成されると共に中央部に第1の孔部が形成されたシリコ
ン配線板を、放熱用の金属ベース上に載置固着し、第1
の孔部に化合物半導体チップをはめ込んで金属ベースに
固着し、シリコン配線板と半導体チップをワイヤで接続
した複数個の半導体装置サブアセンブリを備えており、
これらをセラミックスベースの第2の孔部にはめ込んで
、更にシリコン配線板とセラミックスベースの多層配線
をワイヤにより接続したことを特徴としている。
In the semiconductor device according to the present invention, a silicon wiring board on which wiring is formed at least on the surface and a first hole formed in the center is placed and fixed on a metal base for heat dissipation,
It is equipped with multiple semiconductor device subassemblies in which a compound semiconductor chip is fitted into the hole and fixed to a metal base, and the silicon wiring board and the semiconductor chip are connected with wires.
These are fitted into the second holes of the ceramic base, and the silicon wiring board and the ceramic-based multilayer wiring are further connected by wires.

〔作用〕[Effect]

本発明に係る半導体装置は、以上のように構成されるの
で、各化合物半導体チップで発生した熱は金属ベースに
流れて良好な放熱が行われる。また、各化合物半導体チ
ップの周囲では、シリコン基板による薄膜の精密な配線
が行われるため、高密度の配線が可能となり、多数のチ
ップの集合により全体として高密度の配線が可能となる
。ざらに、コンデンサや抵抗等をシリコン上に作り込む
ことも可能であり、態化を増強できる。
Since the semiconductor device according to the present invention is configured as described above, the heat generated in each compound semiconductor chip flows to the metal base, and good heat radiation is performed. In addition, around each compound semiconductor chip, precise thin film wiring is performed using a silicon substrate, so high-density wiring is possible, and by aggregating a large number of chips, high-density wiring is possible as a whole. Furthermore, it is also possible to fabricate capacitors, resistors, etc. on silicon, which can enhance the implementation.

(実施例) 以下、添附図面を参照して、本発明の一実施例を説明す
る。なお、図面の説明において同一の要素には同一の符
号を付し、重複する説明を省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

第1図は実施例に係る半導体装置の外観を示す斜視図で
ある。図示の通り、セラミックスベース51に形成され
た4つの矩形の孔部(第2の孔部)52に、例えばタン
グステン20%、銅80%の銅タングステン合金より成
る放熱用の金属ベース61がはめ込まれるようになって
おり、この金属ベース61の上にシリコン配線板71が
載置固着されている。セラミックスベース51は多層配
線を有しており、例えば配線導体53はセラミックスベ
ース51の外側面のメタライズ層54に接続されている
FIG. 1 is a perspective view showing the appearance of a semiconductor device according to an example. As shown in the figure, a metal base 61 for heat dissipation made of, for example, a copper-tungsten alloy of 20% tungsten and 80% copper is fitted into four rectangular holes (second holes) 52 formed in the ceramic base 51. A silicon wiring board 71 is placed and fixed on top of this metal base 61. The ceramic base 51 has multilayer wiring, and for example, a wiring conductor 53 is connected to a metallized layer 54 on the outer surface of the ceramic base 51.

シリコン配線板71の表面には引出し用の配線パターン
72が形成されると共に、中央部には矩形の孔部(第1
の孔部)73が形成されている。
A wiring pattern 72 for drawing out is formed on the surface of the silicon wiring board 71, and a rectangular hole (first
A hole (hole portion) 73 is formed.

そして、この孔部73内には素子が形成されたガリウム
ヒ素チップ81が配置され、金属ベース61に直接固着
されている。また、ガリウムヒ素チップ81の電極(図
示せず。)と配線パターン72はワイヤ82により接続
され、シリコン配線板71上の配線パターン72とセラ
ミックスベース51上の配線導体53とはワイヤ75に
より接続されている。
A gallium arsenide chip 81 on which an element is formed is disposed within the hole 73 and is directly fixed to the metal base 61. Further, the electrodes (not shown) of the gallium arsenide chip 81 and the wiring pattern 72 are connected by a wire 82, and the wiring pattern 72 on the silicon wiring board 71 and the wiring conductor 53 on the ceramic base 51 are connected by a wire 75. ing.

なお、銅タングステン合金はその熱膨張率が6.9X1
0’°c−1であってガリウムヒ素のそれとほぼ等しく
、また熱伝導率は2.8W/cm″Cであって十分に大
きいので、本発明に特に適している。この様な構成では
、ガリウムヒ素チップ52は直接金属ベース51に取付
けられているため、発生した熱は高効率で放出されるこ
とになる。また、シリコン配線板には高密度の配線形成
が可能であるので、ワイヤボンディングの限界まで配線
密度を上げることができる。
In addition, the coefficient of thermal expansion of copper-tungsten alloy is 6.9X1
Since the thermal conductivity is 0'°c-1, which is almost equal to that of gallium arsenide, and the thermal conductivity is 2.8 W/cm''C, which is sufficiently large, it is particularly suitable for the present invention.In such a configuration, Since the gallium arsenide chip 52 is directly attached to the metal base 51, the generated heat can be dissipated with high efficiency.In addition, since high-density wiring can be formed on the silicon wiring board, wire bonding is possible. Wiring density can be increased to the limit of .

次に、第1図に示す半導体装置の製造工程を説明する。Next, the manufacturing process of the semiconductor device shown in FIG. 1 will be explained.

第2図は第1図の構成を得るための製造工程を示す工程
別断面図であり、ガリウムヒ素チップの中央で切断した
様子を示すものである。
FIG. 2 is a cross-sectional view showing the manufacturing process for obtaining the configuration shown in FIG. 1, and shows a gallium arsenide chip cut at the center.

まず、所定領域が孔部52となるように、積層による多
層配線技術によって配線53を形成したセラミックスベ
ース51をQ備する(第2図(a))。このセラミック
スベース51としては、まずベースの仝休を形成してお
き、次に所定領域をエツチング除去して形成してもよい
First, a ceramic base 51 is provided with a wiring 53 formed thereon by a multilayer wiring technique using lamination so that a predetermined region becomes a hole 52 (FIG. 2(a)). The ceramic base 51 may be formed by first forming a rest area of the base and then removing a predetermined area by etching.

次に、表面が結晶方位(100)面となっており、あら
かじめ表面あるいは内層に所定のパターンで配線を形成
したシリコン配線板71の上に、3i02あるいはSi
Nなどからなるマスク91をパターニングして形成しく
第2図(b))、このマスク91を介してエチレンジア
ミン、ピロカテコール、水の混合液によるエッチャント
を用いてエツチングを行う。すると、水平面に対して5
4.7°の角度をなす結晶方位(111)の側壁74を
有する孔部73が形成される(第2図(C))。
Next, a 3i02 or Si
A mask 91 made of N or the like is patterned and formed (FIG. 2(b)), and etching is performed through this mask 91 using an etchant containing a mixture of ethylenediamine, pyrocatechol, and water. Then, 5 for the horizontal plane
A hole 73 is formed having a side wall 74 with a (111) crystal orientation forming an angle of 4.7° (FIG. 2(C)).

次に、このようにして得られたシリコン配線板71の孔
部73を通して、ガリウムヒ素チップ81を金属ベース
61上に公知の方法でダイボンドし、半導体装置サブア
センブリを形成する(第2図(d))。なお、この実施
例の場合には、ガリウムヒ素チップ52の厚さとシリコ
ン配線板71の厚さはほぼ等しくなってあり、両者の表
面は同一面をなしているため、後続のワイヤボンディン
グを行いやすく、また、ワイヤーを短かくできインダク
タンスを減らせるという利点がある。
Next, a gallium arsenide chip 81 is die-bonded onto the metal base 61 by a known method through the hole 73 of the silicon wiring board 71 obtained in this way to form a semiconductor device subassembly (FIG. 2(d) )). In the case of this embodiment, the thickness of the gallium arsenide chip 52 and the thickness of the silicon wiring board 71 are almost equal, and their surfaces are the same, making it easier to perform subsequent wire bonding. Another advantage is that the wire can be shortened and inductance can be reduced.

次に、上記のサブアセンブリをセラミックスベース51
の孔部52にはめ込み、低融点金属や接着剤等により固
着する。しかる後、ガリウムヒ素チップ81上の電極(
図示せず。)とシリコン配線板71上の配°線をワイヤ
82によって接続し、シリコン配線板71上の配線とセ
ラミックスベース51の配線53とをワイヤ75により
接続する。
Next, the above subassembly is attached to the ceramic base 51.
It is fitted into the hole 52 and fixed with a low melting point metal, adhesive, or the like. After that, the electrode on the gallium arsenide chip 81 (
Not shown. ) and the wiring on the silicon wiring board 71 are connected by a wire 82, and the wiring on the silicon wiring board 71 and the wiring 53 of the ceramic base 51 are connected by a wire 75.

以上の工程により、マルチチップ半導体装置が完成する
Through the above steps, a multi-chip semiconductor device is completed.

本発明は上記実施例に限定されるものではなく、種々の
変形が可能である。
The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、シリコン配線板に凹部を形成するためのエツチ
ングでは、エチレンジアミン系のエッチャントに限らず
、例えばヒドラジンの水溶液や水酸化カリウム水溶液を
用いてもよい。また、放熱用の金属ベースとしては実施
例で述べたちの以外に、熱伝導率が′大きいものであれ
ば、いかなるものでも使用することができる。そして、
熱膨張率がガリウムヒ素等と近似したものであれば、よ
り信頼性が向上する。
For example, in etching for forming recesses in a silicon wiring board, not only an ethylenediamine-based etchant but also an aqueous solution of hydrazine or an aqueous potassium hydroxide solution may be used. Further, as the metal base for heat dissipation, any metal base other than those mentioned in the embodiments can be used as long as it has a high thermal conductivity. and,
If the coefficient of thermal expansion is similar to that of gallium arsenide or the like, reliability will be further improved.

ざらに、シリコン配線板は上記実施例では単に配線を形
成したに過ぎないものであったが、キャパシタや抵抗等
の受動素子、あるいはトランジスタ等の能動素子を形成
したものであってもよい。
In general, although the silicon wiring board merely formed wiring in the above embodiment, it may also have passive elements such as capacitors and resistors, or active elements such as transistors formed thereon.

また、シリコン板の配線は表面層に限らず、多層配線と
なっていてもよい。逆に、セラミックスベースの配線は
表面層だけに形成されていてもよい。
Furthermore, the wiring on the silicon board is not limited to the surface layer, but may be multilayer wiring. Conversely, ceramic-based wiring may be formed only on the surface layer.

ざらにまた、シリコン配線板の表面は(100)面に限
られるものではなく、例えば表面が(110)面であれ
ば、水平面と90°の角度をなす側壁がエツチングによ
り形成される。
Furthermore, the surface of the silicon wiring board is not limited to the (100) plane; for example, if the surface is the (110) plane, side walls forming an angle of 90° with the horizontal plane are formed by etching.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り、本発明に係る半導体装置に
よれば、放熱用金属ベース上に配線の形成されたシリコ
ン板を固着し、そのシリコン板に設けられた孔部内に化
合物半導体チップをはめ込んで放熱用金属ベースに固着
し、これらによってサブアセンブリを形成し、このよう
なサブアセンブリをセラミックスベースにはめ込んでい
るので、化合物半導体チップからの放熱特性が良好とな
る。
As described above in detail, according to the semiconductor device of the present invention, a silicon plate on which wiring is formed is fixed onto a metal base for heat dissipation, and a compound semiconductor chip is fitted into a hole provided in the silicon plate. Since the compound semiconductor chip is fixed to a metal base for heat dissipation to form a subassembly, and such a subassembly is fitted into the ceramic base, the heat dissipation characteristics from the compound semiconductor chip are improved.

また、シリコン板には高密度の配線を形成することがで
きるため、非常に高密度のガリウムヒ素チップから、あ
まり高密度の配線ができないセラミックスの多層配線へ
の引出しを、上記シリコン板を介して円滑に行うことが
できるという効果がある。
In addition, since high-density wiring can be formed on a silicon plate, it is possible to connect a very high-density gallium arsenide chip to ceramic multi-layer wiring, where high-density wiring cannot be formed, through the silicon plate. This has the effect of being able to be carried out smoothly.

ざらに、良品のサブアセンブリを選択して使用すること
ができるので、マルチチップ半導体装置の全体としての
歩留りを向上させることができる効果がある。
In other words, since it is possible to select and use subassemblies of good quality, there is an effect that the overall yield of the multi-chip semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体装置の実施例を示す斜視図
、第2図は本発明に係る半導体装置の製造工程を示す工
程別断面図、第3図は従来のガリウムヒ素半導体装置の
構成を示す素子断面図である。 1.11・・・セラミックス基板、21.・・・シリコ
ン基板、3,13,23.81・・・ガリウムヒ素チッ
プ、51・・・セラミックスベース、52・・・孔部(
第2の孔部)、61・・・金属ベース、71・・・シリ
コン配線板、73・・・孔部(第1の孔部)、75.8
2・・・ワイヤ。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹第2図
FIG. 1 is a perspective view showing an embodiment of a semiconductor device according to the present invention, FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the present invention, and FIG. 3 is a configuration of a conventional gallium arsenide semiconductor device. FIG. 1.11... Ceramic substrate, 21. ...Silicon substrate, 3,13,23.81...Gallium arsenide chip, 51...Ceramics base, 52...Hole (
2nd hole), 61... Metal base, 71... Silicon wiring board, 73... Hole (first hole), 75.8
2...Wire. Patent Applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Yoshiki Hase Figure 2

Claims (1)

【特許請求の範囲】 1、放熱用の金属ベースと、この金属ベース上に載置し
て固着され、少なくとも表面に配線が形成されると共に
、中央部に第1の孔部が形成されたシリコン配線板と、
前記孔部にはめ込まれて前記金属ベースに固着されると
共に、前記配線とワイヤで接続された化合物半導体チッ
プとを有する複数個の半導体装置サブアセンブリと、 前記金属ベースがはめ込まれる第2の孔部を複数個有す
ると共に、多層配線が形成されたセラミックスベースと
を備え、 前記複数の第2の孔部内に前記複数の半導体装置サブア
センブリがそれぞれはめ込まれ、前記シリコン配線板上
の配線と前記セラミックスベースの多層配線がワイヤに
より接続されたことを特徴とする半導体装置。 2、前記化合物半導体がガリウムヒ素であることを特徴
とする特許請求の範囲第1項記載の半導体装置。 3、前記金属ベースがガリウムヒ素と近似した熱膨脹係
数を有するもので形成されていることを特徴とする特許
請求の範囲第2項記載の半導体装置。 4、前記金属ベースが銅タングステン合金で形成されて
いることを特徴とする特許請求の範囲第3項記載の半導
体装置。 5、前記第1の孔部の側壁が水平面に対して54.7°
の角度をなす結晶方位(111)面であることを特徴と
する特許請求の範囲第1項記載の半導体装置。 6、前記シリコン配線板の一辺の長さが前記セラミック
ス配線板の第2の孔部の一辺の長さよりも短いことを特
徴とする特許請求の範囲第1項記載の半導体装置。
[Claims] 1. A metal base for heat dissipation, and silicon placed and fixed on the metal base, with wiring formed on at least the surface and a first hole formed in the center. wiring board and
a plurality of semiconductor device subassemblies each having a compound semiconductor chip fitted into the hole and fixed to the metal base and connected to the wiring with a wire; and a second hole into which the metal base is fitted. and a ceramic base on which multilayer wiring is formed, and each of the plurality of semiconductor device subassemblies is fitted into the plurality of second holes, and the wiring on the silicon wiring board and the ceramic base are respectively fitted into the plurality of second holes. A semiconductor device characterized in that multi-layer wiring is connected by wires. 2. The semiconductor device according to claim 1, wherein the compound semiconductor is gallium arsenide. 3. The semiconductor device according to claim 2, wherein the metal base is made of a material having a coefficient of thermal expansion similar to that of gallium arsenide. 4. The semiconductor device according to claim 3, wherein the metal base is made of a copper-tungsten alloy. 5. The side wall of the first hole is at an angle of 54.7° with respect to the horizontal plane.
2. The semiconductor device according to claim 1, wherein the semiconductor device has a crystal orientation (111) plane forming an angle of . 6. The semiconductor device according to claim 1, wherein the length of one side of the silicon wiring board is shorter than the length of one side of the second hole of the ceramic wiring board.
JP62123292A 1987-05-20 1987-05-20 Semiconductor device Pending JPS63288036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123292A JPS63288036A (en) 1987-05-20 1987-05-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123292A JPS63288036A (en) 1987-05-20 1987-05-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63288036A true JPS63288036A (en) 1988-11-25

Family

ID=14856934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123292A Pending JPS63288036A (en) 1987-05-20 1987-05-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63288036A (en)

Similar Documents

Publication Publication Date Title
US3959579A (en) Apertured semi-conductor device mounted on a substrate
US5606198A (en) Semiconductor chip with electrodes on side surface
JP2944449B2 (en) Semiconductor package and manufacturing method thereof
US3996603A (en) RF power semiconductor package and method of manufacture
US4737236A (en) Method of making microwave integrated circuits
KR20010089209A (en) Flip chip type semiconductor device and method for manufacturing the same
US4246697A (en) Method of manufacturing RF power semiconductor package
US7973404B2 (en) Relay board provided in semiconductor device, semiconductor device, and manufacturing method of semiconductor device
JPH02271558A (en) Semiconductor device and its manufacture
WO1992005583A1 (en) Semiconductor device having many lead pins
KR0133493B1 (en) Multi layer lead frame using a metal-core substrate
JPS63271944A (en) Semiconductor device
US6207354B1 (en) Method of making an organic chip carrier package
JPH03195053A (en) Inverter device
JPS61168951A (en) Mounting structure of semiconductor integrated circuit chip
JPH10242335A (en) Semiconductor device
JPS63288036A (en) Semiconductor device
JPH03195083A (en) Hybrid integrated circuit and its manufacture
JPH06204355A (en) Semiconductor device package and semiconductor device
JPH11354667A (en) Electronic part and its mounting method
JP3831173B2 (en) Semiconductor module
JPH06112355A (en) Ceramic package
JP2913858B2 (en) Hybrid integrated circuit
JPH0618242B2 (en) Hybrid integrated circuit
JPH05343563A (en) Ceramic package