JPS6328597B2 - - Google Patents
Info
- Publication number
- JPS6328597B2 JPS6328597B2 JP20063082A JP20063082A JPS6328597B2 JP S6328597 B2 JPS6328597 B2 JP S6328597B2 JP 20063082 A JP20063082 A JP 20063082A JP 20063082 A JP20063082 A JP 20063082A JP S6328597 B2 JPS6328597 B2 JP S6328597B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- treatment
- alkali treatment
- saccharification
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003513 alkali Substances 0.000 claims description 36
- 239000002994 raw material Substances 0.000 claims description 28
- 238000010298 pulverizing process Methods 0.000 claims description 23
- 239000001913 cellulose Substances 0.000 claims description 8
- 229920002678 cellulose Polymers 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 238000002203 pretreatment Methods 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 150000004679 hydroxides Chemical class 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 claims description 2
- 150000003568 thioethers Chemical class 0.000 claims description 2
- 239000000084 colloidal system Substances 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 10
- 241000209094 Oryza Species 0.000 description 7
- 235000007164 Oryza sativa Nutrition 0.000 description 7
- 235000009566 rice Nutrition 0.000 description 7
- 239000010902 straw Substances 0.000 description 7
- 238000000227 grinding Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920005610 lignin Polymers 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
この発明は、糖化用セルロース系原料の前処理
法に関するものである。
セルロース系原料を糖化するに際しては、原料
の前処理が必要であり、従来は、粉砕機を用いた
機械的粉砕処理、蒸煮処理またはアルカリ処理が
糖化用セルロース系原料の前処理法として採用さ
れている。
しかしながら、従来の機械的粉砕処理法は多大
の粉砕動力を必要とすること。アルカリ処理法は
多量のアルカリを消費するとともに高温度下
(120℃前後の前処理において高糖化性を有する。)
で処理されるので装置は耐圧装置が必要であり、
連続運転が困難である。従つて、処理装置が大型
のものとなる不利点を有している。
この発明は、前記従来法の不利点を解決するた
めになされたもので、粉砕の消費動力とアルカリ
消費量とを極力減少させるとともに糖化用セルロ
ース系原料の前処理を常圧下に連続して処理する
ことを目的とするものである。
この発明は、機械的粉砕処理とアルカリ処理と
を組合せた連続式糖化用セルロース系原料の前処
理法を提供するものである。
すなわち、この発明はセルロース系原料を糖化
するに際し、該原料の長さを1〜100mm、径また
は幅を1〜20mmに粉砕し、該粉砕された原料を常
圧下で加温または加温せずに濃度1MOL以下のア
ルカリ金属もしくはアルカリ土類金属の水酸化
物、硫化物、炭酸塩または亜硫酸塩の水溶液から
選択された1種の水溶液または2種以上を混合し
た水溶液に接触させてアルカリ処理した後脱アル
カリ処理し、該脱アルカリ処理された原料を湿式
粉砕する糖化用セルロース系原料の前処理法であ
る。
この発明の方法は、機械的粉砕処理とアルカリ
処理とを組合せたことにより前処理効果の向上が
達成されるのであり、アルカリ処理した後に湿式
下で微粉砕するので乾燥工程が省略されたのみな
らずシリカ、リグニンなどの減少による粉砕物単
位重量当たりの消費動力を大幅に減少させること
ができる。しかもアルカリ処理による固相の重量
損失(リグニン、灰分などの除去による。)があ
るので粉砕に要する全消費動力をさらに相当に削
減でき、糖化残渣も著しく減少させることができ
る。
また、この発明の方法は糖化用セルロース系原
料の種類によりカツターおよび/または粗粉砕機
を適宜組合せて用いることができるし、さらにア
ルカリ処理および脱アルカリ処理が100℃以下、
すなわち常圧下で実施できるので処理装置の耐圧
性の考慮などが不要となり、固液向流型接触装置
を用いて連続運転を可能とすることができた。従
つてアルカリ消費量が削減できるとともに装置を
小型化することができ、セルロース系原料の高糖
化性が得られた。
つぎに図面により、この発明を詳細に説明す
る。
第1図は、この発明の工程図であり、糖化用セ
ルロース系原料の前処理は、切断および/または
粗粉砕、アルカリ処理、脱アルカリ処理および微
粉砕工程からなる。
第2図は、この発明の概略図である。
カツター2および/または粗粉砕機3で糖化用
セルロース系原料1の長さを1〜100mm、径また
は幅を1〜20mmに切断および/または粗粉砕す
る。この切断および/または粗粉砕工程では、つ
ぎのアルカリ処理工程において効率よくアルカリ
処理が行われるために乾式下で実施される。粗粉
砕された原料はホツパー4を経由し、振動フイダ
ー5を介して計量機6で適量が計量され、ベルト
コンベア7によつて固液向流型接触装置8へ運ば
れる。固液向流型接触装置8はアルカリ処理と脱
アルカリ処理の機能を有しており、粗粉砕された
原料は固液向流型接触装置8の前段階で濃度
1MOL以下の水溶液に連続的に接触されてアルカ
リ処理され、つぎに固液向流型接触装置8の後段
階で水洗手段によつて連続的に脱アルカリ処理さ
れる。脱アルカリ処理された原料は、ホツパー9
を介して微粉砕機10へ投入され、湿式下で微粉
砕される。湿式微粉砕は、乾式微粉砕に比較して
消費動力が少ない。
つぎにこの発明を実施例を用いてさらに詳細に
説明する。
実施例 1
第1表に示す組成の稲わらを原料として、第1
図のフローに沿つて前処理を行つた。このときア
ルカリ液として、0.25MOLのNaOH水溶液を使
用し、アルカリ処理および脱アルカリ処理は固液
向流型接触装置を用い、80℃において1時間の滞
留時間で行つた。
こうしてアルカリ処理した結果、稲わら組成は
第2表のように変化した。第1表と比較すると、
セルロース量にほとんど変化がみられないのに対
して全重量変化が大きく、アルカリ処理後に粉砕
する方が粉砕エネルギー的にみれば有利であるこ
とが明らかになつた。
第1表 原料稲わらの成分組成
成分 比率(%)
セルロース 40
ヘミセルロース 25
リグニン 20
灰分 15
重量 100
第2表 アルカリ処理後稲わらの成分組成
成分 比率(%)
セルロース 38
ヘミセルロース 11
リグニン 6
灰分 3
重量 58
第3表は、糖化反応におよぼす前処理効果を示
したものである。糖化反応は、セルラーゼオノズ
カR−10を0.2%、稲わら1.0%、温度40℃、PH5.0
の条件下で行つた。第3表は反応開始後48時間目
の糖(グルコース)転化率を示している。第3表
が示しているように、アルカリ処理→微粉砕とい
うプロセスの方が微粉砕→アルカリ処理というプ
ロセスに比較して優れた前処理効果を示した。
しかも、第4表が示すように粉砕物単位重量当
たりの粉砕消費動力からみても、アルカリ処理→
微粉砕というプロセスの方がはるかに優れた効果
を示すことが明らかになつた。
また、アルカリ処理後に粉砕する場合、乾燥工
程が不要であること、摩擦熱発生によるこげつき
がないことなどの理由により、乾式粉砕よりも湿
式粉砕の方が優れていることが明らかとなつた。
第3表 糖化反応におよぼす前処理効果
糖転化率(%)
微粉砕→アルカリ処理 91
アルカリ処理→微粉砕 86
粗粉砕のみ 45
第4表 粉砕消費動力におよぼす前処理効果
粉砕消費動力(K
WH/Kg稲わら
微粉砕→アルカリ処理 0.24
アルカリ処理→微粉砕 0.04
実施例 2
実施例1と同一のフローに沿つて前処理を行つ
た。ただし、アルカリ処理はフラスコ内でバツチ
法で行い、処理温度25、40、80、120℃、処理時
間0、5、1、3時間の条件下で行つた。実施例
1と同一の条件下で糖化反応を行つた結果、48時
間後の糖転化率は第5表のようになつた。
第5表より、100℃以下での処理でも120℃にお
ける処理と同じ効果のあることが明らかとなり、
常圧下でのアルカリ処理で充分であることがわか
つた。すなわち、アルカリ処理装置の耐圧性が不
要となつたばかりかアルカリ処理の連続化が容易
になつた。
The present invention relates to a method for pretreating cellulosic raw materials for saccharification. When saccharifying cellulosic raw materials, pretreatment of the raw materials is necessary, and conventionally, mechanical crushing using a crusher, steaming treatment, or alkali treatment have been adopted as pretreatment methods for cellulosic raw materials for saccharification. There is. However, conventional mechanical crushing methods require a large amount of crushing power. The alkali treatment method consumes a large amount of alkali and has high saccharification properties at high temperatures (pretreatment at around 120℃).
The equipment must be pressure resistant as it is processed by
Continuous operation is difficult. Therefore, there is a disadvantage that the processing apparatus becomes large-sized. This invention was made in order to solve the disadvantages of the conventional method, and it reduces the power consumption and alkali consumption for pulverization as much as possible, and also pre-treats the cellulose raw material for saccharification continuously under normal pressure. The purpose is to This invention provides a method for pre-treating cellulosic raw materials for continuous saccharification, which combines mechanical pulverization and alkali treatment. That is, when saccharifying a cellulose-based raw material, the present invention involves pulverizing the raw material to a length of 1 to 100 mm and a diameter or width of 1 to 20 mm, and heating the pulverized raw material under normal pressure or without heating. was subjected to alkali treatment by contacting it with an aqueous solution of one selected from aqueous solutions of hydroxides, sulfides, carbonates, or sulfites of alkali metals or alkaline earth metals or a mixture of two or more of them at a concentration of 1MOL or less. This is a pretreatment method for cellulosic raw materials for saccharification, in which a post-dealkalization treatment is performed and the dealkalized raw materials are wet-pulverized. The method of this invention achieves an improved pretreatment effect by combining mechanical pulverization treatment and alkali treatment, and the drying step is omitted since the alkali treatment is followed by wet pulverization. Due to the reduction in silica, lignin, etc., the power consumption per unit weight of pulverized material can be significantly reduced. Moreover, since there is a weight loss of the solid phase (due to the removal of lignin, ash, etc.) due to the alkali treatment, the total power consumption required for pulverization can be further reduced considerably, and the saccharification residue can also be significantly reduced. Furthermore, in the method of the present invention, a cutter and/or a coarse pulverizer can be used in an appropriate combination depending on the type of cellulose-based raw material for saccharification, and the alkali treatment and dealkalization treatment can be carried out at temperatures below 100°C.
That is, since the process can be carried out under normal pressure, there is no need to consider the pressure resistance of the processing equipment, and continuous operation can be achieved using a solid-liquid countercurrent contact equipment. Therefore, it was possible to reduce the amount of alkali consumption and downsize the apparatus, and it was possible to achieve high saccharification of cellulosic raw materials. Next, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a process diagram of the present invention, and the pretreatment of the cellulosic raw material for saccharification consists of cutting and/or coarse pulverization, alkali treatment, dealkalization treatment, and fine pulverization steps. FIG. 2 is a schematic diagram of the invention. The cellulose raw material for saccharification 1 is cut and/or coarsely crushed into pieces having a length of 1 to 100 mm and a diameter or width of 1 to 20 mm using a cutter 2 and/or a coarse crusher 3. This cutting and/or coarse pulverization step is carried out under dry conditions in order to efficiently carry out the alkali treatment in the next alkali treatment step. The coarsely pulverized raw material passes through a hopper 4, passes through a vibrating feeder 5, is weighed by a weighing machine 6, and is conveyed to a solid-liquid countercurrent contact device 8 by a belt conveyor 7. The solid-liquid countercurrent contact device 8 has the functions of alkali treatment and dealkalization processing, and the coarsely pulverized raw material is concentrated in the stage before the solid-liquid countercurrent contact device 8.
It is continuously brought into contact with an aqueous solution of 1MOL or less for alkali treatment, and then, at a subsequent stage of the solid-liquid countercurrent contact device 8, it is continuously dealkalized by a water washing means. The dealkalized raw material is processed by Hopper 9.
The raw material is fed into the pulverizer 10 through the pulverizer 10, and is pulverized under a wet process. Wet pulverization consumes less power than dry pulverization. Next, the present invention will be explained in more detail using examples. Example 1 Using rice straw with the composition shown in Table 1 as a raw material, the first
Preprocessing was performed according to the flow shown in the figure. At this time, a 0.25 MOL NaOH aqueous solution was used as the alkaline solution, and the alkali treatment and dealkalization treatment were performed using a solid-liquid countercurrent contact device at 80° C. for a residence time of 1 hour. As a result of this alkali treatment, the rice straw composition changed as shown in Table 2. Comparing with Table 1,
Although there was almost no change in the amount of cellulose, the change in total weight was large, making it clear that pulverization after alkali treatment was more advantageous in terms of pulverization energy. Table 1 Component composition ratio (%) of raw rice straw Cellulose 40 Hemicellulose 25 Lignin 20 Ash 15 Weight 100 Table 2 Component composition ratio (%) of rice straw after alkali treatment Cellulose 38 Hemicellulose 11 Lignin 6 Ash 3 Weight 58 Table 3 shows the effect of pretreatment on the saccharification reaction. For the saccharification reaction, 0.2% Cellulase Onozuka R-10, 1.0% rice straw, temperature 40℃, pH 5.0
It was conducted under the following conditions. Table 3 shows the sugar (glucose) conversion rate 48 hours after the start of the reaction. As shown in Table 3, the process of alkali treatment→fine pulverization showed a superior pretreatment effect compared to the process of pulverization→alkali treatment. Furthermore, as shown in Table 4, from the perspective of the power consumption per unit weight of the pulverized material, the alkali treatment→
It became clear that the process of pulverization was far more effective. In addition, when pulverizing after alkali treatment, it has become clear that wet pulverization is superior to dry pulverization because there is no need for a drying process and there is no scorching caused by frictional heat generation. Table 3 Pretreatment effect on saccharification reaction Sugar conversion rate (%) Fine grinding → Alkali treatment 91 Alkali treatment → Fine grinding 86 Coarse grinding only 45 Table 4 Pretreatment effect on grinding power consumption Grinding power consumption (K WH/ Kg Rice straw pulverization → Alkali treatment 0.24 Alkali treatment → Fine pulverization 0.04 Example 2 Pretreatment was performed according to the same flow as Example 1. However, alkali treatment was performed in a flask by batch method, and the treatment temperature was 25 , 40, 80, and 120°C for treatment times of 0, 5, 1, and 3 hours.As a result of performing the saccharification reaction under the same conditions as in Example 1, the saccharification conversion rate after 48 hours was The results are as shown in Table 5. From Table 5, it is clear that treatment at temperatures below 100℃ has the same effect as treatment at 120℃.
It was found that alkaline treatment under normal pressure was sufficient. That is, not only is the pressure resistance of the alkali treatment equipment no longer necessary, but also the continuous alkali treatment has become easier.
【表】
実施例 3
実施例1と同一のフローに沿つて前処理を行つ
た。ただし、アルカリ処理装置の効果を比較する
ために、アルカリ処理装置としてデイフユーザー
ロトセル抽出機、垂直バスケツト型抽出機を用い
た。その結果、糖化反応におよぼす顕著な差異は
見出されなかつた。
実施例 4
実施例1と同一のフローに沿つて前処理を行つ
た。ただし、アルカリの種類と濃度を第6表のよ
うに変化させた。糖化反応におよぼす前処理効果
の違いを第6表にまとめた。糖転化率は反応開始
後48時間目のものである。
第6表 糖化反応におよぼすアルカリの種類と濃
度の影響[Table] Example 3 Pretreatment was performed according to the same flow as in Example 1. However, in order to compare the effects of the alkali treatment equipment, a diffuse user roto cell extractor and a vertical basket type extractor were used as the alkali treatment equipment. As a result, no significant difference in the saccharification reaction was found. Example 4 Pretreatment was performed according to the same flow as in Example 1. However, the type and concentration of alkali were changed as shown in Table 6. Table 6 summarizes the differences in pretreatment effects on the saccharification reaction. The sugar conversion rate is 48 hours after the start of the reaction. Table 6 Effect of type and concentration of alkali on saccharification reaction
【表】
実施例 5
稲わらの代りにもみがら、サトウキビバガスを
原料として、実施例1と同一のフローに沿つて前
処理を行つた。その結果、糖化反応におよぼす前
処理効果は第7表のようになつた。糖転化率は48
時間後のものである。[Table] Example 5 Pretreatment was performed according to the same flow as in Example 1 using rice hulls and sugarcane bagasse as raw materials instead of rice straw. As a result, the pretreatment effects on the saccharification reaction were as shown in Table 7. Sugar conversion rate is 48
This is after hours.
第1図は、この発明の工程図であり、第2図は
この発明の一実施例である。
1……原料、2……カツター、3……粗粉砕
機、4……ホツパー、5……振動フイーダー、6
……計量機、7……ベルトコンベア、8……固液
向流型接触装置、9……ホツパー、10……微粉
砕機。
FIG. 1 is a process diagram of this invention, and FIG. 2 is an embodiment of this invention. 1... Raw material, 2... Cutter, 3... Coarse crusher, 4... Hopper, 5... Vibration feeder, 6
... Weighing machine, 7 ... Belt conveyor, 8 ... Solid-liquid countercurrent contact device, 9 ... Hopper, 10 ... Fine grinder.
Claims (1)
の長さを1〜100mm、径または幅を1〜20mmに粉
砕し、該粉砕された原料を常圧下で加温または加
温せずに濃度1MOL以下のアルカリ金属もしくは
アルカリ土類金属の水酸化物、硫化物、炭酸塩ま
たは亜硫酸塩の水溶液から選択された1種の水溶
液または2種以上を混合した水溶液に接触させて
アルカリ処理した後脱アルカリ処理し、該脱アル
カリ処理された原料を湿式粉砕することを特徴と
する糖化用セルロース系原料の前処理法。 2 アルカリ処理および脱アルカリ処理が、固液
向流型接触装置で行われる特許請求の範囲第1項
記載の前処理法。 3 湿式粉砕がコロイドミル、リフアイナー、ボ
ールミルまたはロツドミルの粉砕機で行われる特
許請求の範囲第1項記載の前処理法。[Claims] 1. When saccharifying a cellulosic raw material, the raw material is pulverized to a length of 1 to 100 mm and a diameter or width of 1 to 20 mm, and the pulverized raw material is heated or warmed under normal pressure. The alkaline solution is made by contacting with an aqueous solution of one selected from aqueous solutions of hydroxides, sulfides, carbonates, or sulfites of alkali metals or alkaline earth metals or a mixed solution of two or more of them with a concentration of 1MOL or less. 1. A pretreatment method for a cellulose-based raw material for saccharification, which comprises subjecting the treated raw material to a dealkalization treatment, and then wet-pulverizing the dealkalized raw material. 2. The pretreatment method according to claim 1, wherein the alkali treatment and dealkalization treatment are performed in a solid-liquid countercurrent contact device. 3. The pretreatment method according to claim 1, wherein the wet pulverization is performed in a pulverizer such as a colloid mill, a refiner, a ball mill, or a rod mill.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20063082A JPS5991893A (en) | 1982-11-16 | 1982-11-16 | Method for pretreating cellulosic raw material for saccharification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20063082A JPS5991893A (en) | 1982-11-16 | 1982-11-16 | Method for pretreating cellulosic raw material for saccharification |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5991893A JPS5991893A (en) | 1984-05-26 |
JPS6328597B2 true JPS6328597B2 (en) | 1988-06-09 |
Family
ID=16427571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20063082A Granted JPS5991893A (en) | 1982-11-16 | 1982-11-16 | Method for pretreating cellulosic raw material for saccharification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5991893A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050223A1 (en) | 2008-10-30 | 2010-05-06 | 王子製紙株式会社 | Saccharide production process and ethanol production process |
JP4713688B1 (en) * | 2010-11-11 | 2011-06-29 | 泰雄 福谷 | Bioethanol production method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040231060A1 (en) * | 2003-03-07 | 2004-11-25 | Athenix Corporation | Methods to enhance the activity of lignocellulose-degrading enzymes |
JP4619831B2 (en) * | 2005-03-08 | 2011-01-26 | 月島機械株式会社 | Pretreatment method of lignocellulose |
JP4619917B2 (en) * | 2005-10-14 | 2011-01-26 | 月島機械株式会社 | Pretreatment method of lignocellulose |
JP2007282597A (en) * | 2006-04-19 | 2007-11-01 | Ihi Corp | Method for solubilizing woody biomass |
JP5320565B2 (en) * | 2007-03-01 | 2013-10-23 | 独立行政法人国立高等専門学校機構 | Method for producing chitin degradation product |
JP5136984B2 (en) * | 2007-04-04 | 2013-02-06 | 独立行政法人産業技術総合研究所 | Method for producing sugar |
JP2012044880A (en) * | 2010-07-29 | 2012-03-08 | Sekisui Chem Co Ltd | Method for saccharifying cellulose |
WO2015072413A1 (en) * | 2013-11-12 | 2015-05-21 | 花王株式会社 | Method for producing xylan-containing composition and method for producing glucan-containing composition |
-
1982
- 1982-11-16 JP JP20063082A patent/JPS5991893A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050223A1 (en) | 2008-10-30 | 2010-05-06 | 王子製紙株式会社 | Saccharide production process and ethanol production process |
JP4713688B1 (en) * | 2010-11-11 | 2011-06-29 | 泰雄 福谷 | Bioethanol production method |
WO2012063958A1 (en) * | 2010-11-11 | 2012-05-18 | Fukutani Yasuo | Process for production of bioethanol |
JP2012100594A (en) * | 2010-11-11 | 2012-05-31 | Yasuo Fukutani | Method for producing bioethanol |
Also Published As
Publication number | Publication date |
---|---|
JPS5991893A (en) | 1984-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1100266A (en) | Organosolv delignification and saccharification process for lignocellulosic plant materials | |
JP4619917B2 (en) | Pretreatment method of lignocellulose | |
JP5136984B2 (en) | Method for producing sugar | |
WO2010050223A1 (en) | Saccharide production process and ethanol production process | |
JP2008512102A (en) | How to produce pretreated raw materials | |
JPS6328597B2 (en) | ||
US6251221B1 (en) | Process for preparing cellulose from lignin-poor cellulose-containing feed stocks | |
WO2017104687A1 (en) | Method for manufacturing cellooligosaccharide | |
GB2145090A (en) | Hydrolysis of lignocellulosic materials | |
CA1322366C (en) | Continuous leaching of lignin or hemicellulose and lignin from steam pretreated lignocellosic particulate material | |
JP5621528B2 (en) | Enzymatic saccharification method of lignocellulosic material | |
US4790905A (en) | Process for the pulping of lignocellulose materials with alkali or alkaline earth metal hydroxide or salt and a solvent | |
WO2013136940A1 (en) | Method for producing saccharide | |
US9284614B2 (en) | Pre-treatment method for plant biomass hydrolysis reaction raw materials and plant biomass saccharification method | |
JP5019421B2 (en) | Method for producing sugar | |
CN107075800A (en) | Method and apparatus for carrying out hydrothermal pretreatment to wood fiber biomass | |
NAJAFPOUR et al. | Acid hydrolysis of pretreated palm oil lignocellulosic wastes | |
WO2014097801A1 (en) | Plant-biomass hydrolysis method | |
CN100500992C (en) | Process for producing purified pulp | |
WO2014007295A1 (en) | Method for decomposing plant biomass, and method for producing glucose | |
JP2011182646A (en) | Method for treating lignocellulose-based biomass | |
JP2009171951A (en) | Method for producing sugar | |
JP2005206468A (en) | Method for producing saccharides and solid fuel using biomass as raw material | |
JPS62126999A (en) | Pretreatment of wood | |
US20160237616A1 (en) | Method for treating cellulose-containing biomass |