JPH0379413B2 - - Google Patents

Info

Publication number
JPH0379413B2
JPH0379413B2 JP12075087A JP12075087A JPH0379413B2 JP H0379413 B2 JPH0379413 B2 JP H0379413B2 JP 12075087 A JP12075087 A JP 12075087A JP 12075087 A JP12075087 A JP 12075087A JP H0379413 B2 JPH0379413 B2 JP H0379413B2
Authority
JP
Japan
Prior art keywords
tellurium
tetrachloride
purity
dioxide
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12075087A
Other languages
Japanese (ja)
Other versions
JPS63286531A (en
Inventor
Masaya Yukinobu
Juichi Oowa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12075087A priority Critical patent/JPS63286531A/en
Publication of JPS63286531A publication Critical patent/JPS63286531A/en
Publication of JPH0379413B2 publication Critical patent/JPH0379413B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は半導体用材料の素材として供給される
高純度テルルの製造方法に関する。 〔従来の技術〕 従来、高純度テルルの製造方法としては、通常
品位の金属テルルを真空蒸溜する方法及びゾーン
精製する方法、更には亜テルル酸を精製して亜硫
酸還元を施す方法等が利用されてきた。 高純度テルルの精製法の一つである通常品位の
金属テルルを真空蒸溜する方法、及びゾーン精製
する方法においては、特にセレンの分離が困難で
あると共に、ナトリウム、カルシウム、鉄等の不
純物が残留しやすく、99.9999重量%以上の純度
を達成することが困難であると共に設備的にも高
額な装置が必要となり、コスト高を招くという欠
点がある。更に、亜テルル酸を精製して亜硫酸還
元を施す方法においても、工程が複雑である上に
セレンの残留及び亜硫酸による硫黄汚染等の問題
からその精製効果についても99.9999重量%を超
えての純度でテルルを入手することは極めて困難
であつた。 〔発明が解決しようとする問題点〕 本発明は、従来よりも簡便に高純度テルルを得
るための製造方法を提供することにある。 〔問題点を解決するための手段〕 本発明は、通常品位の金属テルルに乾燥塩素ガ
スを通じて四塩化テルルとし、該四塩化テルルを
蒸溜器によつて蒸溜精製する際、処理量の5〜15
重量%に当る四塩化テルルの初溜を分離除去した
後、改めて蒸溜処理を進め得られた溜分を本溜分
として精製四塩化テルルを回収し、該精製四塩化
テルルを純水により加水分解して二酸化テルルと
し、該二酸化テルルを水素気流中で還元すること
にある。 〔作用〕 本発明で、四塩化テルルを蒸溜精製する際、処
理量の5〜15重量%に当る初溜を分離除去するこ
とにしたのは、除去する初溜の割合が5重量%未
満では低沸点不純物としてのセレン、燐、硫黄、
砒素、アンチモン、錫、ガリウム等が本溜分中に
残存してきて、結果的に目的に反して高純度テル
ルの純度を下げてしまうためであり、除去する初
溜の割合が15重量%を超えると、入手できる製品
歩留りが減少するばかりでなく、製品純度の向上
も顕著性を欠いてくる為である。 又、二酸化テルルを水素気流中で還元する場
合、反応温度が450℃未満だと反応速度が遅いた
め、生産性が極めて悪くなると共に反応温度が
730℃を超える場合には、反応速度が早くなるも
のの二酸化テルルが溶融してきて黒鉛ボートと反
応するため二酸化テルルの入つた黒鉛ボードの損
傷が激しくなる。従つて水素還元は450〜730℃で
行なうのが良い。二酸化テルルを装入する黒鉛ボ
ードに予め勾配をつけて還元を行なうと、還元さ
れた金属テルルを傾斜に沿つて流すことが可能に
なり、金属テルルを未反応の二酸化テルルと分離
することが容易になると共に、未反応の二酸化テ
ルルと分離されて底部に溜つた金属テルルの集合
体を蒸発しにくい低温に保持することにより金属
テルルの蒸発ロスを抑えることが可能となる。 〔実施例〕 実施例 1 純度99.9重量%の金属テルル560gを耐熱強化
ガラス製のボートに入れ、このボートを更に直径
90mm、長さ2mの耐熱強化ガラス管を炉心管とす
る管状炉の炉心管内に装入する。次いで炉心管の
内部を窒素ガラスで置換した後、塩素ガスを2
/minの流量で炉心管に導入しながら、金属テ
ルル装入部を3時間に亘つて410℃に加熱するこ
とにより、ボード内に約80gの未反応物質を残し
ながら、約900gの四塩化テルルを採取すること
ができた。こゝで得た四塩化テルルを蒸溜装置と
しての耐熱強化ガラス製のフラスコに装入した
後、蒸溜系全体を窒素ガスで置換し、フラスコ内
の四塩化テルルを430℃に加熱すると共に、フラ
スコに連なるコンデンサー部分を270℃に保温し
ながら反応を進めた。受器部に溜つた四塩化テル
ルが96gとなつたところで反応を停止させ、この
際に受器部に溜つていた四塩化テルルを初溜とし
て系外に分離した後、初溜を製造した条件で再度
反応を進め、その後に受器部に溜つた710gの精
製四塩化テルルを本溜分として溜出させた。この
本溜分として溜出させた精製四塩化テルルを700
c.c.の純水に溶解したのち撹拌機を用いて約
200rpmの速度で撹拌されている10入り容量の
ビーカー中の純水中に摘下することにより加水分
解を生ぜしめ、白色沈殿として二酸化テルルを取
得した。この二酸化テルルに三回に亘つてレパル
プ洗浄を施した後、脱水、乾燥して高純度二酸化
テルル380gを得た。更に、この様にして得られ
た高純度二酸化テルル350gを黒鉛ボートに入れ、
直径90mm、長さ2mの透明石英管を炉心管とする
管状炉に装入した後、炉心管内に2/minの割
合で水素ガスを流しながら500℃にて還元反応を
継続させ、6時間の反応終了後に205gの金属テ
ルルを回収した。このようにして得られた金属テ
ルルは、質量分析した結果として99,99999%を
超える純度をもつたものであることが確認され
た。 実施例 2 純度99.9重量%の金属テルル990gを三つ口で
1容量の耐熱強化ガラス製のフラスコに入れ、
側口にキヤピラリーを入れておいてマントルヒー
ターを加熱し、金属テルルが250℃になつた時点
で塩素ガスを1.3ml/minの割合で吹込んだ。こ
の場合、金属テルルはまず黒色の二塩化テルルと
なり液状となつた。更に塩素化を続けると二塩化
テルルは四塩化テルルとなりだいだい色の液体と
なつた。この場合、四塩化テルルには未だ若千の
二塩化テルルを含む為、マントルヒーターを420
℃に加熱し塩素気流と共に別のフラスコに溜出さ
せて完全に四塩化テルルとした。この様にして得
られた四塩化テルルを蒸溜器に移し、蒸溜器内を
窒素パージした後マントルヒーターを420℃に加
熱した。 四塩化テルルの溜出が始まつてから146gを溜
出したところで溜出液導入管を切り替え、初溜と
本溜分を分離し、以後の溜出液を本溜分とし、
1590gを回収した。 本溜分500gの四塩化テルルを500c.c.の純水に溶
解したのち、10容量のフラスコにはられた純水
8中にスターラーで撹拌しながら徐々に摘下し
て加水分解した。この生成した白色沈殿の二酸化
テルルをデカンテーシヨンにより上澄みと分け、
新しい純水3を加えレパルプ洗浄を5回繰り返
し、更に熱純水によるレパルプ洗浄を3回行なつ
た後、濾過と乾燥により高純度二酸化テルル248
gを得た。この高純度二酸化テルル200gを石英
ボードに入れ、内直径90mm、長さ2mを透明石英
管からなる炉心管に装入し、高純度水素ガスを3
/minの割合で導入しながら管状炉を700℃に
保持して二酸化テルルを金属テルルに還元した。
ボード内の金属テルルはやがて蒸発し、ボード内
の空冷部にテルル融体及びテルル粉の形で回収さ
れた。 この様にして得られたテルル融体及びテルル粉
を水素気流中で500℃に加熱して149gの金属テル
ルを得た。質量分析により得られた金属テルルの
純度は99.99999重量%を超えるものであることが
確認された。 第1表に従来法による高純度金属テルルと対比
して本発明の実施例の質量分析値を示す。
[Industrial Application Field] The present invention relates to a method for producing high-purity tellurium, which is supplied as a raw material for semiconductor materials. [Prior Art] Conventionally, methods for producing high-purity tellurium include vacuum distillation of ordinary-grade metallic tellurium, zone refining, and refining tellurite acid and subjecting it to sulfite reduction. It's here. Separation of selenium is particularly difficult in vacuum distillation and zone refining methods, which are one of the purification methods for high-purity tellurium metal, and impurities such as sodium, calcium, and iron remain. However, it is difficult to achieve a purity of 99.9999% by weight or higher, and expensive equipment is required, leading to high costs. Furthermore, even in the method of purifying tellurite acid and subjecting it to sulfite reduction, the process is complicated, and problems such as selenium residue and sulfur pollution due to sulfurous acid make it difficult to achieve a purification effect that exceeds 99.9999% by weight. Obtaining tellurium was extremely difficult. [Problems to be Solved by the Invention] An object of the present invention is to provide a manufacturing method for obtaining highly purified tellurium more easily than before. [Means for Solving the Problems] The present invention provides tellurium tetrachloride by passing dry chlorine gas through ordinary grade metal tellurium, and distilling and refining the tellurium tetrachloride in a distiller to reduce the throughput by 5 to 15 times.
After separating and removing the initial distillation of tellurium tetrachloride corresponding to % by weight, the distillation process is carried out again and the obtained fraction is used as the main fraction to recover purified tellurium tetrachloride, and the purified tellurium tetrachloride is hydrolyzed with pure water. The method involves reducing the tellurium dioxide in a hydrogen stream. [Function] In the present invention, when distilling and refining tellurium tetrachloride, the initial distillate, which accounts for 5 to 15% by weight of the processed amount, is separated and removed because the proportion of the initial distillate to be removed is less than 5% by weight. Selenium, phosphorus, sulfur as low-boiling impurities,
This is because arsenic, antimony, tin, gallium, etc. remain in the main distillation, and as a result, the purity of high-purity tellurium is lowered, contrary to the purpose, and the proportion of the initial distillation to be removed exceeds 15% by weight. This is because not only the yield of available products decreases, but also the improvement in product purity becomes less significant. Furthermore, when reducing tellurium dioxide in a hydrogen stream, if the reaction temperature is less than 450°C, the reaction rate will be slow, resulting in extremely poor productivity and the reaction temperature will increase.
If the temperature exceeds 730°C, the reaction rate will be faster, but the tellurium dioxide will melt and react with the graphite boat, resulting in severe damage to the graphite board containing tellurium dioxide. Therefore, hydrogen reduction is preferably carried out at 450-730°C. By pre-grading the graphite board into which tellurium dioxide is charged and performing reduction, the reduced metal tellurium can flow along the slope, making it easy to separate the metal tellurium from unreacted tellurium dioxide. At the same time, it becomes possible to suppress the evaporation loss of metallic tellurium by keeping the aggregate of metallic tellurium that has been separated from unreacted tellurium dioxide and accumulated at the bottom at a low temperature where it is difficult to evaporate. [Example] Example 1 560 g of metallic tellurium with a purity of 99.9% by weight was placed in a boat made of heat-resistant tempered glass, and the boat was further reduced in diameter.
A heat-resistant tempered glass tube with a length of 90 mm and a length of 2 m is inserted into the core tube of a tube furnace. Next, after replacing the inside of the furnace core tube with nitrogen glass, chlorine gas was replaced with 2
By heating the metal tellurium charge to 410°C for 3 hours while introducing it into the reactor core tube at a flow rate of /min, approximately 900 g of tellurium tetrachloride was produced while leaving approximately 80 g of unreacted material in the board. was able to be collected. After charging the tellurium tetrachloride obtained in this way into a flask made of heat-resistant tempered glass as a distillation device, the entire distillation system was replaced with nitrogen gas, the tellurium tetrachloride in the flask was heated to 430°C, and the flask was The reaction proceeded while keeping the condenser connected to the tube at 270°C. The reaction was stopped when the amount of tellurium tetrachloride accumulated in the receiver reached 96 g, and at this time, the tellurium tetrachloride accumulated in the receiver was separated out of the system as the first distillate, and then the first distillate was produced. The reaction was carried out again under the same conditions, and then 710 g of purified tellurium tetrachloride that had accumulated in the receiver was distilled off as the main distillate. 700% of the purified tellurium tetrachloride distilled as this main fraction
After dissolving in cc of pure water, use a stirrer to dissolve approx.
Hydrolysis was caused by dropping into pure water in a 10-capacity beaker stirred at a speed of 200 rpm to obtain tellurium dioxide as a white precipitate. This tellurium dioxide was subjected to repulp washing three times, then dehydrated and dried to obtain 380 g of high purity tellurium dioxide. Furthermore, 350 g of high-purity tellurium dioxide obtained in this way was placed in a graphite boat.
After charging a transparent quartz tube with a diameter of 90 mm and a length of 2 m into a tube furnace with a core tube, the reduction reaction was continued at 500°C while flowing hydrogen gas at a rate of 2/min into the core tube for 6 hours. After the reaction was completed, 205 g of tellurium metal was recovered. The metallic tellurium thus obtained was confirmed to have a purity exceeding 99,99999% as a result of mass spectrometry. Example 2 990 g of metallic tellurium with a purity of 99.9% by weight was placed in a 1-capacity heat-resistant tempered glass flask with three necks.
A capillary was placed in the side port, a mantle heater was heated, and when the metal tellurium reached 250°C, chlorine gas was blown in at a rate of 1.3 ml/min. In this case, the metallic tellurium first became black tellurium dichloride and became liquid. As chlorination continued, tellurium dichloride turned into tellurium tetrachloride, a orange-colored liquid. In this case, tellurium tetrachloride still contains a small amount of tellurium dichloride, so the mantle heater should be
It was heated to ℃ and distilled into another flask with a chlorine stream to completely convert it into tellurium tetrachloride. The tellurium tetrachloride thus obtained was transferred to a distiller, the inside of the distiller was purged with nitrogen, and then a mantle heater was heated to 420°C. After distillation of tellurium tetrachloride started and when 146 g was distilled, the distillate inlet pipe was switched, the first distillate and the main fraction were separated, and the subsequent distillate was used as the main distillate.
1590g was recovered. After dissolving 500 g of tellurium tetrachloride from this distillation in 500 c.c. of pure water, it was gradually dropped into pure water 8 placed in a 10-volume flask while stirring with a stirrer for hydrolysis. This white precipitate, tellurium dioxide, is separated from the supernatant by decantation.
After adding new pure water 3 and repeating repulp washing 5 times, and performing repulp washing with hot pure water 3 times, high purity tellurium dioxide 248 was obtained by filtration and drying.
I got g. 200 g of this high-purity tellurium dioxide was placed in a quartz board, and the inner diameter of 90 mm and length of 2 m was charged into a core tube made of transparent quartz tube.
Tellurium dioxide was reduced to metallic tellurium by maintaining the tube furnace at 700° C. while introducing the gas at a rate of 1/min.
The metallic tellurium inside the board eventually evaporated and was recovered in the form of tellurium melt and tellurium powder in the air-cooled section inside the board. The tellurium melt and tellurium powder thus obtained were heated to 500° C. in a hydrogen stream to obtain 149 g of metallic tellurium. The purity of the metal tellurium obtained by mass spectrometry was confirmed to be over 99.99999% by weight. Table 1 shows the mass spectrometry values of the examples of the present invention in comparison with high purity metallic tellurium obtained by the conventional method.

〔発明の効果〕〔Effect of the invention〕

質量分析の結果から明らかな如く本発明方法に
よれば特に低融点不純物を対象として精製効果が
著しく、99.99999重量%以上の純度をもつ高純度
テルルを極めて容易に入手することが可能とな
る。
As is clear from the mass spectrometry results, the method of the present invention has a remarkable purification effect especially on low-melting point impurities, making it possible to extremely easily obtain high-purity tellurium with a purity of 99.99999% by weight or more.

Claims (1)

【特許請求の範囲】[Claims] 1 通常品位の金属テルルに、乾燥塩素ガスを通
じて四塩化テルルとし、該四塩化テルルを蒸溜器
によつて蒸溜精製する際、処理量の5〜15重量%
に当る四塩化テルルの初溜を分離除去した後、改
めて蒸溜処理を進め得られた溜分を本溜分として
精製四塩化テルルを回収し、該精製四塩化テルル
を純水により加水分解して二酸化テルルとし、該
二酸化テルルを水素気流中で還元することを特徴
とする高純度テルルの製造方法。
1 When ordinary grade metal tellurium is passed through dry chlorine gas to form tellurium tetrachloride, and the tellurium tetrachloride is purified by distillation using a distiller, 5 to 15% by weight of the amount to be processed is used.
After separating and removing the initial distillation of tellurium tetrachloride, the distillation process is carried out again and the obtained fraction is used as the main fraction to recover purified tellurium tetrachloride, and the purified tellurium tetrachloride is hydrolyzed with pure water. A method for producing high-purity tellurium, which comprises using tellurium dioxide as tellurium dioxide, and reducing the tellurium dioxide in a hydrogen stream.
JP12075087A 1987-05-18 1987-05-18 Manufacture of high purity tellurium Granted JPS63286531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12075087A JPS63286531A (en) 1987-05-18 1987-05-18 Manufacture of high purity tellurium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12075087A JPS63286531A (en) 1987-05-18 1987-05-18 Manufacture of high purity tellurium

Publications (2)

Publication Number Publication Date
JPS63286531A JPS63286531A (en) 1988-11-24
JPH0379413B2 true JPH0379413B2 (en) 1991-12-18

Family

ID=14794060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12075087A Granted JPS63286531A (en) 1987-05-18 1987-05-18 Manufacture of high purity tellurium

Country Status (1)

Country Link
JP (1) JPS63286531A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923678A (en) * 2012-11-22 2013-02-13 浏阳市亚光高新材料有限公司 Method for preparing anhydrous tellurium tetrachloride by using tellurium dioxide as raw material
CN110775948A (en) * 2019-12-05 2020-02-11 成都理工大学 Method for improving reduction efficiency of tellurium oxide

Also Published As

Publication number Publication date
JPS63286531A (en) 1988-11-24

Similar Documents

Publication Publication Date Title
JPS6034498B2 (en) Collection and purification method of germanium valuables and germanium valuables obtained by this method
CN110172596A (en) The method of vanadium is recycled from underflow slag with chlorination technique
SE438309B (en) PROCEDURE FOR PURIFICATION OF SILICONE
CN1730385A (en) Method for purifying wet-process phosphoric acid by crystallization
CA1073185A (en) Method for the large-scale industrial obtaining of magnesium oxide of high purity
CN113548647A (en) Method for deeply removing arsenic and mercury in crude selenium
US3210156A (en) Process for the working up of hydrolysis acids obtained in the production of titanium dioxide
EP0334713A1 (en) Process for the preparation of hydrated zirconium-oxide from granular cristalline zirconiumoxide
US4036938A (en) Production of high purity hydrogen fluoride from silicon tetrafluoride
JPH0379413B2 (en)
US2267077A (en) Recovery of phosphorus from sludge
CN110745860A (en) Preparation method of high-purity germanium dioxide
CN110304639B (en) Purification method of sodium o-sulfonate benzaldehyde byproduct salt
NO770802L (en) PROCEDURES FOR PRODUCING PHOSPHORIC ACID
CN115504502B (en) Method for recycling and preparing high-purity germanium dioxide from abandoned germanium-containing glass
CN114231762B (en) Method for purifying high-purity indium
CN113830828A (en) Preparation method of high-purity arsenic trichloride
JPH027381B2 (en)
US4394364A (en) Separation of boric acid from mixtures thereof with sulphuric acid
JPS594369B2 (en) Production method of high purity selenium
JPS63285106A (en) Production of high-purity tellurium dioxide
CN114852970B (en) Short-process preparation method of refined selenium
CN115650282A (en) Production method of high-purity germanium dioxide
RU2026814C1 (en) Method of high-pure silicon preparing
SU924138A1 (en) Method for processing titanium raw material