JP2716844B2 - Thermal spray composite film forming method - Google Patents

Thermal spray composite film forming method

Info

Publication number
JP2716844B2
JP2716844B2 JP2152129A JP15212990A JP2716844B2 JP 2716844 B2 JP2716844 B2 JP 2716844B2 JP 2152129 A JP2152129 A JP 2152129A JP 15212990 A JP15212990 A JP 15212990A JP 2716844 B2 JP2716844 B2 JP 2716844B2
Authority
JP
Japan
Prior art keywords
sprayed
thermal spray
material powder
thermal
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2152129A
Other languages
Japanese (ja)
Other versions
JPH0445254A (en
Inventor
児玉  克
啓 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2152129A priority Critical patent/JP2716844B2/en
Publication of JPH0445254A publication Critical patent/JPH0445254A/en
Application granted granted Critical
Publication of JP2716844B2 publication Critical patent/JP2716844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶射複合膜形成方法に関する。The present invention relates to a method for forming a thermal spray composite film.

〔従来の技術〕[Conventional technology]

従来のプラズマ溶射方法を第3図模式図に示すと、被
溶射物21の表面21aに対向して溶射を行うプラズマ溶射
ガンは、冷却水通路22aによって冷却されている陽極ノ
ズル22と、同ノズル22の基部に絶縁体24を介して固定さ
れている陰極23とで構成されるとともに、陽極ノズル22
の前部に溶射材料粉末供給口25が穿設されて粉末供給ポ
ート26が接続され、一方後部には作動ガス供給口27が開
口しており、更に陽極ノズル22と陰極23の間には、直流
電源28と高周波発生器29が並列に接続されている。
A schematic view of a conventional plasma spraying method is shown in FIG. 3. A plasma spray gun for performing spraying on a surface 21a of an object 21 to be sprayed includes an anode nozzle 22 cooled by a cooling water passage 22a and the same nozzle. 22 and a cathode 23 fixed to the base of the anode 22 via an insulator 24.
A spraying material powder supply port 25 is drilled in the front part, and a powder supply port 26 is connected, while a working gas supply port 27 is opened in the rear part, and further between the anode nozzle 22 and the cathode 23, A DC power supply 28 and a high-frequency generator 29 are connected in parallel.

しかして、プラズマ溶射を行うには、まず作動ガスと
してArガスを作動ガス供給口27より陽極ノズル22内に供
給し、直流電源28をオンとして陽極ノズル22と陰極23の
間に無負荷電圧を与え、更に高周波発生器29をオンとし
て陽極ノズル22と陰極ノズル23の間にアーク放電を発生
させると、直流電源28からの電力により連続的なアーク
が発生し、作動ガスはプラズマガスとなり、陽極ノズル
22から高温のプラズマジェット30となって噴出する。す
ると、図示せざる粉末供給装置からArガスによって粉末
供給ポート26から溶射材料粉末供給口25を通って陽極ノ
ズル22内に供給される溶射材料粉末は、プラズマジェッ
ト30によって加熱加速され、高温高速の溶射粒子31とな
って被溶射物表面21aに向かって飛んで行き、被溶射物
表面21aに衝突,付着し溶射皮膜を形成する。
To perform plasma spraying, first, Ar gas is supplied as a working gas into the anode nozzle 22 from the working gas supply port 27, and the DC power supply 28 is turned on to apply a no-load voltage between the anode nozzle 22 and the cathode 23. When the high-frequency generator 29 is turned on to generate an arc discharge between the anode nozzle 22 and the cathode nozzle 23, a continuous arc is generated by the power from the DC power supply 28, the working gas becomes a plasma gas, and the nozzle
From 22, a high-temperature plasma jet 30 is ejected. Then, the sprayed material powder supplied from the powder supply device (not shown) into the anode nozzle 22 through the sprayed material powder supply port 25 from the powder supply port 26 by the Ar gas is heated and accelerated by the plasma jet 30, and the high-temperature and high-speed As the thermal spray particles 31, they fly toward the surface 21a of the object to be sprayed, and collide with and adhere to the surface 21a of the object to be sprayed to form a thermal spray coating.

しかしながら、このような方法による溶射皮膜の形成
状態は、第4図断面図に示すように、飛行した溶射粒子
31が被溶射物表面21aに衝突して偏平状態となり、それ
が堆積して溶射皮膜32が形成され、偏平化した溶射粒子
31の重なりにより粒界に空隙33ができ、全体として多孔
性の皮膜となる。従ってこのような溶射皮膜32は、耐摩
耗性,断熱性にすぐれていても、耐食膜として適用した
場合、腐食物が多孔性膜内へ浸透し被溶射内21母材を腐
食させる原因となる。また粒界に空隙33が存在すること
によって粒子間の接触部が少なくてその密着力が小さ
く、空隙33から剥離が始まり周辺の健全部へ剥離が伝播
してしまうおそれがある。
However, the state of formation of the sprayed coating by such a method is as shown in the sectional view of FIG.
31 collides with the surface 21a of the object to be sprayed and becomes flattened, which is deposited to form a sprayed coating 32, and the flattened sprayed particles are formed.
The voids 33 are formed at the grain boundaries due to the overlap of the 31s, and as a whole, a porous film is formed. Therefore, even if such a thermal spray coating 32 is excellent in abrasion resistance and heat insulating properties, when applied as a corrosion resistant film, corrosive substances penetrate into the porous film and cause corrosion of the base material 21 in the thermal spray coating. . In addition, since the voids 33 are present at the grain boundaries, the contact portions between the particles are small and the adhesion is small, so that the peeling may start from the voids 33 and propagate to the surrounding healthy part.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、このような事情に鑑みて提案されたもの
で、緻密な蒸着膜層によって被溶射物は腐食物とは遮断
され腐食されることがなくなるとともに、剥離の発生も
なく、更に蒸着膜層の上の溶射皮膜層によって耐摩耗
性,断熱性も十分備えている溶射複合膜形成方法を提供
することを目的とする。
The present invention has been proposed in view of such circumstances, and the object to be sprayed is prevented from being corroded by a dense vapor-deposited film layer and is not corroded. It is an object of the present invention to provide a method for forming a sprayed composite film, which has sufficient wear resistance and heat insulation by the sprayed coating layer on the layer.

〔課題を解決するための手段〕[Means for solving the problem]

そのために本発明は、高周波誘導プラズマ中に溶射材
料粉末を供給し被溶射物に溶射するにあたり、溶射初期
は上記溶射材料粉末への入熱量を大きくするか又は同溶
射材料粉末の粒径を小さくして上記被溶射物表面に蒸着
膜層を形成させ、溶射が進行するに伴い上記入熱量を小
さくするか又は上記粒径を大きくして上記蒸着膜層の上
に溶射皮膜層を形成させることを特徴とする。
Therefore, the present invention, when supplying the thermal spray material powder into the high frequency induction plasma and spraying on the object to be sprayed, at the beginning of thermal spraying, increase the amount of heat input to the thermal spray material powder or reduce the particle diameter of the thermal spray material powder. Forming a vapor-deposited film layer on the surface of the object to be sprayed, and forming a thermal-sprayed film layer on the vapor-deposited film layer by reducing the heat input amount or increasing the particle size as the thermal spraying proceeds. It is characterized by.

〔作用〕[Action]

本発明溶射複合膜形成方法においては、溶射初期の溶
射材料粉末への入熱量が大きいか又は溶射材料粉末の粒
径が小さいときに蒸着膜が形成され、これは従来の溶射
皮膜に比べて緻密な膜であるため、腐食物質は蒸着膜に
よって被溶射物と遮断され被溶射物は腐食によって損傷
することはなく、また溶射膜の剥離を引きおこすことも
ない。更に溶射進行中に溶射材料粉末への入熱量を小さ
くするか又は溶射材料粉末の粒径を大きくすることによ
って、蒸着膜の上に溶射皮膜層が形成され、これは従来
の溶射皮膜と同じように、耐摩耗性,断熱性を備えてい
る。
In the method of forming a sprayed composite film of the present invention, a deposited film is formed when the heat input to the sprayed material powder at the initial stage of spraying is large or the particle size of the sprayed material powder is small, which is more dense than a conventional sprayed coating. Since the film is a thin film, the corrosive substance is cut off from the object to be sprayed by the deposited film, so that the object to be sprayed is not damaged by the corrosion, and the sprayed film does not peel off. Further, by reducing the amount of heat input to the thermal spray material powder or increasing the particle diameter of the thermal spray material powder during thermal spraying, a thermal spray coating layer is formed on the deposited film, which is similar to a conventional thermal spray coating. In addition, it has abrasion resistance and heat insulation.

〔実施例〕〔Example〕

本発明溶射複合膜形成方法の実施例を図面について説
明すると、第1図は本発明方法の実施要領を示す縦断面
図、第2図は同上方法による溶射複合膜の断面図であ
る。
An embodiment of the method for forming a sprayed composite film according to the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an embodiment of the method of the present invention, and FIG.

第1図において、被溶射物1は雰囲気制御チャンバー
2の中に収容され、同チャンバー2の側方に排気口3が
設けられ図示せざる排気装置に接続されている。またこ
の雰囲気制御チャンバー2の上端中央開口部に、例えば
石英ガス管製で上端閉塞の適宜直径の絶縁円筒4が乗載
されており、その外周に同軸的に、例えば水冷銅管製の
印加コイル5が巻装されるとともに、例えば最大出力80
kW,周波数4MHzの高周波発振機6と接続されている。更
に絶縁円筒4の閉塞端の周縁部に高周波誘導プラズマ9
となる作動ガスが導入される作動ガス導入孔7が設けら
れるとともに、同閉塞端の中央部に、高周波誘導プラズ
マ9により溶融され溶射粒子10となる溶射材料粉末が供
給される溶射材料粉末供給ノズル8が設けられている。
In FIG. 1, an object 1 to be sprayed is accommodated in an atmosphere control chamber 2, and an exhaust port 3 is provided on a side of the chamber 2 and connected to an exhaust device (not shown). An insulating cylinder 4 made of, for example, a quartz gas tube and having an appropriate diameter and closed at the upper end is mounted on the central opening of the upper end of the atmosphere control chamber 2. 5 is wound and, for example, a maximum output of 80
It is connected to a high-frequency oscillator 6 having a frequency of 4 kW and a frequency of 4 MHz. Further, a high frequency induction plasma 9 is applied to the peripheral portion of the closed end of the insulating cylinder 4.
Spray gas supply nozzle through which a working gas introduction hole 7 into which a working gas is introduced is provided, and a spray material powder which is melted by a high frequency induction plasma 9 and becomes a spray particle 10 is supplied to a central portion of the closed end. 8 are provided.

このような装置構成において、溶射材料粉末への入熱
量を調節して溶射する第1実施例を以下に説明する。
A first embodiment for performing thermal spraying by adjusting the amount of heat input to the thermal spray material powder in such an apparatus configuration will be described below.

まず排気口3から図示せざる排気装置により雰囲気制
御チャンバー2内を真空引きし、数Torrの真空度まで排
気する。これは形成される溶射複合膜中に大気中のガス
が不純物として混入しないようにするためである。続い
て作動ガス導入孔7より、Ar:40/min,H2:5/min混合
の作動ガスを絶縁円筒4内へ導入しながら、高周波発振
機6から印加コイル5に高周波電流を流す。すると絶縁
円筒4内には交番磁場が発生し、その中を流れる作動ガ
スは励起され高周波誘導プラズマ9となる。
First, the inside of the atmosphere control chamber 2 is evacuated from the exhaust port 3 by an exhaust device (not shown), and exhausted to a degree of vacuum of several Torr. This is to prevent the gas in the atmosphere from being mixed as impurities into the formed thermal spray composite film. Subsequently, a high-frequency current flows from the high-frequency oscillator 6 to the application coil 5 while introducing a working gas having a mixture of Ar: 40 / min and H 2 : 5 / min into the insulating cylinder 4 through the working gas introduction hole 7. Then, an alternating magnetic field is generated in the insulating cylinder 4, and the working gas flowing therein is excited to become the high-frequency induction plasma 9.

その後、排気装置の排気量を調整し、雰囲気制御チャ
ンバー2内の圧力を大気圧又は僅かに減圧した状態(約
500Torr〜大気圧)に保ち、これと同時に高周波発振機
6の出力を設定出力60kWに調整する。
Thereafter, the exhaust amount of the exhaust device was adjusted, and the pressure in the atmosphere control chamber 2 was reduced to atmospheric pressure or slightly reduced (approximately
(500 Torr to atmospheric pressure), and at the same time, adjust the output of the high-frequency oscillator 6 to the set output of 60 kW.

そこで、粒径10〜40μmのAl2O3の溶射材料粉末を供
給量5〜10g/minで、5/min Arのキャリアガスととも
に溶射材料粉末供給ノズル8から高周波誘導プラズマ9
内へ供給する。この溶射材料粉末が高周波誘導プラズマ
9によって急激に加熱溶融されて生成する溶射粒子10
は、表面から蒸発が進み最後は全部蒸発してしまう。そ
して蒸発物は高周波誘導プラズマ9の流れにのって被溶
射物1に達し、第2図に示すように、被溶射物表面1aに
蒸着膜層11として堆積する。
Therefore, a high frequency induction plasma 9 is supplied from a spray material powder supply nozzle 8 together with a carrier gas of 5 / min Ar at a supply amount of 5 to 10 g / min of a spray material powder of Al 2 O 3 having a particle size of 10 to 40 μm.
Supply inside. Thermal spray particles 10 generated by rapidly heating and melting the thermal spray material powder by high frequency induction plasma 9
Evaporates from the surface and eventually all evaporates. Then, the evaporant flows along the flow of the high-frequency induction plasma 9 and reaches the object 1 to be sprayed, and as shown in FIG.

その後、高周波発振機6の出力を徐々に減少させてい
くことによって、溶射粒子10に与えられる入熱量は減少
してその表面からの蒸発量も減少し、最終的には溶射粒
子10は溶融した状態だけとなって、第2図に示すよう
に、蒸着膜層11の上に溶射皮膜層12が形成される。
Thereafter, by gradually decreasing the output of the high-frequency oscillator 6, the amount of heat input to the spray particles 10 is reduced, the amount of evaporation from the surface is also reduced, and finally the spray particles 10 are melted. In this state only, the thermal spray coating layer 12 is formed on the vapor deposition film layer 11, as shown in FIG.

かくして、この第1実施例においては、高周波発振機
6の出力を、例えば60kWから20kWまで徐々に減少させる
ことによって、第2図に示すように、被溶射物表面1a上
の緻密な膜構造の蒸着膜層11と、その上の溶射粒子10間
に空隙13がある溶射皮膜層12とが連続的に溶射された複
合膜が形成される。
Thus, in the first embodiment, as shown in FIG. 2, the output of the high-frequency oscillator 6 is gradually reduced from 60 kW to 20 kW to form a dense film structure on the surface 1a of the object to be sprayed. A composite film is formed by continuously spraying the deposited film layer 11 and the sprayed coating layer 12 having a gap 13 between the sprayed particles 10 thereon.

次に溶射材料粉末の粒径を調節して溶射する第2実施
例を以下に説明する。
Next, a second embodiment in which the thermal spraying is performed by adjusting the particle size of the thermal spray material powder will be described below.

第1実施例と同様に、Ar:40/min及びH2:5/minの
作動ガスを流し60kW出力で発生した高周波誘導プラズマ
9の中へ、10〜40μm粒径の溶射材料粉末を5〜10g/mi
nの供給量と5/min Arのキャリアガスで供給し、第2
図に示すように、被溶射物表面1aに蒸着膜層11を形成す
る。
In the same manner as in the first embodiment, a working gas of Ar: 40 / min and H 2 : 5 / min was flowed, and a sprayed material powder having a particle size of 10 to 40 μm was introduced into a high-frequency induction plasma 9 generated at a power of 60 kW. 10g / mi
n with the supply amount of n and 5 / min Ar carrier gas.
As shown in the drawing, a deposited film layer 11 is formed on the surface 1a of the object to be sprayed.

次に、溶射材料粉末の粒径を80〜100μmを変えて高
周波誘導プラズマ9内に供給する。このとき高周波出
力,作動ガス流量及びキャリアガス流量は変えない。
Next, the sprayed material powder is supplied into the high-frequency induction plasma 9 while changing the particle size from 80 to 100 μm. At this time, the high frequency output, the working gas flow rate and the carrier gas flow rate are not changed.

すると粒径が大きくなったため、溶射材料粉末が加熱
溶融されて生成する溶射粒子10は、溶融するだけで粒子
表面からの蒸発量はごく僅かとなり、溶融したまま被溶
射物1に達し、蒸着膜層11の上に溶射皮膜層12として堆
積する。従って溶射材料粉末の粒径を10〜40μmの小さ
いものから80〜100μmの大きいものに変えることで、
蒸着膜層11と溶射皮膜層12とからなる複合膜が形成され
る。
Then, since the particle diameter becomes large, the sprayed particles 10 generated by heating and melting the thermal spray material powder are only melted, and the amount of evaporation from the particle surface becomes very small. Deposited as a thermal spray coating layer 12 on layer 11. Therefore, by changing the particle size of the sprayed material powder from a small one of 10 to 40 μm to a large one of 80 to 100 μm,
A composite film composed of the deposited film layer 11 and the thermal spray coating layer 12 is formed.

かくして、上記第1実施例及び第2実施例によって形
成された第2図示の複合膜においては、腐食物は緻密な
蒸着膜層11によって被溶射物1とは遮断されるため、被
溶射物表面1aが腐食されなくなるとともに、緻密な蒸着
膜層11が被溶射物表面1aに密着しているので、蒸着膜層
11及び溶射皮膜層12が剥離することがなくなる。また蒸
着膜層11の上に溶射皮膜層12があるため、従来と同様な
耐摩耗性,断熱性も兼ね備えることができる。
Thus, in the composite film shown in FIG. 2 formed by the first embodiment and the second embodiment, the corroded material is shielded from the spray target 1 by the dense vapor deposition film layer 11, so that the surface of the spray target is prevented. 1a is no longer corroded, and the dense deposited film layer 11 is in close contact with the surface 1a of the object to be sprayed.
11 and the thermal spray coating layer 12 do not peel off. Further, since the thermal spray coating layer 12 is provided on the vapor deposition film layer 11, it can also have the same abrasion resistance and heat insulating properties as in the related art.

〔発明の効果〕 要するに本発明によれば、高周波誘導プラズマ中に溶
射材料粉末を供給し被溶射物に溶射するにあたり、溶射
初期は上記溶射材料粉末への入熱量を大きくするか又は
同溶射材料粉末の粒径を小さくして上記被溶射物表面に
蒸着膜層を形成させ、溶射が進行するに伴い上記入熱量
を小さくするか又は上記粒径を大きくして上記蒸着膜層
の上に溶射皮膜層を形成させることにより、緻密な蒸着
膜層によって被溶射物は腐食物とは遮断され腐食される
ことがなくなるとともに、剥離の発生もなく、更に蒸着
膜層の上の溶射皮膜層によって耐摩耗性,断熱性も十分
備えている溶射複合膜形成方法を得るから、本発明は産
業上極めて有益なものである。
[Effects of the Invention] In short, according to the present invention, in supplying the thermal spray material powder into the high frequency induction plasma and spraying the material to be sprayed, the initial thermal spraying is to increase the amount of heat input to the thermal spray material powder or the thermal spray material. A vapor deposition film layer is formed on the surface of the object to be sprayed by reducing the particle diameter of the powder, and the amount of heat input is reduced or the particle diameter is increased as the thermal spraying proceeds to spray on the vapor deposition film layer. By forming the coating layer, the object to be sprayed is prevented from being corroded by the dense vapor-deposited film layer and is not corroded. The present invention is extremely useful industrially because a method for forming a sprayed composite film having sufficient abrasion and heat insulating properties is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明溶射複合膜形成方法の実施例における実
施要領を示す縦断面図、第2図は同上方法における溶射
複合膜の断面図である。 第3図は従来のプラズマ溶射方法を示す模式図、第4図
はその溶射皮膜の断面図である。 1……被溶射物、1a……被溶射物表面、2……雰囲気制
御チャンバー、3……排気口、4……絶縁円筒、5……
印加コイル、6……高周波発振機、7……作動ガス導入
孔、8……溶射材料粉末供給ノズル、9……高周波誘導
プラズマ、10……溶射粒子、11……蒸着膜層、12……溶
射皮膜層、13……空隙
FIG. 1 is a longitudinal sectional view showing an embodiment of a method for forming a sprayed composite film of the present invention, and FIG. 2 is a sectional view of the sprayed composite film in the same method. FIG. 3 is a schematic view showing a conventional plasma spraying method, and FIG. 4 is a sectional view of the sprayed coating. 1 ... spray target, 1a ... spray target surface, 2 ... atmosphere control chamber, 3 ... exhaust port, 4 ... insulating cylinder, 5 ...
Application coil, 6 high frequency oscillator, 7 working gas introduction hole, 8 spraying material powder supply nozzle, 9 high frequency induction plasma, 10 spray particles, 11 deposited film layer, 12 Sprayed coating layer, 13 ... void

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高周波誘導プラズマ中に溶射材料粉末を供
給し被溶射物に溶射するにあたり、溶射初期は上記溶射
材料粉末への入熱量を大きくするか又は同溶射材料粉末
の粒径を小さくして上記被溶射物表面に蒸着膜層を形成
させ、溶射が進行するに伴い上記入熱量を小さくするか
又は上記粒径を大きくして上記蒸着膜層の上に溶射皮膜
層を形成させることを特徴とする溶射複合膜形成方法。
When supplying thermal spray material powder into a high frequency induction plasma and spraying the material to be sprayed, the amount of heat input to the thermal spray material powder is increased or the particle diameter of the thermal spray material powder is reduced in the initial stage of thermal spraying. Forming a vapor-deposited film layer on the surface of the object to be sprayed, and forming a thermal-sprayed film layer on the vapor-deposited film layer by reducing the heat input or increasing the particle size as the thermal spraying proceeds. A method for forming a sprayed composite film, which is characterized in that:
JP2152129A 1990-06-11 1990-06-11 Thermal spray composite film forming method Expired - Lifetime JP2716844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152129A JP2716844B2 (en) 1990-06-11 1990-06-11 Thermal spray composite film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152129A JP2716844B2 (en) 1990-06-11 1990-06-11 Thermal spray composite film forming method

Publications (2)

Publication Number Publication Date
JPH0445254A JPH0445254A (en) 1992-02-14
JP2716844B2 true JP2716844B2 (en) 1998-02-18

Family

ID=15533695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152129A Expired - Lifetime JP2716844B2 (en) 1990-06-11 1990-06-11 Thermal spray composite film forming method

Country Status (1)

Country Link
JP (1) JP2716844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT1984U1 (en) * 1997-04-22 1998-02-25 Plansee Ag METHOD FOR PRODUCING AN ANODE FOR X-RAY TUBES
CA2460296C (en) * 2003-05-23 2012-02-14 Sulzer Metco Ag A hybrid method for the coating of a substrate by a thermal application of the coating
CA2803728A1 (en) * 2012-02-23 2013-08-23 Forschungszentrum Juelich Gmbh Method of applying a thermal barrier coating by means of plasma spray physical vapor deposition
EP2650398B8 (en) 2012-04-11 2015-05-13 Oerlikon Metco AG, Wohlen Spray powder with a superferritic iron base compound and a substrate, in particular brake disc with a thermal spray coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
溶接学会全国大会講演概要、vol.44(1989)p.106−107
第76回金属表面技術協会講演大会講演要旨集(昭62−9−10)p4−5

Also Published As

Publication number Publication date
JPH0445254A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US3625848A (en) Arc deposition process and apparatus
US5733662A (en) Method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method
US4252626A (en) Cathode sputtering with multiple targets
US6602542B2 (en) Device for cleaning an article
US6277253B1 (en) External coating of tungsten or tantalum or other refractory metal on IMP coils
US6110540A (en) Plasma apparatus and method
US20200040444A1 (en) Plasma spray systems and methods
JP2716844B2 (en) Thermal spray composite film forming method
RU2058429C1 (en) Method for film spraying
JP2809359B2 (en) Thermal spray composite film forming method
JPH0544009A (en) Method and device for forming thermally sprayed composite film
JPH04198474A (en) Ion plating method and device
JPH1053866A (en) Gas control type arc device and its method
JPH03260054A (en) Cubic bn coated member having superior exfoliation resistance and its production
JPS6372875A (en) Sputtering device
GB1574677A (en) Method of coating electrically conductive components
JP2002263473A (en) Film deposition system
RU2146724C1 (en) Method for depositing composite coatings
JPH09165673A (en) Thin film forming device and thin film forming method
JPS62213862A (en) Plasma flame-spraying method
RU2134732C1 (en) Method of formation of protective layer of magnesium oxide
JPH0726362A (en) Film forming method, plasma torch for film forming and plasma arc oscillating device for the same torch
JPH0672300B2 (en) Hybrid ion plating device
JP2765957B2 (en) Thin film forming method and thin film forming apparatus
JPH0436455A (en) Formation of sprayed deposit