JPS63286770A - Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection - Google Patents

Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection

Info

Publication number
JPS63286770A
JPS63286770A JP12110787A JP12110787A JPS63286770A JP S63286770 A JPS63286770 A JP S63286770A JP 12110787 A JP12110787 A JP 12110787A JP 12110787 A JP12110787 A JP 12110787A JP S63286770 A JPS63286770 A JP S63286770A
Authority
JP
Japan
Prior art keywords
nozzle
dispensing
liquid
pump
dispensing nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12110787A
Other languages
Japanese (ja)
Inventor
Takeshi Sakamaki
坂巻 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12110787A priority Critical patent/JPS63286770A/en
Publication of JPS63286770A publication Critical patent/JPS63286770A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable fixed volume dispensing by providing a dispensing nozzle having a gas-liquid separating membrane in an internal prescribed height position and means for pressure reduction and pressurization which can change over a pressure reduction effect and pressurization effect. CONSTITUTION:The dispensing nozzle 1 is provided with the gas-liquid separating membrane 2 in the adequate height position in the internal space of the nozzle 1. The air in the nozzle 1 is passed through the membrane 2 and is moved to a connecting pipe 4 side by immersing the nozzle 1 tip into a sample S and communicating the nozzle with a negative pressure pump 6 by means of a 3-way selector valve 3. The air pressure in the nozzle 1, is therefore, dropped and the sample S in a tank T is sucked into the nozzle 1. The suction of the sample S is stopped at the point of the time when the sample S arrives at the membrane 2, then the pump 6 is stopped by a pressure sensor 7 and a controller 8. The valve 3 is changed over to a positive pressure pump 5 side and dispensing is executed by operating the pump 5 in the case of dispensing the sample S in the nozzle 1 into a reaction cell. The fixed volume dispensing is, therefore, enabled if the setting position of the membrane 2 in the nozzle 1 is set to meet the respective specified volume of each sample S to be sucked.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、医療検査の分野において用いられる培体分析
装置の定量分注ノズルと定量分注ポンプ、特に、多項目
検査用の自動化学分析装置に使用して有用である定量分
注ノズルと定量分注ポンプに関するものである。
Detailed Description of the Invention [Purpose of the Invention (Industrial Field of Application) The present invention relates to a quantitative dispensing nozzle and a quantitative dispensing pump of a culture medium analyzer used in the field of medical testing, particularly for multi-item testing. The present invention relates to a quantitative dispensing nozzle and a quantitative dispensing pump that are useful for use in automated chemical analyzers.

(従来の技術) 近年、医療診断に際して各種の医療検査、例えば血液や
尿等の検査が不可欠な要因となって来ている。この検査
では、恒温に保持された反応槽内を移動する反応セル内
に、検査対象である血液等の試料(以下サンプルという
)と反応用の試薬とを分注して所定時間の反応を行なわ
せ、しかる後、この被測定液に光源からの光を入射せし
めると共に、その透過光を光分析手段に導いてその吸光
度を測定するという方法を用いる。この場合、サンプル
や試薬の分注に際しては、当然のことなから検査に要す
る量だけを正確に分注することが要求されることになり
、これを実現するための手段として、サンプルであれば
数mlから数十mlの容量、試薬であれば数十mlから
数百11Ilの容量を持つ分注ポンプが使用される。
(Prior Art) In recent years, various medical tests, such as blood and urine tests, have become indispensable factors in medical diagnosis. In this test, a sample such as blood to be tested (hereinafter referred to as sample) and a reaction reagent are dispensed into a reaction cell that moves in a reaction tank maintained at a constant temperature, and the reaction is carried out for a predetermined period of time. Thereafter, a method is used in which light from a light source is made incident on the liquid to be measured, and the transmitted light is guided to a light analysis means to measure its absorbance. In this case, when dispensing samples and reagents, it is of course required to accurately dispense only the amount required for the test. A dispensing pump is used that has a capacity of several ml to several tens of ml, and for reagents, a capacity of several tens of ml to several hundred Il.

(発明か解決しようとする問題点) 従来の自動化学分析装置にあっては、この分注ポンプに
シリンジタイプのポンプを利用するのが普通であるが、
このタイプの分注ポンプは一種の摺動ポンプでもあるの
で、その摺動部分における気布性・1耐久性を保持する
ためには精密加工を施した部品を用いる必要がある。し
かし、このような高精度の部品を使用したとしても摺動
部分の耐久性には自ら成る限界が出来、また、製造に際
し・てのコスト高にもつながることであるので、このタ
イプのポンプを利用するのは決して有利なこととは云い
得なかった。
(Problem to be solved by the invention) In conventional automatic chemical analyzers, a syringe-type pump is normally used as the dispensing pump.
Since this type of dispensing pump is also a kind of sliding pump, it is necessary to use precision-machined parts in order to maintain the airtightness and durability of its sliding parts. However, even if such high-precision parts are used, there will be limits to the durability of the sliding parts, and this will also lead to higher manufacturing costs, so this type of pump is not recommended. It could never be said that it was advantageous to take advantage of it.

一方、この種の検査にあっては、その測定作業を能率よ
く処理するため、被検体(患者)から1回たけ採取した
サンプルを複数の検査項目に割振って連続的に測定を行
うという測定システムが開発され、所謂、多項目検査用
の自動化学分析装置として広く使用されている。この分
析装置は、複数項目の検査に要するサンプル量を予め一
本の分注ノズル内に項目毎に分けて取り込み、それを次
々に反応セル内に分注すると共に、試薬の分注に際して
は、複数種準備された試薬容器群の中から分析項目に適
した試薬を選んでそれを順次に反応セル内に分注するこ
とによって、連続的に測定して行くという自動化システ
ムを採用している。
On the other hand, in this type of test, in order to process the measurement work efficiently, a sample taken once from the subject (patient) is allocated to multiple test items and measured continuously. A system has been developed and is widely used as an automatic chemical analyzer for so-called multi-item testing. This analyzer takes in the amount of sample required for testing multiple items separately for each item into a single dispensing nozzle, and dispenses it one after another into a reaction cell, and when dispensing reagents, The system employs an automated system that performs continuous measurements by selecting reagents suitable for the analysis item from a group of multiple reagent containers and dispensing them into the reaction cell in sequence.

この場合、各試薬容器の中から試薬を吸引するに当って
は、通常1本の分注ノズルでこれを行うようになってい
るため、異る試薬を順次に分注するには吸引の度毎に分
注ノズルを洗浄する必要がある。しかし乍ら、この作業
では、たとえ慎重に洗浄操作をしたとしても若干のクロ
スコンタミネーションを免れることが出来ず、そのため
、試薬の中に次の分析対象で用いる成分が含まれている
ような場合には、それが分析誤差となって現れるという
虞れがあった。例えば、β−リボ蛋白質の試薬の中には
カルシウムか入っているので、次の分、fTtd象がカ
ルシウムの時には5分注ノズル内に残っているカルシウ
ム成分かそのまま分析誤差の原因となってしまうのであ
る。また、これを避けるために洗浄作業を恋人りに行な
おうとする場合には、洗浄に要する時間が長くなって測
定作業のスピードがその分だけ低下するという別な問題
を生じる。そのため、前述のポンプの問題と共にこのク
ロスコンタミネーションの対策についても、その改善策
の出現が望まれている。
In this case, since a single dispensing nozzle is normally used to aspirate the reagents from each reagent container, each reagent must be aspirated in order to dispense different reagents one after another. It is necessary to clean the dispensing nozzle every time. However, in this process, even if careful cleaning is carried out, some cross-contamination cannot be avoided, and therefore, if the reagents contain components to be used for the next analysis target. There was a risk that this would appear as an analysis error. For example, the β-riboprotein reagent contains calcium, so if the fTtd element in the next minute is calcium, the calcium component remaining in the 5-dispensing nozzle will cause analysis errors. It is. In addition, if one attempts to perform the cleaning work at a leisurely pace in order to avoid this, another problem arises in that the time required for cleaning becomes longer and the speed of the measurement work decreases accordingly. Therefore, in addition to the above-mentioned pump problem, there is a desire for measures to improve this cross-contamination.

本発明は、この事情に鑑みてなされたもので、その第1
の目的は、姻久性に富み高精度の作動を維持することが
可能な、且つ、従来のものに比べ製造コスト的にも有利
である医療検査用液体分析装置の分注ノズルを提供する
ことであり、その第2の目的は、例えば多項目検査用の
自動化学分析装置に使用した場合に大きな効果を発揮す
る新規な医療検査用液体分析装置の定量分注ポンプを提
供することにある。
The present invention has been made in view of this situation, and its first aspect is
The purpose of the present invention is to provide a dispensing nozzle for a liquid analyzer for medical testing that is durable and capable of maintaining high-precision operation, and is also advantageous in manufacturing cost compared to conventional ones. The second object is to provide a new quantitative dispensing pump for a liquid analyzer for medical tests that is highly effective when used in an automatic chemical analyzer for multi-item tests, for example.

[発明の構成] (問題点を解決するための手段) この目的を達成するための本発明の第1の構成は、吸引
及び吐出装置によって液体を吸入し且つそこから吐出し
得る医療検査用液体分析装置の分注ノズルにおいて、そ
の内部の所定高さ位置に気液分離膜を設けたことにあり
、その第2の構成は、少なくとも、内部の所定高さ位置
に気液分離膜を有する分注ノズルと、該ノズル内を減圧
し得る作用を持つ減圧手段と、この分注ノズル内を大気
圧以上に加圧し得る作用を持つ加圧手段と、前記減圧作
用と加圧作用とを切換え得る減圧・加圧切換手段とから
成る医療検査用液体分析装置の定量分注ポンプにある。
[Configuration of the Invention] (Means for Solving the Problems) A first configuration of the present invention for achieving this object is a liquid for medical testing that can be sucked in and discharged from the liquid by a suction and discharge device. The dispensing nozzle of the analyzer is provided with a gas-liquid separation membrane at a predetermined height position inside the dispensing nozzle. A dispensing nozzle, a pressure reducing means capable of reducing the pressure inside the nozzle, a pressurizing means capable of pressurizing the inside of the dispensing nozzle to a level above atmospheric pressure, and the pressure reducing action and the pressurizing action can be switched. A quantitative dispensing pump for a liquid analyzer for medical testing includes a pressure reduction/pressure switching means.

(作 用) この構成に基く本発明の作用は、気液分離膜の気液分離
作用によって吸引時の液体の吸引量制限をなすことにあ
る。
(Function) The function of the present invention based on this configuration is to limit the amount of liquid sucked during suction by the gas-liquid separation effect of the gas-liquid separation membrane.

(実施例) 以下、図示実施例に基いて本発明の詳細な説明する。第
1図は本発明に係る医療検査用液体分析装置の定量分注
ポンプの一実施例を示す概略構成図である。
(Example) Hereinafter, the present invention will be described in detail based on illustrated examples. FIG. 1 is a schematic diagram showing an embodiment of a quantitative dispensing pump of a liquid analyzer for medical testing according to the present invention.

図において、■は例えば適宜の試薬Sを有する容器、1
は本発明に係る分注ノズル、2は該ノズルlの内部空間
の適宜高さ位置に設けられた気液分離膜で、耐薬品性の
プラスチック材またはセラミックス材等のポーラス構造
から成る膜で構成され、気体は透過可能であるが液体は
透過させないという機能を有する。3はその一方の開口
が適宜の可撓性連接パイプ4を介して該ノズル1の上端
に連接する三方向切換バルブ、5は該切換バルブ3・の
残る二つの開口の内の一つに接続した陽圧ポンプで、前
記分注ノズル1内を大気圧以上に加圧し得る機能を有す
る。6は前記切換バルブ3の残る一つの開口に接続した
防圧ポンプで、前記ノズルl内を大気圧以下に減圧し得
る。尚、これらのポンプ5・6は、いずれもそれ自体公
知である適宜のポンプ構造を備える。
In the figure, ■ is, for example, a container containing an appropriate reagent S, 1
2 is a dispensing nozzle according to the present invention, and 2 is a gas-liquid separation membrane provided at an appropriate height position in the internal space of the nozzle l, and is made of a membrane made of a porous structure such as a chemical-resistant plastic material or a ceramic material. It has the function of allowing gas to pass through but not liquid. 3 is a three-way switching valve whose one opening is connected to the upper end of the nozzle 1 via a suitable flexible connecting pipe 4, and 5 is connected to one of the remaining two openings of the switching valve 3. This positive pressure pump has the function of pressurizing the inside of the dispensing nozzle 1 to a pressure higher than atmospheric pressure. Reference numeral 6 denotes a pressure-proof pump connected to the remaining opening of the switching valve 3, which can reduce the pressure inside the nozzle l to below atmospheric pressure. Incidentally, each of these pumps 5 and 6 is equipped with an appropriate pump structure that is known per se.

7は前記連接パイプ4の適宜個所に設けられたパイプ内
圧測定用の圧力センサ、8は該センサ7に接続した適宜
の制御装置で、連接バイブ4の内圧(即ち分注ノズルl
内の圧力)が所定値より低下した際に、前記防圧ポンプ
6の作動を停止せしめるように作動する。
Reference numeral 7 indicates a pressure sensor for measuring pipe internal pressure provided at an appropriate location on the connecting pipe 4, and 8 indicates an appropriate control device connected to the sensor 7, which controls the internal pressure of the connecting vibrator 4 (i.e., the dispensing nozzle l).
When the internal pressure (pressure inside) falls below a predetermined value, it operates to stop the operation of the pressure-proof pump 6.

さて、この構成から成る分注ポンプを用いて容器T内か
ら試薬Sを吸引するには、分注ノズル1の先端を試薬S
に漬け、三方向切換バルブ3を防圧ポンプ6と連通させ
ることによって行うことになる。即ち、防圧ポンプ6か
作動状態になると、その減圧作用により分注ノズルl内
の空気か気液分離膜2を透過して連接パイプ4側へと移
動するので、該ノズル1内の気圧が低下して容器T内の
試薬Sがノズルl内へと吸引される。そして、試薬Sが
気液分離膜2に達した時点て試薬Sの上昇が止まること
になる。この場合、防圧ポンプ6の作動継続により分注
ノズルl(連接バイブ4)内の気圧が低下するが、これ
に伴い圧力センサ7及び制御装置8が働いて防圧ポンプ
6の作動を停止させるので圧力低下による悪影響は生じ
ない。
Now, in order to aspirate the reagent S from inside the container T using the dispensing pump configured as described above, the tip of the dispensing nozzle 1 must be connected to the reagent S.
This is done by soaking the water in water and communicating the three-way switching valve 3 with the pressure-proof pump 6. That is, when the pressure pump 6 is activated, the air inside the dispensing nozzle 1 passes through the gas-liquid separation membrane 2 and moves toward the connecting pipe 4 due to its pressure reducing effect, so that the air pressure inside the nozzle 1 increases. The reagent S in the container T is sucked into the nozzle l. Then, when the reagent S reaches the gas-liquid separation membrane 2, the rise of the reagent S stops. In this case, the pressure inside the dispensing nozzle l (connecting vibrator 4) decreases due to the continued operation of the pressure-proof pump 6, but the pressure sensor 7 and the control device 8 act accordingly to stop the operation of the pressure-proof pump 6. Therefore, there is no adverse effect due to pressure drop.

そして、分注ノズルl内の試薬Sを図示なき反応セル内
に分注する場合には、三方向切換バルブ3を陽圧ポンプ
5側に切換え、陽圧ポンプ5を作動することにより行う
。即ち、陽圧ポンプ5からの高圧空気は、三方向切換バ
ルブ3・連接バイブ4及び気液分1tll*2を通って
分注ノズルl内の試薬Sを押下げるので、試薬Sは反応
セル内に吐出されることになる。従って、分注ノズル1
内の気液分離膜2の設置位置を、吸引すべき各試薬S毎
にそれぞれの規定量に合致するように予め設定1ノ且つ
用意して置けば定量分注が可能となる。
When the reagent S in the dispensing nozzle 1 is to be dispensed into a reaction cell (not shown), the three-way switching valve 3 is switched to the positive pressure pump 5 side and the positive pressure pump 5 is operated. That is, the high-pressure air from the positive pressure pump 5 passes through the three-way switching valve 3, the connecting vibrator 4, and the gas-liquid portion 1tll*2 and pushes down the reagent S in the dispensing nozzle l, so that the reagent S is inside the reaction cell. It will be discharged to. Therefore, dispensing nozzle 1
If the installation position of the gas-liquid separation membrane 2 in the reagent S is set and prepared in advance so as to match the specified amount of each reagent S to be aspirated, quantitative dispensing becomes possible.

以上述べたように本発明に係る定量分注ポンプは、シリ
ンジポンプのような摺動部分を必要としない構造である
ので耐久性に富み高い精度を持続し得る。しかも、たと
え微量の場合であっても定量分注が出来るので極めて有
利なものとなる。
As described above, the quantitative dispensing pump according to the present invention has a structure that does not require sliding parts like a syringe pump, so it is highly durable and can maintain high accuracy. In addition, it is extremely advantageous because even a small amount can be dispensed in a fixed amount.

また、このポンプを各々の試薬に対する専用のポンプと
して使用する時には、クロスコンタミネーションのない
試薬分注も可能となる。
Furthermore, when this pump is used as a dedicated pump for each reagent, reagent dispensing without cross-contamination becomes possible.

第2図に示すのは本発明の他の実施例を示す概略構成図
、第3図はこの第2図示の定量分注ポンプを使用した多
項目検査時の定量分注方法の一例を示す説明図である。
Fig. 2 is a schematic configuration diagram showing another embodiment of the present invention, and Fig. 3 is an explanation showing an example of a quantitative dispensing method during multi-item inspection using the quantitative dispensing pump shown in Fig. 2. It is a diagram.

図中、第1図示の符号と同一・符号の部材は両図に共通
であるので、その詳細な説明を省略する。
In the drawings, members having the same reference numerals as those shown in the first drawing are common to both drawings, so detailed explanation thereof will be omitted.

両図において、10はノズル基体11とノズル分離部1
2とから成る組合せ式の分注ノズルで、例えば医療検査
で用いられる試薬の種類に対応した数のものか用意され
る。而して、ノズル基体11は、その上端において連接
パイプ4に接続すると共にその下端部は気密構造を有す
る開口部11aに形成さね、しかも、ノズル分離部12
の上端をワンタッチ操作で結合し得る適宜のワンタッチ
装着機構(図示せず)を備えるものとする。また、前記
ノズル分離部12は、その上端部が該開口部11aと嵌
合し得る構造であって、前記ワンタッチ装着機構による
結合に都合のよい構造に形成される。そして、この実施
例では気液分離膜2はノズル分離部12側に設けられ、
その高さ方向の設置位置は、各々のノズル分離部12の
対象となる試薬Sの一回分の吸引量に適合するように決
定される。
In both figures, 10 indicates a nozzle base 11 and a nozzle separation part 1.
This is a combination type dispensing nozzle consisting of 2 and 2, and the number corresponding to the type of reagent used in medical testing, for example, is prepared. Thus, the nozzle base 11 is connected to the connecting pipe 4 at its upper end, and has an opening 11a having an airtight structure at its lower end.
An appropriate one-touch attachment mechanism (not shown) that can connect the upper ends of the two with a one-touch operation is provided. Further, the nozzle separation part 12 has a structure in which an upper end thereof can be fitted into the opening part 11a, and is formed in a structure convenient for connection by the one-touch attachment mechanism. In this embodiment, the gas-liquid separation membrane 2 is provided on the nozzle separation section 12 side,
The installation position in the height direction is determined so as to match the suction amount of the reagent S for each nozzle separation section 12 at one time.

そして、この実施例に係る組合せ式分注ノズル10は、
第3図示のような各装置との組合せて用いられるが、こ
の装置は次のように構成される。
The combination dispensing nozzle 10 according to this embodiment is
This device is used in combination with the devices shown in the third figure, and is constructed as follows.

先ず、各試薬Sの容器Tは、その内部で前記ノズル分離
部12がほぼ直立し得るような構造に作られ、且つ、予
め回転可能に設置された容器アセンブリZO内に載置さ
れる。また、分注ノズル10のノズル基体11は、適宜
の支柱21によって水平方向には旋回可能に且つ上下方
向には昇降可能に設けられたノズルアーム22上に支持
される。更に、この装置においては、各ノズル分離部I
Zは気液分離膜2・の設置高さで定まるそれぞれの対応
試薬の容器T内に、予めほぼ直立するような状態で挿入
されている。尚、前記容器アセンブリ20・ノズルアー
ム22及び反応セル23は適宜の制御・駆動装置によっ
て作動される。また、23はそれ自体公知である反応槽
(図示せず)内を無限軌道を描いて移動する反応セルで
ある。
First, a container T for each reagent S is placed in a container assembly ZO which is made to have a structure in which the nozzle separating section 12 can stand approximately upright, and which is rotatably installed in advance. Further, the nozzle base 11 of the dispensing nozzle 10 is supported by a suitable support 21 on a nozzle arm 22 which is provided so as to be pivotable in the horizontal direction and movable up and down in the vertical direction. Furthermore, in this device, each nozzle separation section I
Z is inserted in advance into a container T for each corresponding reagent determined by the installation height of the gas-liquid separation membrane 2 in a substantially upright state. The container assembly 20, nozzle arm 22, and reaction cell 23 are operated by a suitable control/driving device. Further, 23 is a reaction cell that moves in an endless trajectory in a reaction tank (not shown), which is known per se.

さて、この構成から成る定量分注装置での測定作業を説
明する。先ず、容器アセンブリ20を回転させて目的と
する容器Tをノズル基体11の直下に置く。そして、ノ
ズルアーム22を下降させてノズル基体IIの開口部1
1a内にノズル分離部12の上端が入るようにする。し
かる後、ワンタッチ装着機構を用いて両者11・12を
結合すると共に、前実施例で述べた操作により試薬Sを
吸引してからノズルアーム22を上昇させる。そして、
ノズルアーム22を反応槽側へ旋回して分注対象である
反応セル23の直上に位置させ、徐々に下降させてその
セル内に挿入し、再び前実施例で述べた操作を行って試
薬Sを反応セル23に吐出する。この操作が終了した後
は、逆の順序の操作を行うことにより空になったノズル
分離部12を元の容器T内に戻す。
Now, a measurement operation using the quantitative dispensing device having this configuration will be explained. First, the container assembly 20 is rotated to place the target container T directly below the nozzle base 11 . Then, the nozzle arm 22 is lowered to open the opening 1 of the nozzle base II.
The upper end of the nozzle separation part 12 is placed inside 1a. Thereafter, the one-touch mounting mechanism is used to connect both 11 and 12, and the reagent S is sucked by the operation described in the previous embodiment, and then the nozzle arm 22 is raised. and,
The nozzle arm 22 is rotated toward the reaction tank, positioned directly above the reaction cell 23 to be dispensed, gradually lowered and inserted into the cell, and the operation described in the previous example is performed again to dispense the reagent S. is discharged into the reaction cell 23. After this operation is completed, the empty nozzle separating section 12 is returned to the original container T by performing the operations in the reverse order.

この一連の操作を必要とする試薬Sについて行えば、ク
ロスコンタミネーションがなく、また、ノズルの洗浄を
要しない分注作業が可能となるので、測定時間が大幅に
短縮されることになる。
If this series of operations is performed for the reagent S that requires it, there will be no cross-contamination, and a dispensing operation that does not require nozzle cleaning will be possible, so the measurement time will be significantly shortened.

以上一実施例について説明したが、本発明はこれに限定
されるものではなく、その要旨を変更せざる範囲内で、
種々に変形実施することが可能である。例えば、対象と
する液体は、サンプル・試薬に限らず医療検査分野で使
用される定量吸入を要するもの全てに適用可能であり、
また、気液分離膜は前述のものと同様な機能を果たす他
の材料・構造のものてもよい。更に、ノズル基体の開口
部に形成する気密構造は、例えば0−リングを付設した
円錐嵌合構造のようなそれ自体公知である適宜の構造を
用いることが出来、ノズル基体とノズル分離部とを着脱
可能に結合するフンタッチ装着機構も、例えば締付はチ
ャック機構やバヨネット機構のようなそれ自体公知であ
る適宜の構造を用−い得る。しかも、除圧ポンプと陽圧
ポンプとは適宜構造のものを用い得るが、除圧作用と陽
圧作用とを一台のポンプて切換的に実施し得る特殊ポン
プを使用してもよい。
Although one embodiment has been described above, the present invention is not limited to this, and within the scope of not changing the gist thereof,
It is possible to implement various modifications. For example, the target liquid is not limited to samples and reagents, but can be applied to anything that requires fixed-dose inhalation used in the medical testing field.
Further, the gas-liquid separation membrane may be made of other materials and structures that perform the same functions as those described above. Furthermore, the airtight structure formed at the opening of the nozzle base can be any suitable structure known per se, such as a conical fitting structure with an O-ring attached, and the nozzle base and the nozzle separation part can be connected to each other. The touch attachment mechanism for removably coupling may also use an appropriate structure known per se, such as a chuck mechanism or a bayonet mechanism for tightening. In addition, the depressurization pump and the positive pressure pump may have an appropriate structure, but a special pump that can selectively perform the depressurization action and the positive pressure action with one pump may also be used.

[発明の効果] 以上述べた通り本発明を用いる時は、耐久性に富み高精
度の作動を維持することか可能な、且つ、従来のものに
比べ製造コスト的にも有利である医療検査用液体分析装
置の分注ノズルと、例えば多項目検査用の自動化学分析
装置に使用した場合に大きな効果を発揮する新規な医療
検査用液体分析装置の定量分注ポンプとを実現すること
か可能となる。
[Effects of the Invention] As described above, when the present invention is used, it is possible to use a medical testing device that is durable, can maintain high precision operation, and is advantageous in terms of manufacturing cost compared to conventional devices. It is possible to realize a dispensing nozzle for a liquid analyzer and a quantitative dispensing pump for a new liquid analyzer for medical testing, which is highly effective when used in, for example, an automatic chemical analyzer for multi-item testing. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る医療検査用液体分析装置の定量分
注ポンプの実施例を示す概略構成図、第2図は他の実施
例を示す概略構成図、第3図は第2図示の定量分注ポン
プを使用した多項目検査時の定量分注方法の一例を示す
説明図である。 T−容器       S−試薬 1−分注ノズル    2−気液分離膜3−三方向切換
バルブ 4一連接パイブ5−陽圧ポンプ    6−防
圧ポンプ7−圧カセンサ    8−制御装置 1〇−組合せ式分注ノズル 11−ノズル基体    11a−開口部12−ノズル
分離部   2〇−容器アセンブリ21−支柱    
   22−ノズルアーム23−反応セル 代理人 弁理士  則 近 憲 佑 同        近  藤     猛弔3図
FIG. 1 is a schematic configuration diagram showing an embodiment of a quantitative dispensing pump for a liquid analyzer for medical testing according to the present invention, FIG. 2 is a schematic configuration diagram showing another embodiment, and FIG. FIG. 2 is an explanatory diagram showing an example of a quantitative dispensing method during a multi-item inspection using a quantitative dispensing pump. T-container S-reagent 1-dispensing nozzle 2-gas-liquid separation membrane 3-three-way switching valve 4-connection pipe 5-positive pressure pump 6-pressure proof pump 7-pressure sensor 8-control device 1〇-combination type Dispensing nozzle 11 - nozzle base 11a - opening 12 - nozzle separation part 20 - container assembly 21 - strut
22-Nozzle arm 23-Reaction cell agent Patent attorney Noriyuki Ken Yudo Kondo Takesou 3 diagram

Claims (8)

【特許請求の範囲】[Claims] (1)吸引及び吐出装置によって液体を吸入し且つそこ
から吐出し得る医療検査用液体分析装置の分注ノズルに
おいて、その内部の所定高さ位置に気液分離膜を設けた
ことを特徴とする医療検査用液体分析装置の分注ノズル
(1) A dispensing nozzle of a liquid analyzer for medical testing capable of sucking in and discharging liquid by a suction and discharge device, characterized in that a gas-liquid separation membrane is provided at a predetermined height position inside the dispensing nozzle. Dispensing nozzle for liquid analyzer for medical testing.
(2)前記分注ノズルは、液体流路を介して前記吸引及
び吐出装置に連接するノズル基体と、内部に前記気液分
離膜を備え且つ該基体に対し気密を保持しつつ着脱可能
であるノズル分離部とから成るものである特許請求の範
囲第1項に記載の医療検査用液体分析装置の分注ノズル
(2) The dispensing nozzle includes a nozzle base connected to the suction and discharge device via a liquid flow path, and the gas-liquid separation membrane inside, and is detachable from the base while maintaining airtightness. A dispensing nozzle for a liquid analyzer for medical testing according to claim 1, which comprises a nozzle separating section.
(3)前記分注ノズルは、1個のノズル基体と複数個の
ノズル分離部とから成るものである特許請求の範囲第2
項に記載の医療検査用液体分析装置の分注ノズル。
(3) The dispensing nozzle is comprised of one nozzle base and a plurality of nozzle separation parts.
A dispensing nozzle for a liquid analyzer for medical testing as described in 2.
(4)前記分注ノズルは、前記気液分離膜の設置高さに
よって予定吸引量を定めたものである特許請求の範囲第
1項乃至第3項のいずれか1項に記載の医療検査用液体
分析装置の分注ノズル。
(4) The dispensing nozzle is for medical testing according to any one of claims 1 to 3, wherein a scheduled suction amount is determined depending on the installation height of the gas-liquid separation membrane. Dispensing nozzle for liquid analyzer.
(5)少なくとも、内部の所定高さ位置に気液分離膜を
有する分注ノズルと、該ノズル内を減圧し得る作用を持
つ減圧手段と、この分注ノズル内を大気圧以上に加圧し
得る作用を持つ加圧手段と、前記減圧作用と加圧作用と
を切換え得る減圧・加圧切換手段とから構成したことを
特徴とする医療検査用液体分析装置の定量分注ポンプ。
(5) At least a dispensing nozzle having a gas-liquid separation membrane at a predetermined internal height, a pressure reducing means capable of reducing the pressure inside the nozzle, and a pressure reducing means capable of pressurizing the inside of the dispensing nozzle to a pressure higher than atmospheric pressure. 1. A quantitative dispensing pump for a liquid analyzer for medical testing, characterized in that it comprises a pressurizing means having a function, and a depressurizing/pressurizing switching means capable of switching between the depressurizing action and the pressurizing action.
(6)前記減圧手段と加圧手段とはそれぞれ別個に構成
されたポンプであり、前記減圧・加圧切換手段は三方向
切換バルブである特許請求の範囲第5項に記載の医療検
査用液体分析装置の定量分注ポンプ。
(6) The liquid for medical testing according to claim 5, wherein the pressure reducing means and the pressurizing means are pumps each configured separately, and the pressure reducing/pressurizing switching means is a three-way switching valve. Analyzer metering dispensing pump.
(7)前記分注ノズルは、前記減圧手段或いは加圧手段
または減圧・加圧切換手段と液体流路を介して連接する
1個のノズル基体と、内部に気液分離膜を備え且つ該基
体に対し気密を保持しつつ着脱可能である複数個のノズ
ル分離部とから成るものである特許請求の範囲第5項ま
たは第6項に記載の医療検査用液体分析装置の定量分注
ポンプ。
(7) The dispensing nozzle includes one nozzle base that is connected to the pressure reducing means, the pressurizing means, or the reducing/pressurizing switching means via a liquid flow path, and a gas-liquid separation membrane inside the base. 7. A quantitative dispensing pump for a liquid analyzer for medical testing according to claim 5 or 6, comprising a plurality of nozzle separation sections that can be attached and detached while maintaining airtightness.
(8)前記ノズル基体は上下動及び水平移動可能に構成
され、前記定量分注ポンプは、複数の液体容器を載置し
て回動する容器アセンブリ手段と、無限軌道運動をする
反応セル群との組合せで使用されるものである特許請求
の範囲第7項に記載の医療検査用液体分析装置の定量分
注ポンプ。
(8) The nozzle base is configured to be movable vertically and horizontally, and the quantitative dispensing pump includes a container assembly means that rotates with a plurality of liquid containers placed thereon, and a reaction cell group that moves in an endless orbit. A quantitative dispensing pump for a liquid analyzer for medical testing according to claim 7, which is used in combination with the above.
JP12110787A 1987-05-20 1987-05-20 Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection Pending JPS63286770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12110787A JPS63286770A (en) 1987-05-20 1987-05-20 Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12110787A JPS63286770A (en) 1987-05-20 1987-05-20 Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection

Publications (1)

Publication Number Publication Date
JPS63286770A true JPS63286770A (en) 1988-11-24

Family

ID=14803050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12110787A Pending JPS63286770A (en) 1987-05-20 1987-05-20 Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection

Country Status (1)

Country Link
JP (1) JPS63286770A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254346A (en) * 1989-03-29 1990-10-15 Teikoku Seiyaku Kk Reagent injector for emission measuring apparatus
JP2001074717A (en) * 1999-09-02 2001-03-23 Arkray Inc Liquid-containing container
US6499364B1 (en) * 1998-08-26 2002-12-31 Biohit Oyj Tip for a suction device
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying
JP2011221019A (en) * 2010-04-06 2011-11-04 Symbion Medical Systems Societe A Responsabilite Limitee Disposable dispensing cartridge for medical assay equipment
CN103105473A (en) * 2012-11-06 2013-05-15 苏州聚阳环保科技有限公司 Water quality detector sampling system
CN107271707A (en) * 2017-08-03 2017-10-20 力合科技(湖南)股份有限公司 The sampling device of a kind of sampler and the use device, detecting system
JP2020034582A (en) * 2016-05-23 2020-03-05 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Liquid dispenser with multiple modular independently-actuated pipette channels
CN113670664A (en) * 2020-05-13 2021-11-19 力合科技(湖南)股份有限公司 Automatic sampling and sample preparing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254346A (en) * 1989-03-29 1990-10-15 Teikoku Seiyaku Kk Reagent injector for emission measuring apparatus
US6499364B1 (en) * 1998-08-26 2002-12-31 Biohit Oyj Tip for a suction device
JP2001074717A (en) * 1999-09-02 2001-03-23 Arkray Inc Liquid-containing container
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying
US9114393B2 (en) 2010-04-06 2015-08-25 Symbion Medical Systems Sarl Disposable dispensing cartridge for medical assay instrumentation
JP2011221019A (en) * 2010-04-06 2011-11-04 Symbion Medical Systems Societe A Responsabilite Limitee Disposable dispensing cartridge for medical assay equipment
CN103105473A (en) * 2012-11-06 2013-05-15 苏州聚阳环保科技有限公司 Water quality detector sampling system
JP2020034582A (en) * 2016-05-23 2020-03-05 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Liquid dispenser with multiple modular independently-actuated pipette channels
US11099203B2 (en) 2016-05-23 2021-08-24 Becton, Dickinson And Company Liquid dispenser with manifold mount for modular independently-actuated pipette channels
US11828767B2 (en) 2016-05-23 2023-11-28 Becton, Dickinson And Company Liquid dispenser with manifold mount for modular independently-actuated pipette channels
CN107271707A (en) * 2017-08-03 2017-10-20 力合科技(湖南)股份有限公司 The sampling device of a kind of sampler and the use device, detecting system
CN107271707B (en) * 2017-08-03 2020-02-21 力合科技(湖南)股份有限公司 Sample introduction device and detection system
CN113670664A (en) * 2020-05-13 2021-11-19 力合科技(湖南)股份有限公司 Automatic sampling and sample preparing device

Similar Documents

Publication Publication Date Title
US5158748A (en) Automated dispensing and diluting system
US4311667A (en) Delivering apparatus
US4340390A (en) Method and apparatus for metering biological fluids
US4452899A (en) Method for metering biological fluids
US4366119A (en) Discrete type automated chemical analytic apparatus
JPS63259468A (en) Automatic patient sample analyzer
WO2006132211A1 (en) Automatic analyzing instrument
US20210197188A1 (en) Automatic analyzer and optical measurement method for obtaining measurement signals from liquid media
EP0545560B1 (en) Sampling valve
JPS63286770A (en) Dispensing nozzle and fixed volume dispensing pump for liquid analyzer for medical inspection
KR20070096779A (en) Method and apparatus for liquid chromatography automated sample loading
JPH04115136A (en) Particle measuring apparatus
US20220099694A1 (en) Pipetting device and method for the transfer of fluids
JPH01212356A (en) Diluted specimen preparation apparatus for liquid chromatography
US4615866A (en) Fluid-sampling system and method
JPS6156785B2 (en)
JPH06289032A (en) Dispensing method for automatic analyzer and dispensing system
JPH028746A (en) Analyzer
JP6355960B2 (en) CLINICAL INSPECTION DEVICE AND CONTAINER CLEANING METHOD
EP3785034B1 (en) Intelligent pressure control apparatus and methods for maintaining manifold pressure in a diagnostic testing apparatus
JPH0126509B2 (en)
JP2966065B2 (en) Dissolution test equipment
JPH01138463A (en) Sampling method for automatic chemical analyzing device
JPH03108652A (en) Method of automatically supplying calibration solution in electrolyte analyzer
JPH0545365A (en) Sample separate injection method