JP2809359B2 - Thermal spray composite film forming method - Google Patents

Thermal spray composite film forming method

Info

Publication number
JP2809359B2
JP2809359B2 JP3183117A JP18311791A JP2809359B2 JP 2809359 B2 JP2809359 B2 JP 2809359B2 JP 3183117 A JP3183117 A JP 3183117A JP 18311791 A JP18311791 A JP 18311791A JP 2809359 B2 JP2809359 B2 JP 2809359B2
Authority
JP
Japan
Prior art keywords
sprayed
thermal spray
composite film
particles
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3183117A
Other languages
Japanese (ja)
Other versions
JPH059700A (en
Inventor
児玉  克
啓 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3183117A priority Critical patent/JP2809359B2/en
Publication of JPH059700A publication Critical patent/JPH059700A/en
Application granted granted Critical
Publication of JP2809359B2 publication Critical patent/JP2809359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶射複合膜形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a sprayed composite film.

【0002】[0002]

【従来の技術】従来のプラズマ溶射方法を図3模式図に
示すと、被溶射物21の表面21aに対向して溶射を行
うプラズマ溶射ガンは、冷却水通路22aによって冷却
されている陽極ノズル22と、同ノズル22の基部に絶
縁体24を介して固定されている陰極23とで構成され
るとともに、陽極ノズル22の前部に溶射粉末材料供給
口25が穿設されて材料供給ポート26が接続され、一
方後部には作動ガス供給口27が開口しており、更に陽
極ノズル22と陰極23の間には、直流電源28と高周
波発生器29が並列に接続されている。
2. Description of the Related Art A schematic view of a conventional plasma spraying method is shown in FIG. 3. A plasma spraying gun for performing spraying on a surface 21a of an object to be sprayed 21 is an anode nozzle 22 cooled by a cooling water passage 22a. And a cathode 23 fixed to the base of the nozzle 22 via an insulator 24. A sprayed powder material supply port 25 is formed at the front of the anode nozzle 22 to form a material supply port 26. A working gas supply port 27 is open at the rear, and a DC power supply 28 and a high frequency generator 29 are connected in parallel between the anode nozzle 22 and the cathode 23.

【0003】しかして、プラズマ溶射を行うには、まず
作動ガスとしてArガスを作動ガス供給口27より陽極
ノズル22内に供給し、直流電源28をオンとして陽極
ノズル22と陰極23の間に無負荷電圧を与え、更に高
周波発生器29をオンとして陽極ノズル22と陰極23
の間にアーク放電を発生させると、直流電源28からの
電力により連続的なアークが発生し、作動ガスはプラズ
マガスとなり、陽極ノズル22から高温のプラズマジェ
ット30となって噴出する。すると、図示せざる材料供
給装置からArガスによって材料供給ポート26から溶
射粉末材料供給口25を通って陽極ノズル22内に供給
される溶射粉末材料は、プラズマジェット30によって
加熱加速され、高温高速の溶射粒子31となって被溶射
物表面21aに向かって飛んで行き、被溶射物表面21
aに衝突,付着し溶射皮膜を形成する。
In order to perform plasma spraying, first, Ar gas is supplied as a working gas from the working gas supply port 27 into the anode nozzle 22, and a direct current power supply 28 is turned on so that no air is supplied between the anode nozzle 22 and the cathode 23. A load voltage is applied, and the high frequency generator 29 is turned on to turn on the anode nozzle 22 and the cathode 23.
When an arc discharge is generated during this time, a continuous arc is generated by the electric power from the DC power supply 28, the working gas becomes a plasma gas, and a high-temperature plasma jet 30 is ejected from the anode nozzle 22. Then, the sprayed powder material supplied from the material supply device (not shown) into the anode nozzle 22 through the sprayed powder material supply port 25 from the material supply port 26 by the Ar gas is heated and accelerated by the plasma jet 30, and the high temperature and high speed are supplied. As the spray particles 31, the particles fly toward the surface 21 a of the object to be sprayed.
collides with and adheres to a to form a thermal spray coating.

【0004】しかしながら、このような方法による溶射
皮膜の形成状態は、図4断面図に示すように、飛行した
溶射粒子31が被溶射物表面21aに衝突して偏平状態
となり、それが堆積して溶射皮膜32が形成され、偏平
化した溶射粒子31の重なりにより粒子間境界に空隙3
3ができ、全体として多孔性の皮膜となる。従ってこの
ような溶射皮膜32は、耐摩耗性,断熱性にすぐれてい
ても、耐食膜として適用した場合、腐食物が多孔性膜内
へ浸透し被溶射物21母材を腐食させる原因となる。ま
た粒子間境界に空隙33が存在することによって粒子間
の接触部が少なくてその密着力が小さく、空隙33から
剥離が始まり周辺の健全部へ剥離が伝播してしまうおそ
れがある。
[0004] However, as shown in the sectional view of FIG. 4, the state of formation of the thermal spray coating by such a method is that the thermal spray particles 31 that have flown collide against the surface 21a of the thermal spray target and become flat, and the flat particles are deposited. The thermal spray coating 32 is formed, and the flattened thermal spray particles 31 overlap each other to form voids 3 at the boundaries between the particles.
3 is formed, and becomes a porous film as a whole. Therefore, even when such a thermal spray coating 32 is excellent in abrasion resistance and heat insulating properties, when applied as a corrosion resistant film, corrosive substances penetrate into the porous film and cause corrosion of the base material of the thermal spray target 21. . In addition, the presence of the voids 33 at the boundaries between the particles causes a small number of contact portions between the particles, resulting in a small adhesion force, and the peeling may start from the voids 33 and propagate to the surrounding healthy portions.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて提案されたもので、全体として緻密な膜構
造によって被溶射物は腐食物とは遮断され腐食されるこ
とがなくなるとともに、溶射剥離の発生もなく、更に耐
摩耗性,断熱性も十分備えている溶射複合膜形成方法を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been proposed in view of such circumstances, and the object to be sprayed is shielded from corroded substances by the dense film structure as a whole, and is not corroded. It is another object of the present invention to provide a method for forming a thermal spray composite film which does not cause thermal spray peeling and has sufficient wear resistance and heat insulating properties.

【0006】[0006]

【課題を解決するための手段】そのために本発明は、高
周波誘導プラズマ中に溶射粉末材料を供給し被溶射物に
溶射するにあたり、上記溶射粉末材料として上記高周波
誘導プラズマの熱量により蒸発する粒度分布をもつ溶射
粉末材料と上記高周波誘導プラズマの熱量により溶融す
る粒度分布をもつ溶射粉末材料とを同時に上記高周波プ
ラズマ中に供給し、被溶射物表面へ超微粒子と溶射皮膜
粒子からなる溶射複合膜を形成させることを特徴とす
る。
In order to achieve the object, the present invention provides a method for supplying a thermal spray powder material into a high-frequency induction plasma and spraying the material to be sprayed on a particle size distribution which is evaporated by the calorific value of the high-frequency induction plasma as the thermal spray powder material. And simultaneously spraying the sprayed powder material having a particle size distribution that is melted by the calorific value of the high frequency induction plasma into the high frequency plasma to form a sprayed composite film comprising ultrafine particles and sprayed coating particles on the surface of the object to be sprayed. It is characterized by being formed.

【0007】[0007]

【作用】本発明溶射複合膜形成方法においては、高周波
誘導プラズマの熱量により蒸発した溶射粉末材料が被溶
射物近傍では冷却され超微粒子を形成するとともに、高
周波誘導プラズマの熱量により溶融した溶射粉末材料が
相互間に空隙を存して溶射皮膜粒子を形成し、この際溶
射皮膜粒子間境界の空隙には超微粒子が堆積し、全体と
して緻密な膜構造の複合膜となる。この複合膜により腐
食物は被溶射物と遮断され、被溶射物は腐食によって損
傷することなく、溶射剥離を引き起こすこともない。更
にこの複合膜は従来の溶射皮膜と同様に耐摩耗性,断熱
性も備えている。
According to the method for forming a sprayed composite film of the present invention, the sprayed powder material evaporated by the heat of the high frequency induction plasma is cooled near the object to be sprayed to form ultrafine particles, and the sprayed powder material melted by the heat of the high frequency induction plasma. Form thermal spray coating particles with voids between them, and at this time, ultrafine particles are deposited in the voids at the boundaries between the thermal spray coating particles, resulting in a composite film having a dense film structure as a whole. This composite film blocks the corroded material from the object to be sprayed, so that the object to be sprayed is not damaged by corrosion and does not cause thermal spray delamination. Further, this composite film has abrasion resistance and heat insulation as well as the conventional thermal spray coating.

【0008】[0008]

【実施例】本発明溶射複合膜形成方法の一実施例を図面
について説明すると、図1は本発明方法の実施要領を示
す縦断面図、図2は同上方法による溶射複合膜の断面図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing an embodiment of the method of the present invention, and FIG. 2 is a sectional view of a thermal sprayed composite film formed by the above method. .

【0009】図1において、被溶射物1は雰囲気制御チ
ャンバー2の中に収容され、同チャンバー2の側方に排
気口3が設けられ図示せざる排気装置に接続されてい
る。この雰囲気制御チャンバー2の上端中央開口部に、
例えば石英ガス管製で上端閉塞の適宜直径の絶縁円筒4
が乗載されており、その外周に同軸的に、例えば水冷銅
管製の印加コイル5が巻装されるとともに、例えば最大
出力80kW,周波数4MHzの高周波発振機6と接続
されている。
In FIG. 1, an object 1 to be sprayed is accommodated in an atmosphere control chamber 2, and an exhaust port 3 is provided on a side of the chamber 2 and connected to an exhaust device (not shown). At the center opening at the upper end of the atmosphere control chamber 2,
For example, an insulating cylinder 4 made of a quartz gas tube and having a closed upper end and an appropriate diameter.
A coil 5 made of, for example, a water-cooled copper tube is wound coaxially around the outer periphery of the vehicle, and connected to a high-frequency oscillator 6 having a maximum output of 80 kW and a frequency of 4 MHz, for example.

【0010】また絶縁円筒4の閉塞端の周縁部に高周波
誘導プラズマ7となる作動ガスが導入される作動ガス導
入孔8が設けられるとともに、同閉塞端の中央部に、高
周波誘導プラズマ7により溶融され溶射粉末粒子9とな
る溶射粉末材料が供給される溶射粉末材料供給ノズル1
0が設けられている。更にこの溶射粉末材料供給ノズル
10には、高周波誘導プラズマ7の熱量により蒸発する
粒度分布,例えば10〜40μmの粒度をもつ溶射粉末
材料を入れた材料供給装置Aと、高周波誘導プラズマ7
の熱量により溶融する粒度分布,例えば80〜100μ
mの粒度をもつ溶射粉末材料を入れた材料供給装置Bと
が接続されている。
A working gas introduction hole 8 for introducing a working gas to be a high frequency induction plasma 7 is provided at a peripheral edge of a closed end of the insulating cylinder 4, and a high frequency induction plasma 7 melts at a central portion of the closed end. Sprayed powder material supply nozzle 1 to which a sprayed powder material to be formed into sprayed powder particles 9 is supplied.
0 is provided. Further, the sprayed powder material supply nozzle 10 is provided with a material supply device A containing a sprayed powder material having a particle size distribution evaporating by the amount of heat of the high frequency induction plasma 7, for example, a particle size of 10 to 40 μm.
Particle size distribution, eg 80-100μ
A material supply device B containing a sprayed powder material having a particle size of m is connected.

【0011】このような装置構成において、まず排気口
3から図示せざる排気装置により雰囲気制御チャンバー
2内を真空引きし、数Torrの真空度まで排気する。これ
は形成される溶射複合膜中に大気中のガスが不純物とし
て混入しないようにするためである。続いて作動ガス導
入孔8より、Ar:40 l/min,H2 :5 l/min混合の
作動ガスを絶縁円筒4内へ導入しながら、高周波発振機
6から印加コイル5に高周波電流を流す。すると絶縁円
筒4内には交番磁場が発生し、その中を流れる作動ガス
は励起され高周波誘導プラズマ7となる。
In such an apparatus configuration, first, the inside of the atmosphere control chamber 2 is evacuated from the exhaust port 3 by an exhaust device (not shown), and exhausted to a degree of vacuum of several Torr. This is to prevent the gas in the atmosphere from being mixed as impurities into the formed thermal spray composite film. Subsequently, a high-frequency current is supplied from the high-frequency oscillator 6 to the application coil 5 from the high-frequency oscillator 6 while introducing a working gas mixed with Ar: 40 l / min and H 2 : 5 l / min into the insulating cylinder 4 from the working gas introduction hole 8. . Then, an alternating magnetic field is generated in the insulating cylinder 4, and the working gas flowing therein is excited to become the high frequency induction plasma 7.

【0012】その後、排気装置の排気量を調整し、雰囲
気制御チャンバー2内の圧力を大気圧又は僅かに減圧し
た状態(約500Torr〜大気圧)に保ち、これと同時に
高周波発振機6の出力を設定出力60kWに調整する。
Thereafter, the exhaust amount of the exhaust device is adjusted to maintain the pressure in the atmosphere control chamber 2 at atmospheric pressure or slightly reduced (about 500 Torr to atmospheric pressure), and at the same time, the output of the high frequency oscillator 6 is reduced. Adjust the setting output to 60 kW.

【0013】そこで、材料供給装置A,Bの粒度10〜
40μmのAl2O3 の溶射粉末材料と粒度80〜100μ
mのAl2O3 の溶射粉末材料とを同時に、それぞれ5〜1
0g/min の供給量で、5 l/minArのキャリアガスと
ともに溶射粉末材料供給ノズル10から高周波誘導プラ
ズマ7内へ供給する。
Therefore, the particle size of the material supply devices A and B is 10 to 10.
40 μm Al 2 O 3 spray powder material and particle size 80-100μ
m 2 of Al 2 O 3 sprayed powder material at the same time
At a supply rate of 0 g / min, the sprayed powder material supply nozzle 10 supplies the high frequency induction plasma 7 together with a carrier gas of 5 l / min Ar.

【0014】すると、粒度10〜40μmの溶射粉末粒
子は粒径が小さいため高周波誘導プラズマ7によって急
激に加熱され、上記設定出力における高周波誘導プラズ
マ7の熱量により蒸発する。一方粒度80〜100μm
の溶射粉末粒子は粒径が大きいため設定出力における高
周波誘導プラズマの熱量では、加熱されても溶融するだ
けで蒸発するには至らない。従って高周波誘導プラズマ
7内には溶融した溶射粉末粒子9と分子レベルの蒸発物
が存在する。
The sprayed powder particles having a particle size of 10 to 40 μm are rapidly heated by the high-frequency induction plasma 7 due to the small particle size, and are evaporated by the heat of the high-frequency induction plasma 7 at the set output. On the other hand, particle size 80-100 μm
Since the thermal sprayed powder particles have a large particle size, the amount of heat of the high frequency induction plasma at the set output does not evaporate but only melts even if heated. Therefore, in the high-frequency induction plasma 7, there are the molten sprayed powder particles 9 and the evaporated matter at the molecular level.

【0015】そして、溶融した溶射粉末粒子9は高周波
誘導プラズマ7の流れに乗って被溶射物1に達し、図2
に示すように、被溶射物表面1aに溶射皮膜粒子13と
して堆積する。これと同時に蒸発物は被溶射物1に近づ
くにつれ冷却されて超微粒子14を形成しながら、被溶
射物表面1aに付着した溶射皮膜粒子13の粒子間境界
に堆積する。これによって、図2に示すように、溶射皮
膜粒子13と超微粒子14とからなる溶射複合膜15が
形成される。
Then, the melted sprayed powder particles 9 ride on the flow of the high frequency induction plasma 7 and reach the object 1 to be sprayed.
As shown in (1), the thermal spray coating particles 13 are deposited on the surface 1a of the object to be sprayed. At the same time, the evaporant is cooled down as it approaches the object 1 to be sprayed and forms ultra-fine particles 14, while depositing on the inter-particle boundaries of the thermal spray coating particles 13 attached to the surface 1 a of the object to be sprayed. As a result, as shown in FIG. 2, a thermal spray composite film 15 including the thermal spray coating particles 13 and the ultrafine particles 14 is formed.

【0016】かくして、被溶射物表面1aに形成された
溶射複合膜15においては、溶射皮膜粒子13の粒子間
境界に超微粒子14が堆積して全体として緻密な膜構造
を呈するので、腐食物は溶射複合膜15によって被溶射
物1とは遮断されるため、被溶射物表面1aが腐食され
なくなるとともに、緻密な溶射複合膜15が被溶射物表
面1aに密着しているので、溶射剥離が生ずることはな
い。また溶射複合膜15は従来と同様な耐摩耗性,断熱
性も兼ね備えている。
Thus, in the spray composite film 15 formed on the surface 1a of the object to be sprayed, the ultrafine particles 14 are deposited on the boundary between the particles of the spray coating film 13 to exhibit a dense film structure as a whole. Since the thermal spray composite film 15 blocks the thermal sprayed object 1, the thermal sprayed object surface 1a is not corroded, and the dense thermal spray composite film 15 is in close contact with the thermal sprayed object surface 1a, so that thermal spray separation occurs. Never. Further, the thermal spray composite film 15 also has the same abrasion resistance and heat insulation as the conventional one.

【0017】[0017]

【発明の効果】要するに本発明によれば、高周波誘導プ
ラズマ中に溶射粉末材料を供給し被溶射物に溶射するに
あたり、上記溶射粉末材料として上記高周波誘導プラズ
マの熱量により蒸発する粒度分布をもつ溶射粉末材料と
上記高周波誘導プラズマの熱量により溶融する粒度分布
をもつ溶射粉末材料とを同時に上記高周波プラズマ中に
供給し、被溶射物表面へ超微粒子と溶射皮膜粒子からな
る溶射複合膜を形成させることにより、全体として緻密
な膜構造によって被溶射物は腐食物とは遮断され腐食さ
れることがなくなるとともに、溶射剥離の発生もなく、
更に耐摩耗性,断熱性も十分備えている溶射複合膜形成
方法を得るから、本発明は産業上極めて有益なものであ
る。
In summary, according to the present invention, when the thermal spray powder material is supplied into the high frequency induction plasma and sprayed on the object to be sprayed, the thermal spray powder material has a particle size distribution that evaporates due to the calorific value of the high frequency induction plasma. Simultaneously supplying a powder material and a sprayed powder material having a particle size distribution to be melted by the calorific value of the high-frequency induction plasma into the high-frequency plasma to form a sprayed composite film composed of ultrafine particles and sprayed coating particles on the surface of the object to be sprayed; As a result, the object to be sprayed is shielded from corrosive substances by the dense film structure as a whole, and is not corroded.
Further, the present invention is extremely useful industrially because a method for forming a sprayed composite film having sufficient abrasion resistance and heat insulation is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明溶射複合膜形成方法の一実施例における
実施要領を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a method for forming a sprayed composite film according to an embodiment of the present invention.

【図2】同上方法における溶射複合膜の断面図である。FIG. 2 is a cross-sectional view of a sprayed composite film in the same method.

【図3】従来のプラズマ溶射方法を示す模式図である。FIG. 3 is a schematic view showing a conventional plasma spraying method.

【図4】同上方法における溶射皮膜の断面図である。FIG. 4 is a cross-sectional view of the thermal spray coating in the same method.

【符号の説明】[Explanation of symbols]

1 被溶射物 1a 被溶射物表面 2 雰囲気制御チャンバー 3 排気口 4 絶縁円筒 5 印加コイル 6 高周波発振機 7 高周波誘導プラズマ 8 作動ガス導入孔 9 溶射粉末粒子 10 溶射粉末材料供給ノズル 11 材料供給装置A 12 材料供給装置B 13 溶射皮膜粒子 14 超微粒子 15 溶射複合膜 REFERENCE SIGNS LIST 1 spray target 1 a spray target surface 2 atmosphere control chamber 3 exhaust port 4 insulating cylinder 5 applied coil 6 high-frequency oscillator 7 high-frequency induction plasma 8 working gas introduction hole 9 spray powder particles 10 spray powder material supply nozzle 11 material supply device A 12 Material supply device B 13 Thermal spray coating particles 14 Ultra fine particles 15 Thermal spray composite film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高周波誘導プラズマ中に溶射粉末材料を
供給し被溶射物に溶射するにあたり、上記溶射粉末材料
として上記高周波誘導プラズマの熱量により蒸発する粒
度分布をもつ溶射粉末材料と上記高周波誘導プラズマの
熱量により溶融する粒度分布をもつ溶射粉末材料とを同
時に上記高周波プラズマ中に供給し、被溶射物表面へ超
微粒子と溶射皮膜粒子からなる溶射複合膜を形成させる
ことを特徴とする溶射複合膜形成方法。
1. A spraying powder material having a particle size distribution that evaporates due to the calorific value of the high-frequency induction plasma and the high-frequency induction plasma when the spraying powder material is supplied into the high-frequency induction plasma and sprayed on the object to be sprayed. A sprayed powder material having a particle size distribution that is melted by the amount of heat simultaneously supplied into the high-frequency plasma to form a sprayed composite film comprising ultrafine particles and sprayed coating particles on the surface of the object to be sprayed. Forming method.
JP3183117A 1991-06-27 1991-06-27 Thermal spray composite film forming method Expired - Lifetime JP2809359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183117A JP2809359B2 (en) 1991-06-27 1991-06-27 Thermal spray composite film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183117A JP2809359B2 (en) 1991-06-27 1991-06-27 Thermal spray composite film forming method

Publications (2)

Publication Number Publication Date
JPH059700A JPH059700A (en) 1993-01-19
JP2809359B2 true JP2809359B2 (en) 1998-10-08

Family

ID=16130082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183117A Expired - Lifetime JP2809359B2 (en) 1991-06-27 1991-06-27 Thermal spray composite film forming method

Country Status (1)

Country Link
JP (1) JP2809359B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2460296C (en) * 2003-05-23 2012-02-14 Sulzer Metco Ag A hybrid method for the coating of a substrate by a thermal application of the coating
JP6188004B2 (en) * 2012-01-16 2017-08-30 島根県 Method for forming ceramic spray coating and functional ceramic spray coating
CN110088350B (en) * 2016-12-08 2022-04-29 东京毅力科创株式会社 Plasma spraying device and method for manufacturing battery electrode

Also Published As

Publication number Publication date
JPH059700A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
CN102369065B (en) Plasma transfer wire arc thermal spray system
JP6650442B2 (en) Apparatus for forming a coating on the surface of a component, band-like material or tool
US5844192A (en) Thermal spray coating method and apparatus
US4902870A (en) Apparatus and method for transfer arc cleaning of a substrate in an RF plasma system
TWI411696B (en) Method for depositing electrical isulating layers
JPH07107876B2 (en) Plasma generator and plasma generating method
JP2000212766A (en) Method for forming ultrafine particles into film
EP1091014A1 (en) Ex-situ coating of refractory metal on IMP coils
US5441624A (en) Triggered vacuum anodic arc
US20200040444A1 (en) Plasma spray systems and methods
JP2809359B2 (en) Thermal spray composite film forming method
JP2716844B2 (en) Thermal spray composite film forming method
JP2700280B2 (en) Ion beam generator, film forming apparatus and film forming method
US6777035B1 (en) Method for spray forming metal deposits
RU2058429C1 (en) Method for film spraying
US5743961A (en) Thermal spray coating apparatus
JPH0544009A (en) Method and device for forming thermally sprayed composite film
JP2004211122A (en) Highly voltage resistant member
JPH09148094A (en) Plasma spraying torch
JP2004018899A (en) Evaporation source and film-formation equipment
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
JP2002263473A (en) Film deposition system
TWI846716B (en) Plasma spray systems and methods
JP3647653B2 (en) Cluster generator
JPH10102228A (en) Thermal spraying method by magnetic field controlled plasma

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980623