JPS63285106A - Production of high-purity tellurium dioxide - Google Patents

Production of high-purity tellurium dioxide

Info

Publication number
JPS63285106A
JPS63285106A JP11819187A JP11819187A JPS63285106A JP S63285106 A JPS63285106 A JP S63285106A JP 11819187 A JP11819187 A JP 11819187A JP 11819187 A JP11819187 A JP 11819187A JP S63285106 A JPS63285106 A JP S63285106A
Authority
JP
Japan
Prior art keywords
tellurium
tetrachloride
purity
dioxide
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11819187A
Other languages
Japanese (ja)
Other versions
JPH0475846B2 (en
Inventor
Masaya Yukinobu
雅也 行延
Yuichi Owa
大輪 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11819187A priority Critical patent/JPS63285106A/en
Publication of JPS63285106A publication Critical patent/JPS63285106A/en
Publication of JPH0475846B2 publication Critical patent/JPH0475846B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce high-purity tellurium dioxide of large particle sizes and high stability by converting metallic tellurium into its tetrachloride with chlorine gas, rectifying the product with the specific initial fraction discarded, and hydrolyzing the purified distillate. CONSTITUTION:Metallic tellurium of usual quality, about 99.9wt.% purity, is treated with an adequate amount of a dried chlorine gas to convert into its tetrachloride. The product is rectified with a distiller. At this time, about 5-15wt.% of the substrate is discarded from the initial distillation fraction, then the purified tellurium tetrachloride is collected as a major fraction. The product is hydrolyzed with pure water and tellurium dioxide of large particle sizes is obtained by using a large or some excessive amount of pure water kept at high temperature and the purity is over 99.999wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学用単結晶等の素材として使用される高純
度二酸化テルルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high-purity tellurium dioxide, which is used as a material for optical single crystals and the like.

〔従来の技術〕[Conventional technology]

二酸化テルルは一般に化学薬品として使用されているが
99.999重量%以上の高純度二酸化テルルを原料と
して単結晶化したものは、レーザープリンター、カラー
スキャナー、スペクトラムアナライザー等の超音波光変
調器、偏光器等の特殊用途に威力を発揮する。
Tellurium dioxide is generally used as a chemical, but single crystals made from high purity tellurium dioxide (99.999% by weight or more) are used in ultrasonic light modulators such as laser printers, color scanners, and spectrum analyzers. It is effective for special purposes such as vessels.

従来この高純度の二酸化テルルは、金属テルルに濃硝酸
を作用させて得られる塩基性硝酸塩を加熱する方法で製
造されていた。この方法により製造される二酸化テルル
は純度が低く、製品純度を高める為には原料として用い
られる金属テルルを予しめ充分に精製しておかなければ
ならないばかりか、金属テルルを溶解するための試薬に
も高純度に精製されたものを使用せねばならず、更に反
応工程としての湿式処理による工程内汚染等もあって、
原料試薬の純度以上にはならないという問題点があった
Conventionally, this high-purity tellurium dioxide has been produced by heating a basic nitrate obtained by reacting concentrated nitric acid with metallic tellurium. The tellurium dioxide produced by this method has low purity, and in order to increase the purity of the product, it is necessary to sufficiently purify the metallic tellurium used as a raw material in advance. It is necessary to use highly purified products, and there is also in-process contamination due to wet processing as a reaction step.
There was a problem that the purity could not exceed the purity of the raw reagent.

更に光学用単結晶の製造原料とするためには、二酸化テ
ルルへの吸着ガス量も極力抑えねばならず、この点から
粒径が大きくしかも安定したものが望まれる。
Furthermore, in order to use it as a raw material for producing optical single crystals, it is necessary to suppress the amount of gas adsorbed on tellurium dioxide as much as possible, and from this point of view, particles with large and stable particle sizes are desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の問題点を解決するため、通常品位である
純度約99.9重量%の金属テルルを原料としながら9
9.999重量%以上の純度が保証される粒径の大きい
高純度の二酸化テルルを得ることのでさる製造方法を提
供しようとするものである。
In order to solve the above problems, the present invention uses tellurium metal as a raw material with a purity of about 99.9% by weight, which is a normal grade, and
It is an object of the present invention to provide a manufacturing method for obtaining highly pure tellurium dioxide with a large particle size that guarantees a purity of 9.999% by weight or more.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、通常品位である99.9重量%程度の金属テ
ルルに乾燥塩素ガスを通じて四塩化テルルとし、該四塩
化テルルを蒸溜器によって蒸溜精製する際、先ず処理量
の5〜15重量%に当る四塩化テルルの初溜を分離除去
した後、改めて蒸溜処理を進め、その際得られた溜升を
本溜分として精製四項化テルルを回収し、該精製四塩化
テルルに純水を加え加水分解して二酸化テルルとするこ
とにある。
In the present invention, tellurium tetrachloride is produced by passing dry chlorine gas through tellurium metal, which is a normal grade of about 99.9% by weight. After separating and removing the first fraction of tellurium tetrachloride, the distillation process is carried out again, and the distillation obtained at this time is used as the main fraction to recover purified tellurium tetrachloride, and pure water is added to the purified tellurium tetrachloride. The purpose is to hydrolyze it to tellurium dioxide.

〔作用〕[Effect]

本発明で四塩化テルルを蒸溜精製する際、処理量の5〜
15重量%に当る初溜を分離除去するのは・除去する初
溜の割合が5重量%未満では低沸点不純物としてのセレ
ン、燐、硫黄、砒素、アンチモン、錫、ガリウム等が本
部中に混入してさて結果的には、目的に反して二酸化テ
ルルの純度を下げてしまうためであり、分離除去する初
溜の割合が15重量%を超えると入手でさる製品歩留り
が減少Tるばかりでなく、製品純度の向上にも顕著性を
欠いてくるためである。
When distilling and refining tellurium tetrachloride in the present invention, the processing amount is 5 to 5.
The reason for separating and removing the initial distillate which is 15% by weight is that if the ratio of the initial distillate to be removed is less than 5% by weight, low-boiling point impurities such as selenium, phosphorus, sulfur, arsenic, antimony, tin, gallium, etc. will be mixed into the main body. However, as a result, the purity of tellurium dioxide is lowered, which is contrary to the purpose.If the ratio of the initial distillation to be separated and removed exceeds 15% by weight, not only will the yield of the obtained product decrease. This is because the improvement in product purity becomes less noticeable.

金属テルルに乾燥塩素ガスを通じて四塩化テルルを製造
するに際して、乾燥塩素ガスの供給量が不足すると黒色
の二塩化テルルが系内に混入してくる為、この工程にお
ける乾燥塩素ガスの供給量は四塩化テルルを継続して生
産するのに充分な量であることが必要である。
When producing tellurium tetrachloride by passing dry chlorine gas through tellurium metal, if the supply of dry chlorine gas is insufficient, black tellurium dichloride will mix into the system, so the supply of dry chlorine gas in this process is It is necessary that the amount be sufficient for continuous production of tellurium chloride.

二酸化テルルの粒径は、精製四塩化テルルを加水分解T
るための純水の液温か高く、液量も多い方が粗粒品とな
り易い。常温、・では純水の液量を多くしても数μmの
粒径しか得られない。一方、純水の温度が60C程度で
は精製四塩化テルルを加水分解Tる為の純水の液量を多
くして四塩化テルルの500倍程程度純水を用いた場合
には7〜12μm程度の粒径の二酸化テルルが得られる
。純水の濃度を90Cに上げると、精製四塩化テルルを
加水分解するための純水の液量を四塩化テルルの50倍
程度に保つだけでも粒径10〜20μm程度の二酸化テ
ルルが得られる。純水の温度を95 C以上に保てた場
合には、粒径30〜50μmの二酸化テルルを入手する
ことができる。
The particle size of tellurium dioxide is determined by hydrolysis of purified tellurium tetrachloride.
The higher the temperature of the pure water and the larger the amount of liquid, the more likely it will be a coarse grained product. At room temperature, even if the amount of pure water is increased, a particle size of only a few μm can be obtained. On the other hand, when the temperature of pure water is about 60C, the amount of pure water to hydrolyze purified tellurium tetrachloride is increased to about 500 times that of tellurium tetrachloride.If pure water is used, the diameter is about 7 to 12 μm. tellurium dioxide with a particle size of . When the concentration of pure water is increased to 90C, tellurium dioxide with a particle size of about 10 to 20 μm can be obtained by simply maintaining the amount of pure water for hydrolyzing purified tellurium tetrachloride at about 50 times that of tellurium tetrachloride. If the temperature of pure water can be maintained at 95 C or higher, tellurium dioxide with a particle size of 30 to 50 μm can be obtained.

二酸化テルルの粒径μmに対する加水分解の条件関係を
第1表に示す。
Table 1 shows the relationship between the hydrolysis conditions and the particle size μm of tellurium dioxide.

第   1   表 〔実施例〕 実施例1 純度99.9重量%の砂粒状金属テルル450gを耐熱
ガラス製ボートに入れ、直径90鴎、長さ2mの耐熱ガ
ラス製の炉心管に装入した。管内空気を窒素ガスで置換
した後、塩素ガスを2 //minの流量で炉心管内に
導入しながら炉心管を囲った管状炉により金属テルルの
装入部を420 Gに加熱した0 金属テルルは塩素ガスによる塩化作用により、四塩化テ
ルルの気体となって蒸発し、最終的には管状炉の炉心管
両端の低温部に黄白色の固体となって付着してきた。
Table 1 [Example] Example 1 450 g of sand granular metallic tellurium with a purity of 99.9% by weight was placed in a heat-resistant glass boat and charged into a heat-resistant glass furnace tube having a diameter of 90 mm and a length of 2 m. After the air in the tube was replaced with nitrogen gas, the charging section of metallic tellurium was heated to 420 G in a tube furnace surrounding the core tube while introducing chlorine gas into the reactor core tube at a flow rate of 2 // min. Due to the chlorination effect of chlorine gas, it evaporated into tellurium tetrachloride gas, which eventually became a yellowish-white solid that adhered to the low-temperature parts at both ends of the tube of the tube furnace.

金属テルルの装入部を加熱を3時間継続した後、耐熱ガ
ラス製ボート内に約60 gの残留金属テルルを残して
反応を終了させた。
After continuing to heat the charge of tellurium metal for 3 hours, the reaction was terminated with about 60 g of residual tellurium metal remaining in the heat-resistant glass boat.

吸湿性の高い四塩化テルルを採取する為に、窒素雰囲気
中で作業を行い、約800gの四塩化チル”ルを回収し
た。この四塩化テルルを容量1ノの耐熱ガラス製7ラス
フに移し、窒素ガスにより置換されている蒸溜器を43
CIC,に加熱し、コンデンサ一部をリボンヒーターに
より270Cに保温しながら蓋部を進めた。四塩化テル
ルの部用が始まってから、75gの部用をみたところで
一度加熱を止め、初溜としてこの時点の部用分を分離し
た後再び蓋部操作を続けた。この後の部用分を本溜分と
して603g入手した。
In order to collect tellurium tetrachloride, which is highly hygroscopic, work was carried out in a nitrogen atmosphere, and about 800 g of tellurium tetrachloride was recovered. This tellurium tetrachloride was transferred to a 7-rasf tube made of heat-resistant glass with a capacity of 1. 43 distillers replaced with nitrogen gas
CIC, and the lid was advanced while keeping a part of the capacitor warm at 270C with a ribbon heater. After starting the use of tellurium tetrachloride, heating was stopped once a 75 g portion had been prepared, and the portion at this time was separated as the first distillation, and the operation of the lid portion was continued again. 603g of the subsequent fraction was obtained as the main distillate.

この本溜分603 gに対して純水を600g加えるこ
とにより溶解した精製四塩化テルル水溶液を得た。更に
、こ\で得られた精製四塩化テルル水溶液100gを容
量5.tのビーカーに満された純水中に滴下することに
より加水分解を生ぜしめて二酸化テルルを得た。この場
合、純水の温度は90 Cとし純水はテフロン回転子を
用いて20Orpm程度の攪拌操作を持続しながら処理
を進めた。
By adding 600 g of pure water to 603 g of this main fraction, a purified tellurium tetrachloride aqueous solution was obtained. Furthermore, 100 g of the purified tellurium tetrachloride aqueous solution obtained in this step was added to a volume of 5. Tellurium dioxide was obtained by hydrolysis by dropping the solution into pure water filled in a beaker. In this case, the temperature of the pure water was 90 C, and the process was continued while stirring the pure water at about 20 rpm using a Teflon rotor.

このようにして生成した二酸化テルルの白色沈殿はデカ
ンテーションにより上澄み液と分離した後、57容41
のビーカー中で純水によるレパルプ洗浄を繰り返しPH
が7程度にまでなったら更に95 C以上の熱水でレパ
ルプ洗浄を3回行なって脱塩素を充分にした上、濾過乾
燥の工程を経て入手した二酸化テルルの分析結果は、鋼
、ニッケル、マグネシウムが夫々0.lppm未満であ
ると共に1鉄は0.lppm、塩素が10 ppm未満
ということで99.999重量%以上の純度を有してお
り充分に高純度な二酸化テルルの入手ができた。こ\で
得られた二酸化テルルの粒径は20〜30μmであった
The white precipitate of tellurium dioxide thus produced was separated from the supernatant liquid by decantation, and then 57 volumes 41
Repulp washing with pure water is repeated in a beaker of PH
When the temperature reached about 7, repulp washing was performed three times with hot water of 95 C or higher to ensure sufficient dechlorination, and the analysis results of tellurium dioxide obtained through the filtration and drying process showed that steel, nickel, and magnesium are respectively 0. It is less than lppm and 1 iron is 0. Since the chlorine content was less than 10 ppm, the tellurium dioxide had a purity of 99.999% by weight or more, and was able to obtain tellurium dioxide of sufficiently high purity. The particle size of the tellurium dioxide thus obtained was 20 to 30 μm.

実施例2 純度99.9重量%の金属テルル1000 gを三つ口
の耐熱ガラス製7ラスフに入れ、側口にキャピラリー・
を入れておき、先ずマントルヒーターを加熱して250
 Cとし、塩素ガスを1.37/minの割合で吹込ん
だ。
Example 2 1000 g of metallic tellurium with a purity of 99.9% by weight was placed in a 7-glass tube made of heat-resistant glass with three necks, and a capillary was inserted into the side port.
First, heat the mantle heater to 250℃.
C, and chlorine gas was blown in at a rate of 1.37/min.

この場合、金属テルルは先ず黒色の二塩化テルルとして
液状になった。更に塩素の吹込みを続けると二塩化テル
ルは次第に四塩化テルルへと変化していきやがてだいだ
い色の液体である四塩化テルルが得られるようになった
In this case, the metallic tellurium first became liquid as black tellurium dichloride. As the chlorine injection was continued, the tellurium dichloride gradually changed to tellurium tetrachloride, and before long, tellurium tetrachloride, a orange-colored liquid, was obtained.

この場合の四塩化テルルにはまだ若干の二塩化テルルを
含んでいる為、マントルヒーターヲ420Cに加熱し、
塩素気流と共に別のフラスコに部用させて完全に四塩化
テルルとした。
In this case, the tellurium tetrachloride still contains some tellurium dichloride, so heat it with a mantle heater to 420C.
The mixture was transferred to another flask with a stream of chlorine to completely convert it into tellurium tetrachloride.

こ−で得られた四塩化テルルの重量は1950 gであ
った。この四塩化テルルを蓋部塔に移し、蓋部塔内部を
窒素ガスで置換したのち、マントルヒーターを4200
に加熱しコンデンサ一部を約2700に加熱した。四塩
化テルルの部用が始まり、290gの四塩化テルルが部
用したところで部用導入管を切り替え、初溜と本溜分を
分離し、以後の部用分を木簡として1450 gの四塩
化テルルを回収した◇ この木簡1450 gに等重量の純水1450 gを加
えて両者を完全に混合して四塩化テルルの水溶液とした
。この四塩化テルルの水溶液を200g採取し・ビーカ
ーにはった95Cの純水5を中に添加して四塩化テルル
の加水分解による二酸化テルルを製造した。
The weight of the tellurium tetrachloride thus obtained was 1950 g. After transferring this tellurium tetrachloride to the lid tower and replacing the inside of the lid tower with nitrogen gas, the mantle heater was
A part of the capacitor was heated to about 2,700 ℃. The partial use of tellurium tetrachloride begins, and when 290 g of tellurium tetrachloride has been used, the partial introduction pipe is switched, the first distillation and the main distillation are separated, and the subsequent portions are made into wooden tablets and 1450 g of tellurium tetrachloride are added. An equal weight of 1450 g of pure water was added to 1450 g of the recovered ◇ wooden tablet, and the two were completely mixed to form an aqueous solution of tellurium tetrachloride. 200 g of this aqueous solution of tellurium tetrachloride was collected, and 95C pure water 5 in a beaker was added thereto to produce tellurium dioxide by hydrolysis of tellurium tetrachloride.

このようにして得られた二酸化テルルの分析結果GE、
m、ニッケル、マグネシウムが夫々0.1 ppm未満
である上、塩素は10 ppm未満、鉄0.lppmと
云うもので99.999重量%以上の充分に高純度の二
酸化テルルが入手できた。こ\で得られた二酸化テルル
の粒径は30〜50μmであった。
Analysis results of tellurium dioxide obtained in this way GE,
m, nickel, and magnesium are each less than 0.1 ppm, chlorine is less than 10 ppm, and iron is less than 0.1 ppm. Tellurium dioxide with a sufficiently high purity of 99.999% by weight or more in lppm could be obtained. The particle size of the tellurium dioxide thus obtained was 30 to 50 μm.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によると光学用単結晶等の素材とし
て使用される粒度が大きく純度99.999重量%を超
える二酸化テルルを容易に安定して得ることができる。
As described above, according to the present invention, tellurium dioxide having a large particle size and a purity exceeding 99.999% by weight, which is used as a material for optical single crystals, etc., can be easily and stably obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)通常品位の金属テルルに乾燥塩素ガスを通じて四
塩化テルルとし、該四塩化テルルを蒸溜器によつて蒸溜
精製する際、先ず処理量の5〜15重量%に当る四塩化
テルルの初溜を分離除去した後、改ためて蒸溜処理を進
め、得られた溜分を本溜分として精製四塩化テルルを回
収し、該精製四塩化テルルを純水により加水分解して、
二酸化テルルを得ることを特徴とする高純度二酸化テル
ルの製造方法。
(1) When dry chlorine gas is passed through ordinary grade metal tellurium to produce tellurium tetrachloride, and the tellurium tetrachloride is purified by distillation in a distiller, first, an initial distillation of tellurium tetrachloride corresponding to 5 to 15% by weight of the amount to be processed is carried out. After separating and removing, proceed with the distillation process again, use the obtained fraction as the main fraction to recover purified tellurium tetrachloride, hydrolyze the purified tellurium tetrachloride with pure water,
A method for producing high-purity tellurium dioxide, characterized by obtaining tellurium dioxide.
JP11819187A 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide Granted JPS63285106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11819187A JPS63285106A (en) 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11819187A JPS63285106A (en) 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide

Publications (2)

Publication Number Publication Date
JPS63285106A true JPS63285106A (en) 1988-11-22
JPH0475846B2 JPH0475846B2 (en) 1992-12-02

Family

ID=14730410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11819187A Granted JPS63285106A (en) 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide

Country Status (1)

Country Link
JP (1) JPS63285106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923678A (en) * 2012-11-22 2013-02-13 浏阳市亚光高新材料有限公司 Method for preparing anhydrous tellurium tetrachloride by using tellurium dioxide as raw material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923678A (en) * 2012-11-22 2013-02-13 浏阳市亚光高新材料有限公司 Method for preparing anhydrous tellurium tetrachloride by using tellurium dioxide as raw material

Also Published As

Publication number Publication date
JPH0475846B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
JPS6379718A (en) Manufacture of high purity silicon
EP0512079A1 (en) Method of production of high purity fusible silica
US3540861A (en) Purification of silicon compounds
JPS6221708A (en) Manufacture of products from granular synthetic high purity silicon dioxide
CA1073185A (en) Method for the large-scale industrial obtaining of magnesium oxide of high purity
US2631083A (en) Production of calcium fluoride and silica
JPH0264006A (en) Production of solar silicon
JP2005022919A (en) High-purity phosphoric acid and its preparation method
EP0334713B1 (en) Process for the preparation of hydrated zirconium-oxide from granular cristalline zirconiumoxide
CA1211921A (en) Process for the preparation of high purity alumines from contaminated aluminium chloride solutions
CN101734667B (en) Process for producing precipitated white carbon black by silicon tetrachloride
US2504357A (en) Purification of siliceous minerals
JPS63285106A (en) Production of high-purity tellurium dioxide
RU2624749C2 (en) Method of obtaining beryllium oxide and beryllium metal
JP3955092B2 (en) Method for treating dissociated zircon
RU2357923C2 (en) Polycrystalline silicon process
JP3725765B2 (en) Germanium recovery method and apparatus
JPH0717374B2 (en) Recovery method of gallium from scrap
US4255399A (en) Process for the recovery of magnesium oxide of high purity
JP2011178586A (en) Method for refining polycrystalline silicon
JPH0379413B2 (en)
CN109019682A (en) A kind of zirconium oxychloride and preparation method thereof
JPS6259515A (en) Production of high-purity silicic acid hydrate
JP3040310B2 (en) Manufacturing method of synthetic quartz glass
JP4778427B2 (en) Purification of finely dispersed metal oxide particles produced by pyrolysis