JPS63286546A - Aluminum alloy plate for can and its production - Google Patents

Aluminum alloy plate for can and its production

Info

Publication number
JPS63286546A
JPS63286546A JP12096187A JP12096187A JPS63286546A JP S63286546 A JPS63286546 A JP S63286546A JP 12096187 A JP12096187 A JP 12096187A JP 12096187 A JP12096187 A JP 12096187A JP S63286546 A JPS63286546 A JP S63286546A
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
alloy plate
plate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12096187A
Other languages
Japanese (ja)
Inventor
Miki Kanbayashi
神林 幹
Katsumi Koyama
克己 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP12096187A priority Critical patent/JPS63286546A/en
Publication of JPS63286546A publication Critical patent/JPS63286546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

PURPOSE:To develop an Al alloy thin plate material as a can material for drink and food having excellent strength and moldability by adding Cu, Si and other elements to an Al-Mg alloy, thereby providing aging hardenability to the titled plate. CONSTITUTION:The ingot of the Al alloy contg., by weight, 3-6% Mg, 0.6-1.5% Cu, 0.05-0.7% Si, 0.05-1.0% Mn and 0.1-0.7% Fe and contg. one or more kinds among 0.01-0.3% Cr, 0.05-0.5% Zr, 0.005-0.3% Ti and 0.0001-0.003% B is worked to the plate material having specific thickness by hot rolling and cold rolling. Said plate materials made of Al alloy is heated to 400-500 deg.C, is retained for 2-120sec at this temp., is thereafter cooled to the room temp. at >=10 deg.C/hr cooling ratio and is cold rolled to 0.25mm final plate thickness. Said material is applied to aging treatment at 100-250 deg.C if necessary, by which the thin plate material made of Al alloy for a can having excellent strength and moldability is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は飲料ならびに食品の金属缶に用いられる強度と
成形性に優れたアルミニウム合金板およびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum alloy plate with excellent strength and formability used for metal cans for beverages and foods, and a method for manufacturing the same.

〔従来の技術とその問題点〕[Conventional technology and its problems]

飲料または食品などに用いられる金属缶は缶胴と缶蓋か
らなり、缶胴はD【成形によりカップ状に加工され、缶
蓋はリベット成形してタブが取付けられた後カップに接
合される。従って缶胴材としては深絞り性およびしごき
加工性に優れたAf−M n −M g系の3004が
用いられ、缶蓋にはリベット成形性ならびに開口性さら
に強度にAl−Mg系の5052および5082などが
一般に使用されている。最近では特開昭−50141号
にみられるようにCuを微量添加して時効硬化性を付与
した合金も開発されている。
Metal cans used for beverages or foods consist of a can body and a can lid.The can body is processed into a cup shape by D [forming], and the can lid is joined to the cup after a tab is attached by rivet molding. Therefore, Af-Mn-Mg type 3004, which has excellent deep drawability and ironing workability, is used as the can body material, and Al-Mg type 5052 and Al-Mg type 5052, which have excellent rivet formability and opening properties, and strength, are used for the can lid. 5082 etc. are commonly used. Recently, as seen in Japanese Patent Application Laid-open No. 50141, alloys have been developed in which a trace amount of Cu is added to impart age hardenability.

近年アルミ缶の需要が2.増しているが、製造価格低減
のため素材の薄肉化が進められておりこれに伴って合金
板の高強度化が強く望まれている。
In recent years, demand for aluminum cans has increased to 2. However, in order to reduce manufacturing costs, materials are being made thinner, and there is a strong desire for higher strength alloy plates.

しかし上記合金は成形性に優れているものの、缶の焼付
は塗装(以下ベーキングと記す)時の加熱により強度低
下の傾向があり、今後の薄肉化に対して強度的にはいず
れも不充分である。また特開昭60−50141号にお
いてはCuを添加して強度を高めているが今後予想され
る0.3m以下の薄肉化に対しては強度的に不充分でか
つ強度を向上した分だけ加工性がやや悪くなる問題があ
り、強度と成形性の双方を満足し得る合金の開発が要求
されている。
However, although the above alloys have excellent formability, their strength tends to decrease due to the heating during painting (hereinafter referred to as baking), and they are insufficient in terms of strength to withstand future thinning. be. In addition, in JP-A No. 60-50141, Cu is added to increase the strength, but it is insufficient in terms of strength for the thinning of walls of 0.3 m or less, which is expected in the future, and processing is performed to the extent that the strength is improved. However, there is a problem that the properties of this alloy are somewhat poor, and there is a need to develop an alloy that can satisfy both strength and formability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の問題点について検討の結果、従来の合金
が非熱処理型の合金であり、金属缶に用いられた際の容
器のベーキング時に軟化し強度が低下するのに対し、ベ
ーキングによる加熱を利用して硬化させて強度を向上せ
しめる缶用アルミニウム合金板およびその製造方法を開
発したものである。
As a result of studying the above-mentioned problems, the present invention was developed as a result of the conventional alloys being non-heat-treatable alloys, which soften and lose strength during baking when used for metal cans. We have developed an aluminum alloy plate for cans that can be hardened to improve its strength, and a method for manufacturing the same.

〔問題点を解決するための手段および作用]本発明は上
記の問題に鑑みなされたもので、その第1発明はMg3
〜6wt%、Cu0.6〜1.5wt%、S i0.0
5〜0.7wt%、M n 0.05〜1.0wt%、
F e 0.1〜0.7wt%を含有しCr0.01〜
0.3wt%、Z r0.05〜0.5nt%、T i
 0.005〜0.ht%、B0.0001〜0.00
3wt%のうちいずれか1種以上を含有し、残部が不可
避的に含まれる不純物と八1からなる缶用アルミニウム
合金板であり、また第2発明はMg3〜6wt%、Cu
0.6〜1.5wt%、S i0.05〜0.7wt%
、M n 0.05〜1.0wt%、Fe0.1〜0.
7wt%を含有しCr0.01〜0.3wt%、Z r
 0.05〜0.5wt%、T i 0.005〜0.
3wt%、B0.0001〜0.003wt%のうちい
ずれか1種以上を含有し、残部が不可避的に含まれる不
純物とAlからなる合金を熱間圧延または冷間圧延後4
00〜500℃に加熱し、2秒〜120分保持してから
10℃/hr以上の速度で室温まで冷却し最終板厚に冷
間圧延することを特徴とする缶用アルミニウム合金板の
製造方法であり、第3発明はMg3〜6wt%、Cu0
.6〜1.5wt%、S i0.05〜0.7wt%、
Mn0.05〜1.0wt%、F e 0.1〜0.7
wt%を含有しCr0.O1〜0.3wt%、Zr0.
05〜0.5−t%、Ti0.005〜0.3wt%、
80.0001〜0.003wt%のうちいずれか1種
以上を含有し、残部が不可避的に含まれる不純物とA2
からなる合金を熱間圧延または冷間圧延後400〜50
0℃に加熱し、2秒〜120分保持してから10℃/h
r以上の速度で室温まで冷却し最終板厚に冷間圧延した
後100〜250’Cの温度で時効処理することを特徴
とする缶用アルミニウム合金板の製造方法である。
[Means and effects for solving the problems] The present invention was made in view of the above problems, and the first invention is Mg3
~6wt%, Cu0.6~1.5wt%, Si0.0
5 to 0.7 wt%, Mn 0.05 to 1.0 wt%,
Contains Fe 0.1~0.7wt% and Cr0.01~
0.3wt%, Zr0.05-0.5nt%, Ti
0.005~0. ht%, B0.0001~0.00
The second invention is an aluminum alloy plate for cans containing at least one of Mg3 to 6wt%, and the remainder being unavoidably contained impurities.
0.6-1.5wt%, Si0.05-0.7wt%
, Mn 0.05-1.0wt%, Fe0.1-0.
Contains 7wt%, Cr0.01-0.3wt%, Zr
0.05-0.5wt%, Ti 0.005-0.
3wt%, B0.0001 to 0.003wt%, and the remainder is unavoidably contained impurities and Al after hot rolling or cold rolling 4
A method for producing an aluminum alloy plate for cans, which comprises heating to 00 to 500°C, holding for 2 seconds to 120 minutes, cooling to room temperature at a rate of 10°C/hr or more, and cold rolling to final thickness. and the third invention is Mg3-6wt%, Cu0
.. 6-1.5wt%, Si0.05-0.7wt%,
Mn0.05-1.0wt%, Fe 0.1-0.7
wt% and Cr0. O1-0.3wt%, Zr0.
05-0.5-t%, Ti0.005-0.3wt%,
Impurities containing any one or more of 80.0001 to 0.003 wt%, with the remainder unavoidably included, and A2
400-50 after hot rolling or cold rolling the alloy consisting of
Heat to 0℃, hold for 2 seconds to 120 minutes, then heat at 10℃/h
This is a method for producing an aluminum alloy plate for cans, which comprises cooling the aluminum alloy plate to room temperature at a rate higher than r, cold-rolling it to the final thickness, and then aging it at a temperature of 100 to 250'C.

本発明は、An−Mg系の合金にCuを添加することに
より時効硬化性を付与し強度を向上せしめ、かつStを
添加することにより成形性を高めたものである。すなわ
ち本発明はAl−Mg−Cu系化合物を成形させ合金の
強化を図り、かつFeとMnを添加してAf−Mn−F
 e−3i系化合物の析出を促進して成形時の固体潤滑
性を付与せしめたものである。
The present invention imparts age hardenability and improves strength by adding Cu to an An-Mg alloy, and improves formability by adding St. That is, the present invention aims to strengthen the alloy by molding an Al-Mg-Cu based compound, and adds Fe and Mn to form Af-Mn-F.
This promotes the precipitation of e-3i compounds to provide solid lubricity during molding.

次に本発明の成分限定理由について述べる。Next, the reason for limiting the ingredients of the present invention will be described.

先ずMgは硬化要素の一つであるが3wt%未満では効
果がなく、6wt%を越えると加工性を阻害する。Cu
はMgと結合してAl−Cu−Mg系の化合物を形成し
、強化に寄与するが0.6wt%未満ではその効果が小
さく、1.5wt%を越えると焼入感受性が高くなり強
度が損なわれる。Siは、AI!、、Mn、Feと結合
してA/!−Mn−Fe−5i系の化合物を成形し、成
形性を向上させるが、0.05wt%未満ではその効果
が小さく 0.7wt%を越えると靭性を低下させると
共に焼入感受性を高め充分な強度が得られない。Feは
Q、1wt%未満ではAl−Mn−F e−3を系化合
物を析出させるのに充分な効果がなく、0.7wt%を
越えると巨大なAl−Mn−Fe系の化合物を形成し、
靭性、成形性を損なう。Crは耐食性の向上に寄与する
が、0.01wt%未満では効果が小さく、0.3wt
%を越えるとANとの巨大金属間化合物を形成し成形に
必要な延性を低下させる。Zrは材料加工時(特に熱間
圧延時)の再結晶を抑制し、微細かつ加工方向に沿った
繊維組繊を得て成形性の向上に寄与するが、0.05w
t%未満では効果が小さく、0.5wt%を越えると巨
大なAI!、−Zr−系化合物を形成し成形性を阻害す
る。Tiは鋳塊の結晶粒を微細化する作用があるが、0
.005wt%未満ではその効果がなく、0.3wt%
を越えるとAfとの巨大な金属間化合物を形成し材料の
圧延性および成形性を損なう。BはTiと同様に鋳塊の
結晶粒微細化に寄与するが、0.0001wt%未満で
は効果が小さく、0.003wt%を越えると粗大なT
iBz粒子が形成されて靭性が低下する。
First, Mg is one of the hardening elements, but it has no effect if it is less than 3 wt%, and if it exceeds 6 wt%, it inhibits workability. Cu
combines with Mg to form an Al-Cu-Mg-based compound and contributes to strengthening, but if it is less than 0.6 wt%, the effect is small, and if it exceeds 1.5 wt%, quenching sensitivity increases and strength is impaired. It will be done. Si is AI! , , Mn, combines with Fe to A/! -Mn-Fe-5i based compounds are molded to improve moldability, but if it is less than 0.05wt%, the effect is small, and if it exceeds 0.7wt%, toughness decreases and quenching sensitivity is increased to ensure sufficient strength. is not obtained. Fe is Q, and if it is less than 1 wt%, it will not have sufficient effect to precipitate Al-Mn-Fe-based compounds, and if it exceeds 0.7 wt%, it will form a huge Al-Mn-Fe-based compound. ,
Impairs toughness and formability. Cr contributes to improving corrosion resistance, but if it is less than 0.01wt%, the effect is small;
%, a giant intermetallic compound is formed with AN, reducing the ductility required for forming. Zr suppresses recrystallization during material processing (especially during hot rolling) and contributes to improving formability by obtaining fine fibers in the processing direction.
If it is less than t%, the effect is small, and if it exceeds 0.5wt%, it becomes a huge AI! , -Zr- type compounds are formed and the moldability is inhibited. Ti has the effect of refining the crystal grains of the ingot, but 0
.. If it is less than 0.005wt%, it has no effect, and 0.3wt%
If it exceeds this amount, a huge intermetallic compound is formed with Af, impairing the rolling properties and formability of the material. Like Ti, B contributes to grain refinement in the ingot, but if it is less than 0.0001 wt%, the effect is small, and if it exceeds 0.003 wt%, coarse T
iBz particles are formed and the toughness is reduced.

次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be explained.

上記組成のアルミニウム合金を熱間または冷間圧延後4
00〜550℃に加熱するのは溶体化処理を施すことが
目的であり400℃未満の温度ではMg。
After hot or cold rolling aluminum alloy with the above composition 4
The purpose of heating to 00 to 550°C is to perform solution treatment, and at a temperature below 400°C, Mg is heated.

Cuの固溶が促進されず充分な強化が図れない。Solid solution of Cu is not promoted and sufficient reinforcement cannot be achieved.

また550℃を越えると結晶粒が粗大化し、最終製品の
成形時に肌荒れが生じる。保持期間を2秒〜120分と
したのは、2秒未満では溶体化処理効果がなく、120
分を越えると結晶粒の粗大化を伴うためである。
Moreover, if the temperature exceeds 550°C, the crystal grains will become coarse and roughness will occur during molding of the final product. The holding period was set from 2 seconds to 120 minutes because there is no solution treatment effect if the holding period is less than 2 seconds.
This is because, if it exceeds 100%, the crystal grains will become coarser.

加熱後の冷却速度を10℃/hrとしたのは10℃/h
r未満では冷却過程でA/!−Mg−Cu系の平衡相が
析出してしまい強化に寄与しなくなるからである。また
最終板厚に冷間圧延後100〜250℃の温度で時効処
理するのはA j! −M g −Cu系化合物の微細
で均一な析出を促進し硬化させるためであるが100℃
未満では効果が小さく、250℃を越えると粗大粒子が
析出してしまい熱処理を施さない場合よりも強度が低下
するからである。
The cooling rate after heating was 10℃/hr.
If it is less than r, the cooling process will be A/! This is because the equilibrium phase of the -Mg-Cu system precipitates and does not contribute to strengthening. Also, aging treatment at a temperature of 100 to 250°C after cold rolling to the final thickness is A j! -M g - This is to promote fine and uniform precipitation of the Cu-based compound and harden it at 100°C.
If it is less than 250°C, the effect will be small, and if it exceeds 250°C, coarse particles will precipitate and the strength will be lower than that without heat treatment.

〔実施例1〕 以下に本発明の一実施例について説明する。[Example 1] An embodiment of the present invention will be described below.

第1表に示す組成のアルミニウム合金を溶解し、水冷鋳
造法により厚さ500mのスラブに鋳造し、これを均質
化処理してから熱間圧延により厚さ2.5rrmの板に
圧延し、次いで冷間圧延で0.8mmの板とした後、連
続焼鈍炉により520℃に10秒間保持して溶体化処理
し、室温まで空冷した後冷間圧延により厚さ0.25n
+n+の板に仕上げた。
An aluminum alloy having the composition shown in Table 1 was melted and cast into a slab with a thickness of 500 m by a water-cooled casting method, which was homogenized and then hot-rolled into a plate with a thickness of 2.5 rrm. After being cold rolled into a 0.8mm plate, it was solution-treated by holding it at 520°C for 10 seconds in a continuous annealing furnace, air-cooled to room temperature, and then cold rolled to a thickness of 0.25n.
Finished as a +n+ board.

上記の厚さ0.25mmの板について焼付塗装に相当す
る200’C110分の加熱処理を施し、リベット成形
し、さらにDI前加工れた3004合金使用の缶胴に巻
き締め接合し、缶体強度を調べた。併せて素板を上記加
熱処理(べ一牛ング)した後の耐力も調べた。なおリベ
ット成形性はストローク速度150spa+でリベット
取付部の張り出し、リベット接合を行ない亀裂、ネッキ
ングの有無を調べた。これらの結果を第2表に示す。
The above 0.25 mm thick plate is heat treated for 200'C110 minutes, which corresponds to baking painting, and then riveted and then rolled and bonded to a can body made of 3004 alloy that has undergone DI processing to strengthen the can body. I looked into it. At the same time, the yield strength of the blank plate after the above-mentioned heat treatment (baking) was also investigated. The rivet formability was determined by checking the presence of cracks and necking by protruding the rivet attachment part and performing rivet joints at a stroke speed of 150 spa+. These results are shown in Table 2.

第2表から明らかなように本発明のアルミニウム合金は
いずれもリベット成形性が良好で、耐圧強度も従来合金
に比べて著しく高く、またベーキング後の素板耐力も従
来のものに比べて約1.5倍の強さを示していることが
判る。
As is clear from Table 2, all of the aluminum alloys of the present invention have good riveting formability, have significantly higher compressive strength than conventional alloys, and have a blank yield strength of about 1% higher than conventional alloys after baking. It can be seen that the strength is .5 times stronger.

〔実施例2〕 第1表に示すNα2の組成合金鋳塊(製造法は実施例1
と同じ)を熱間圧延して3IIIIO板とし、続いて0
.8amに冷間圧延して溶体化処理し、最終板厚0.2
5鵬まで冷間圧延し、これを時効処理を施したもの、ま
たは施さないものとし、200’C10分のベーキング
処理を行なってリベット成形および耐圧強度を測定した
。耐圧試験は缶胴に接合された缶に窒素ガスを充填し、
缶底部が座屈するまでの圧力を充填ガス圧力で表示した
。これらの結果を第3表に示す。
[Example 2] An alloy ingot with a composition of Nα2 shown in Table 1 (the manufacturing method is Example 1)
) was hot rolled into a 3IIIO plate, and then 0
.. Cold rolled to 8am, solution treated, final plate thickness 0.2
The specimens were cold rolled to a temperature of 5.5 mm, subjected to aging treatment or not, and subjected to baking treatment at 200'C for 10 minutes to measure rivet forming and compressive strength. For the pressure test, the can joined to the can body is filled with nitrogen gas.
The pressure until the bottom of the can buckled was expressed as the filling gas pressure. These results are shown in Table 3.

第3表から明らかなように本発明の製造方法によれば、
比較例のものよりリベット成形性が優れ、また耐圧性強
度も著しく高いことが判る。
As is clear from Table 3, according to the manufacturing method of the present invention,
It can be seen that the rivet formability is superior to that of the comparative example, and the pressure resistance strength is also significantly higher.

〔効果] 以上に説明したように本発明によれば成形性および強度
に優れた缶用アルミニウム板が得られるもので工業上顕
著な効果を発揮するものである。
[Effects] As explained above, according to the present invention, an aluminum plate for cans having excellent formability and strength can be obtained, which exhibits remarkable effects in industry.

Claims (3)

【特許請求の範囲】[Claims] (1)Mg3〜6wt%、Cu0.6〜1.5wt%、
Si0.05〜0.7wt%、Mn0.05〜1.0w
t%、Fe0.1〜0.7wt%を含有しCr0.01
〜0.3wt%、Zr0.05〜0.5wt%、Ti0
.005〜0.3wt%、B0.0001〜0.003
wt%のうちいずれか1種以上を含有し、残部が不可避
的に含まれる不純物とAlからなる缶用アルミニウム合
金板。
(1) Mg3-6wt%, Cu0.6-1.5wt%,
Si0.05~0.7wt%, Mn0.05~1.0w
t%, Fe0.1-0.7wt% and Cr0.01
~0.3wt%, Zr0.05~0.5wt%, Ti0
.. 005-0.3wt%, B0.0001-0.003
An aluminum alloy plate for cans, which contains one or more of wt% and the remainder is unavoidably contained impurities and Al.
(2)Mg3〜6wt%、Cu0.6〜1.5wt%、
Si0.05〜0.7wt%、Mn0.05〜1.0w
t%、Fe0.1〜0.7wt%を含有しCr0.01
〜0.3wt%、Zr0.05〜0.5wt%、Ti0
.005〜0.3wt%、B0.0001〜0.003
wt%のうちいずれか1種以上を含有し、残部が不可避
的に含まれる不純物とAlからなる合金を熱間圧延また
は冷間圧延後400〜500℃に加熱し、2秒〜120
分保持してから10℃/hr以上の速度で室温まで冷却
し最終板厚に冷間圧延することを特徴とする缶用アルミ
ニウム合金板の製造方法。
(2) Mg3-6wt%, Cu0.6-1.5wt%,
Si0.05~0.7wt%, Mn0.05~1.0w
t%, Fe0.1-0.7wt% and Cr0.01
~0.3wt%, Zr0.05~0.5wt%, Ti0
.. 005-0.3wt%, B0.0001-0.003
After hot rolling or cold rolling, an alloy consisting of Al and impurities containing at least one of wt% and the remainder unavoidably contained is heated to 400 to 500 ° C. for 2 seconds to 120 °C.
1. A method for producing an aluminum alloy plate for cans, which comprises holding the aluminum alloy plate for cans for a few minutes, cooling it to room temperature at a rate of 10° C./hr or more, and cold rolling it to the final thickness.
(3)Mg3〜6wt%、Cu0.6〜1.5wt%、
Si0.05〜0.7wt%、Mn0.05〜1.0w
t%、Fe0.1〜0.7wt%を含有しCr0.01
〜0.3wt%、Zr0.05〜0.5wt%、Ti0
.005〜0.3wt%、B0.0001〜0.003
wt%のうちいずれか1種以上を含有し、残部が不可避
的に含まれる不純物とAlからなる合金を熱間圧延また
は冷間圧延後400〜500℃に加熱し、2秒〜120
分保持してから10℃/hr以上の速度で室温まで冷却
し最終板厚に冷間圧延した後100〜250℃の温度で
時効処理することを特徴とする缶用アルミニウム合金板
の製造方法。
(3) Mg3-6wt%, Cu0.6-1.5wt%,
Si0.05~0.7wt%, Mn0.05~1.0w
t%, Fe0.1-0.7wt% and Cr0.01
~0.3wt%, Zr0.05~0.5wt%, Ti0
.. 005-0.3wt%, B0.0001-0.003
After hot rolling or cold rolling, an alloy consisting of Al and impurities containing at least one of wt% and the remainder unavoidably contained is heated to 400 to 500 ° C. for 2 seconds to 120 °C.
1. A method for manufacturing an aluminum alloy plate for cans, which comprises holding the aluminum alloy plate for a few minutes, cooling it to room temperature at a rate of 10°C/hr or more, cold-rolling it to a final thickness, and then aging it at a temperature of 100 to 250°C.
JP12096187A 1987-05-18 1987-05-18 Aluminum alloy plate for can and its production Pending JPS63286546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12096187A JPS63286546A (en) 1987-05-18 1987-05-18 Aluminum alloy plate for can and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12096187A JPS63286546A (en) 1987-05-18 1987-05-18 Aluminum alloy plate for can and its production

Publications (1)

Publication Number Publication Date
JPS63286546A true JPS63286546A (en) 1988-11-24

Family

ID=14799282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12096187A Pending JPS63286546A (en) 1987-05-18 1987-05-18 Aluminum alloy plate for can and its production

Country Status (1)

Country Link
JP (1) JPS63286546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975263A1 (en) * 2006-01-12 2008-10-01 Furukawa-Sky Aluminum Corporation Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975263A1 (en) * 2006-01-12 2008-10-01 Furukawa-Sky Aluminum Corporation Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
EP1975263A4 (en) * 2006-01-12 2012-03-07 Furukawa Sky Aluminum Corp Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
US8500926B2 (en) 2006-01-12 2013-08-06 Furukawa-Sky Aluminum Corp Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JPH0127146B2 (en)
EP0708844B1 (en) Corrosion resistant aluminum alloy rolled sheet
US6129792A (en) Corrosion resistant aluminum alloy rolled sheet
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JPS63149349A (en) Aluminum alloy sheet for wrapping and its manufacture
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2525017B2 (en) Aluminum alloy material for can ends
JP3278130B2 (en) Method for producing high-strength heat-treated aluminum alloy sheet for drawing
JPS63286546A (en) Aluminum alloy plate for can and its production
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP3234511B2 (en) Method of manufacturing Al alloy plate for high speed forming and method of high speed forming of Al alloy plate
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JPS63169353A (en) Aluminum alloy for forming and its production
JP3103122B2 (en) Aluminum alloy sheet for forming process with high formability and method for producing the same
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JP2773874B2 (en) Manufacturing method of aluminum alloy plate
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPS6328850A (en) Manufacture of al-alloy sheet metal for manufacture of all aluminum can
JP2599450B2 (en) Manufacturing method of aluminum alloy plate for can end