JPS63286565A - Plasma thermal spraying method at reduced pressure - Google Patents

Plasma thermal spraying method at reduced pressure

Info

Publication number
JPS63286565A
JPS63286565A JP62119103A JP11910387A JPS63286565A JP S63286565 A JPS63286565 A JP S63286565A JP 62119103 A JP62119103 A JP 62119103A JP 11910387 A JP11910387 A JP 11910387A JP S63286565 A JPS63286565 A JP S63286565A
Authority
JP
Japan
Prior art keywords
powder
baffle plate
plasma
plasma jet
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62119103A
Other languages
Japanese (ja)
Inventor
Michitoshi Ito
井藤 三千寿
Koichi Takeda
紘一 武田
Kazunori Hayashi
和範 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62119103A priority Critical patent/JPS63286565A/en
Publication of JPS63286565A publication Critical patent/JPS63286565A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere

Abstract

PURPOSE:To form a thermally-sprayed film having high density and high strength on the surface of a base material by providing a bored baffle plate between a nozzle and the surface of the base material, and making both the central axis of this bore and the central axis of a plasma jet nearly coaxial. CONSTITUTION:A baffle plate 4 having a bore is provided between the nozzle 2 of a plasma gun 1 and a bass material 8 in a reduced pressure tank 10, and both the central axis of this bore are the central axis of a plasma jet 5 are made nearly coaxial. In this state, the inside of the reduced pressure tank 10 is sufficiently exhausted and thereafter gaseous Ar is introduced to hold the pressure at about 20-100mmHg and powder is sent to the plasma gun 1 from a powder feeder 3. The powder 6 introduced into the high-temp. region of the center of the plasma jet 5 is sufficiently heated, melted and laminated on the base material 8 to form a thermally-sprayed film 9 but the powder 7 which is deviated from the center and insufficiently heated is laminated on the baffle plate 4 and substantially excepted from the thermally-sprayed film 9. Thereby only the sufficiently melted powder 6 is laminated on the surface of the base material and the thermally-sprayed film 9 having high density and high strength is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度、高強度の溶射皮膜の形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for forming a high-density, high-strength thermal spray coating.

(従来の技術) 従来の減圧プラズマ溶射方法においては、溶射粉末はプ
ラズマジェット軸に対し、横方向からガス搬送で供給さ
れる。このためプラズマジェットの中心部の高温領域を
通らない未溶融粉末が溶射皮膜内に混入し、密度および
溶射皮膜の強度劣化の原因となっている。第2図は従来
の減圧プラズマ溶射方法の概略を示した。図中1はプラ
ズマガン、2はノズル、3は粉末供給装置である。第2
図に示すようにプラズマジェット5の中心部の高温領域
を通り過ぎ中心部から外れた粉末7やプラズマジェット
の中心に入りきれない粉末7°などは・冷却されたり、
加熱不足になる。溶射ガンを静止させて平板8上に溶射
皮膜を形成させると第2図の下方に示すような溶射層9
が得られる。溶射層9の中心部は十分溶融した粉末6が
積層するため、溶射粉末同士も十分に密着し緻密となる
が、溶射層端部11では、冷却または加熱不足による未
溶融の溶射粉末が混入するため気孔が多くなりやすく、
また粉末粒子同士の密着も弱くなるため溶射皮膜の強度
も弱くなる。
(Prior Art) In a conventional low-pressure plasma spraying method, thermal spray powder is supplied by gas transport from a side direction with respect to a plasma jet axis. For this reason, unmelted powder that does not pass through the high-temperature region at the center of the plasma jet is mixed into the sprayed coating, causing deterioration in density and strength of the sprayed coating. FIG. 2 schematically shows a conventional low pressure plasma spraying method. In the figure, 1 is a plasma gun, 2 is a nozzle, and 3 is a powder supply device. Second
As shown in the figure, the powder 7 that has passed through the high-temperature area at the center of the plasma jet 5 and left the center, and the powder 7° that cannot enter the center of the plasma jet are cooled or
The heating will be insufficient. When the thermal spray gun is kept stationary and a thermal spray coating is formed on the flat plate 8, a thermal spray coating 9 as shown in the lower part of FIG. 2 is formed.
is obtained. In the center of the sprayed layer 9, the sufficiently melted powder 6 is stacked, so the sprayed powders adhere well to each other and become dense, but at the end portions 11 of the sprayed layer, unmelted sprayed powder is mixed in due to insufficient cooling or heating. Therefore, pores tend to increase,
In addition, the adhesion between the powder particles becomes weaker, so the strength of the sprayed coating also becomes weaker.

一般に溶射を施工する場合、被溶射材(基材)の表面に
平行にプラズマガン1を移動させて広い面積にねたり溶
射皮膜を形成させるため、第2図の斜線で示した溶射層
端部11も溶射皮膜中に取り込まれてしまう。このため
得られる溶射皮膜は気孔を含みやすく、粒子間結合力も
低下して溶射皮膜の強度も低下する。
Generally, when performing thermal spraying, the plasma gun 1 is moved parallel to the surface of the material to be thermally sprayed (base material) to form a thermal spray coating over a wide area, so the edge of the thermal spray layer shown with diagonal lines in Figure 2 No. 11 is also incorporated into the sprayed coating. For this reason, the obtained thermal sprayed coating tends to contain pores, and the bonding force between particles is reduced, resulting in a decrease in the strength of the thermal sprayed coating.

(発明が解決しようとする問題点) 本発明は、溶射皮膜の気孔率の増加と溶射皮膜の強度低
下をひき起こす原因となる未溶融の溶射粉末を減少させ
、高密度、高強度の溶射皮膜を形成しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention reduces unmelted thermal spray powder, which causes an increase in the porosity of the thermal spray coating and a decrease in the strength of the thermal spray coating, and provides a thermal spray coating with high density and high strength. It is intended to form a

(問題点を解決するための手段) 本発明はノズルと基材面の間に穴のあいた邪魔板を穴の
中心軸と、プラズマジェットの中心軸とがほぼ同軸とな
るように取り付け、プラズマジェットの周辺部に含まれ
る未溶融粒子を遮断して十分溶融した粉末のみを基材面
に積層させて高密度、高強度の溶射皮膜を形成するもの
である。
(Means for Solving the Problems) The present invention provides a method for attaching a baffle plate with a hole between a nozzle and a base material surface so that the center axis of the hole is substantially coaxial with the center axis of the plasma jet. The unmelted particles contained in the periphery of the sprayed coating are blocked and only the sufficiently melted powder is layered on the substrate surface to form a high-density, high-strength thermal spray coating.

以下本発明を具体的かつ詳細に説明する。The present invention will be explained specifically and in detail below.

第1図に本発明の1例の概略を示した。プラズマガン1
には、ノズル2と円状の穴のあいた邪魔板4が穴の中心
軸とプラズマジェットの中心軸とがほぼ同軸となるよう
に取り付けられている。邪魔板4とプラズマガン1は電
気的に絶縁されている。邪魔板はプラズマジェットによ
り溶損されないものであればどのようなものでも使用で
きるが、通常黒鉛あるいは水冷銅板が使用される。本発
明は減圧槽10内で実施される。減圧槽lO内を十分排
気した後、所定の溶射雰囲気の圧力まで計カスを導入し
、溶射が開始される。本発明を効果的に行なうための溶
射雰囲気の圧力は20〜100mm Hgの範囲である
。本発明の方法によれば、プラズマジェットの中心部の
高温領域に入フた粉末6は十分加熱され溶融して基材8
上に積層して溶射皮膜9を形成する。プラズマジェット
の中心を外れた加熱不足の粉末7は邪魔板上に積層して
実質的に溶射皮膜から除去される。
FIG. 1 shows an outline of one example of the present invention. plasma gun 1
, a nozzle 2 and a baffle plate 4 having a circular hole are attached so that the center axis of the hole and the center axis of the plasma jet are substantially coaxial. The baffle plate 4 and the plasma gun 1 are electrically insulated. Any baffle plate can be used as long as it is not eroded by the plasma jet, but graphite or water-cooled copper plates are usually used. The present invention is implemented within a vacuum tank 10. After the inside of the decompression tank IO is sufficiently evacuated, the slag is introduced to the pressure of a predetermined thermal spraying atmosphere, and thermal spraying is started. The pressure of the thermal spray atmosphere for effectively carrying out the present invention is in the range of 20 to 100 mm Hg. According to the method of the present invention, the powder 6 that enters the high temperature region at the center of the plasma jet is sufficiently heated and melted to form the base material 8.
A thermal spray coating 9 is formed by laminating on top. The underheated powder 7 that is off the center of the plasma jet is deposited on the baffle plate and is substantially removed from the sprayed coating.

邪魔板の穴の直径は、プラズマジェットの直径を勘案し
て設定する。プラズマジェットの直径は溶射雰囲気の圧
力によっても変化し、例えば、溶射雰囲気の圧力が低い
場合はプラズマジェットの直径は拡がるので、穴の直径
も大きくなるが、溶射雰囲気の圧力が高い場合はプラズ
マジェットの直径は絞られるので穴の直径は小さくする
必要がある。
The diameter of the hole in the baffle plate is set in consideration of the diameter of the plasma jet. The diameter of the plasma jet also changes depending on the pressure of the spraying atmosphere. For example, when the pressure of the spraying atmosphere is low, the diameter of the plasma jet expands and the diameter of the hole also increases, but when the pressure of the spraying atmosphere is high, the plasma jet expands. Since the diameter of the hole is narrowed down, the diameter of the hole must be made smaller.

また、プラズマジェットの直径はノズル先端と邪魔板と
の距離が遠くなるほど大きくなるので、邪魔板の穴の直
径はこれを考慮し、距離が近ければ小さく、また、遠け
れば若干大きくすることになる。
Also, the diameter of the plasma jet increases as the distance between the nozzle tip and the baffle plate increases, so the diameter of the hole in the baffle plate should take this into consideration, and the diameter of the hole in the baffle plate should be smaller if the distance is short, and slightly larger if it is far away. .

ノズル先端と邪魔板の距離も上記の雰囲気の圧力等を勘
案して調整するが通常120mm〜300mm程度とす
ることが溶射効率を高めるうえで有効である。このよう
に邪魔板の穴の直径は、溶射雰囲気の圧力、邪魔板とノ
ズル先端との距離等によって変化するプラズマジェット
の直径を勘案しプラズマジェットの中心部の高温領域に
入ワている粉末が通過しうるように大きさを設定する。
The distance between the nozzle tip and the baffle plate is also adjusted in consideration of the above-mentioned atmospheric pressure, etc., but it is usually effective to set it to about 120 mm to 300 mm in order to increase thermal spraying efficiency. In this way, the diameter of the hole in the baffle plate is determined by taking into account the diameter of the plasma jet, which changes depending on the pressure of the spraying atmosphere, the distance between the baffle plate and the nozzle tip, etc., and is designed to ensure that the powder entering the high-temperature area at the center of the plasma jet is Set the size so that it can pass through.

例えば、プラズマ出力40〜120kwで溶射雰囲気の
圧力が20〜100mm Hgの減圧プラズマでは穴の
直径は15〜40mm程度である。
For example, in the case of a reduced pressure plasma with a plasma output of 40 to 120 kW and a spraying atmosphere pressure of 20 to 100 mm Hg, the diameter of the hole is about 15 to 40 mm.

邪魔板の穴の形状は円状とする方が簡便であるが、この
円状近似できるものであれば多角形でも差支えない。
Although it is easier to make the hole in the baffle plate circular, it may be polygonal as long as it can be approximated to a circular shape.

なお、邪魔板の取付けに当っては、邪魔板の穴の中心軸
とプラズマジェットの中心軸とをほぼ同軸とすることが
必要であるが、プラズマジェットの中心軸とノズルの中
心軸がほぼ同一であれば、邪魔板の穴の中心軸とノズル
の中心軸とをほぼ同軸となるように取付ければよい。
When installing the baffle plate, it is necessary to make the center axis of the hole in the baffle plate and the center axis of the plasma jet almost coaxial. If so, it is sufficient to install the baffle plate so that the center axis of the hole and the center axis of the nozzle are substantially coaxial.

本発明によれば十分溶融した粉末のみが基材面に積層さ
れて溶射皮膜を形成するため粉末粒子同士の密着も強く
、気孔のない、高密度、高強度皮膜が得られる。
According to the present invention, only sufficiently melted powder is laminated on the base material surface to form a sprayed coating, so that the adhesion between powder particles is strong, and a pore-free, high-density, high-strength coating can be obtained.

(実施例−1) 長さ300mm、  幅30mm 、厚さ] Ommの
5541基材上に5US304粉末を本発明の方法によ
り減圧プラズマ溶射した。邪魔板は水冷銅版を使用した
。水冷銅版は溶射ガンに固定されている。基材表面上に
均一な溶射層を形成させるため、溶射ガンを基材と平行
に移動させながら溶射した。溶射条件はAr−tie混
合ガスを使用し、プラズマ電カフ0kw、溶射雰囲気の
圧力30mm Hg、水冷銅版の穴径30mmφ、ノズ
ルと水冷銅版の距j1300+nm、  ノズル−基材
間の距離は400mmとし°C1基材表面上に均一に厚
さ31Tl[I+の溶射皮膜を形成した。得られた溶射
皮膜部を加工して1mm厚の板状引張試験片を採取して
引張破断強度を測定した。ざらに溶射皮膜部より切り出
した試料を用いてアルキメデス法により皮膜密度を測定
し、同様にして求めた市販圧延材の密度を100として
密度比を求めた。
(Example-1) Length: 300 mm, Width: 30 mm, Thickness] 5US304 powder was sprayed by reduced pressure plasma spraying on a 5541 substrate of 0 mm by the method of the present invention. A water-cooled copper plate was used for the baffle plate. The water-cooled copper plate is fixed to the spray gun. In order to form a uniform thermal spray layer on the surface of the substrate, the thermal spraying was carried out while moving the thermal spray gun parallel to the substrate. Thermal spraying conditions were as follows: Ar-tie mixed gas was used, the plasma electric cuff was 0 kW, the pressure of the spraying atmosphere was 30 mm Hg, the hole diameter of the water-cooled copper plate was 30 mmφ, the distance between the nozzle and the water-cooled copper plate was j1300+nm, and the distance between the nozzle and the substrate was 400 mm. A thermal sprayed coating with a thickness of 31 Tl[I+ was uniformly formed on the surface of the C1 base material. The obtained thermal sprayed coating was processed to obtain a plate-shaped tensile test piece with a thickness of 1 mm, and the tensile strength at break was measured. The coating density was measured by the Archimedes method using a sample roughly cut out from the thermally sprayed coating part, and the density ratio was determined by setting the density of a commercially available rolled material determined in the same manner as 100.

第1表に本発明の方法と、同一条件で邪魔板を設けない
で実施した従来の減圧プラズマ溶射方法での溶射皮膜の
測定結果を比較して示した。
Table 1 shows a comparison of the measurement results of thermal sprayed coatings obtained by the method of the present invention and by a conventional low-pressure plasma spraying method conducted under the same conditions without providing a baffle plate.

第  1  表 (実施例−2) 長さ300mm、  幅30mm 、厚さI Ommの
5541基材上にハステロイC粉末(Ni−Go 0.
81%−Or 15.8%−Fe5.1!に−Mo16
.H−Mn 0.65亀−5i O,5!l;−W 4
.0196−V 0.31%;)を本発明の方法により
減圧プラズマ溶射した。邪魔板は水冷銅版を使用した。
Table 1 (Example-2) Hastelloy C powder (Ni-Go0.
81%-Or 15.8%-Fe5.1! ni-Mo16
.. H-Mn 0.65 Kame-5i O,5! l;-W 4
.. 0196-V 0.31%;) was subjected to low pressure plasma spraying by the method of the present invention. A water-cooled copper plate was used for the baffle plate.

水冷銅版は溶射ガン形成させるため、溶射ガンを基材と
平行に移動させながら溶射した。溶射条件はAr−He
混合ガスを使用し、プラズマ電カフ2kw、溶射雰囲気
の圧力50mm Hg、水冷銅版の穴径20mmφ、ノ
ズルと水冷銅版の距離200mm、ノズル−基材間の距
離は300mmとして、基材表面上に均一に厚さ3mm
の溶射皮膜を形成した。得られた溶射皮膜部を加工して
1mm厚の板状引張試験片を採取して引張破断強度を測
定した。ざらに溶射皮膜部より切り出した試料を用いて
アルキメデス法により皮膜密度を測定し、同様にして求
めた市販展伸材の密度を100として密度比を求めた。
The water-cooled copper plate was sprayed while moving the spray gun parallel to the base material in order to form a spray gun. Thermal spraying conditions are Ar-He
Using a mixed gas, the plasma electric cuff was 2 kW, the pressure of the spraying atmosphere was 50 mm Hg, the hole diameter of the water-cooled copper plate was 20 mmφ, the distance between the nozzle and the water-cooled copper plate was 200 mm, and the distance between the nozzle and the substrate was 300 mm. 3mm thick
A sprayed coating was formed. The obtained thermal sprayed coating was processed to obtain a 1 mm thick plate-shaped tensile test piece, and the tensile strength at break was measured. The coating density was measured by the Archimedes method using a sample roughly cut out from the thermally sprayed coating, and the density ratio was determined by setting the density of a commercially available expanded material determined in the same manner as 100.

第2表に本発明の方法と、同一条件で邪魔板を設けない
で実施した従来の減圧プラズマ溶射方法での溶射皮膜の
測定結果を比較して示した。
Table 2 shows a comparison of the measurement results of the sprayed coatings obtained by the method of the present invention and the conventional reduced pressure plasma spraying method conducted under the same conditions without providing a baffle plate.

第  2  表 (発明の効果) 以上の結果から明らかなように本発明は以下の効果を有
する。
Table 2 (Effects of the Invention) As is clear from the above results, the present invention has the following effects.

(1)気孔の少ない高密度の溶射皮膜が得られるため、
従来の溶射皮膜に比べて耐食性に優れる。
(1) A high-density sprayed coating with few pores can be obtained;
Superior corrosion resistance compared to conventional thermal spray coatings.

(2)溶射粉末同士が十分密着しているため、皮膜の機
械的性質に優れる。
(2) Since the thermal spray powders are in close contact with each other, the mechanical properties of the film are excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の概略を模式的に示す図面であり、
鋼板上に溶射している状態を示す。第2図は従来の減圧
プラズマ溶射の原理を模式的に示す図面である。 1・・・プラズマガン、2・・・ノズル、3・・・粉末
供給装置、4・・・邪魔板、5・・・プラズマジェット
、6゜7・・・溶射粉末粒子、8・・・基材、9・・・
溶射皮膜、10・・・減圧槽。
FIG. 1 is a drawing schematically showing the outline of the method of the present invention,
Shows the state of thermal spraying on a steel plate. FIG. 2 is a drawing schematically showing the principle of conventional low pressure plasma spraying. DESCRIPTION OF SYMBOLS 1... Plasma gun, 2... Nozzle, 3... Powder supply device, 4... Baffle plate, 5... Plasma jet, 6° 7... Thermal spray powder particles, 8... Group Material, 9...
Thermal spray coating, 10...reduced pressure tank.

Claims (1)

【特許請求の範囲】[Claims] 減圧プラズマ溶射方法においてノズルと基材面の間に、
穴のあいた邪魔板を該邪魔板の穴の中心軸と、プラズマ
ジェットの中心軸とがほぼ同軸となるように設け、基材
面に高密度、高強度の溶射皮膜を形成することを特徴と
する減圧プラズマ溶射方法。
In the low pressure plasma spraying method, between the nozzle and the substrate surface,
A baffle plate with holes is provided so that the center axis of the hole in the baffle plate is substantially coaxial with the center axis of the plasma jet, and a high-density, high-strength thermal spray coating is formed on the substrate surface. Low pressure plasma spraying method.
JP62119103A 1987-05-18 1987-05-18 Plasma thermal spraying method at reduced pressure Pending JPS63286565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119103A JPS63286565A (en) 1987-05-18 1987-05-18 Plasma thermal spraying method at reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119103A JPS63286565A (en) 1987-05-18 1987-05-18 Plasma thermal spraying method at reduced pressure

Publications (1)

Publication Number Publication Date
JPS63286565A true JPS63286565A (en) 1988-11-24

Family

ID=14752980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119103A Pending JPS63286565A (en) 1987-05-18 1987-05-18 Plasma thermal spraying method at reduced pressure

Country Status (1)

Country Link
JP (1) JPS63286565A (en)

Similar Documents

Publication Publication Date Title
US6043451A (en) Plasma spraying of nickel-titanium compound
JP4738414B2 (en) Method for producing thin and dense ceramic layers
JP2006518806A (en) Method and apparatus for manufacturing a sputtering target
US20100012488A1 (en) Sputter target assembly having a low-temperature high-strength bond
JP2009536984A (en) Method for obtaining a ceramic coating and obtained ceramic coating
US8871010B2 (en) Plasma spray method for the manufacture of an ion conductive membrane
CN112851406B (en) Method for coating nickel or nickel alloy on surface of aluminum nitride ceramic
US20170009329A1 (en) Conductive Additive Electric Current Sintering
US5340023A (en) Plasma spraying method and apparatus
JP3172121B2 (en) Thermal spraying method for inner peripheral surface of hollow cylindrical tube
JP2012153581A (en) Joining method of ceramic and aluminum
US7582374B2 (en) Method for producing a layer system comprising a metallic carrier and an anode functional layer
KR20210086194A (en) Plazma Powder Deposition Apparatus and Deposition Method Using The Same
JPS63286565A (en) Plasma thermal spraying method at reduced pressure
JP2810973B2 (en) Method for manufacturing fuel electrode for high-temperature fuel cell
JP2004158313A (en) Electrolyte material for solid electrolyte fuel cell, cell of solid electrolyte fuel cell, and manufacturing method of these
Saoutieff et al. APS deposition of MnCo2O4 on commercial alloys K41X used as solid oxide fuel cell interconnect: The importance of post heat-treatment for densification of the protective layer
JP2716844B2 (en) Thermal spray composite film forming method
JP2809359B2 (en) Thermal spray composite film forming method
JP2004211122A (en) Highly voltage resistant member
JP2004002101A (en) Plasma resistant member and its manufacturing process
KR102324982B1 (en) Method for thermal spray coating and apparatus for the same
EP2513352A1 (en) Systems for applying a thermal barrier coating to a superalloy substrate
RU2219145C1 (en) Method for metallic coating of ceramics under soldering
JPH11345988A (en) Manufacture of silicon substrate, silicon substrate manufactured thereby, and solar battery using the same