JPH0475846B2 - - Google Patents

Info

Publication number
JPH0475846B2
JPH0475846B2 JP11819187A JP11819187A JPH0475846B2 JP H0475846 B2 JPH0475846 B2 JP H0475846B2 JP 11819187 A JP11819187 A JP 11819187A JP 11819187 A JP11819187 A JP 11819187A JP H0475846 B2 JPH0475846 B2 JP H0475846B2
Authority
JP
Japan
Prior art keywords
tellurium
tetrachloride
distillation
dioxide
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11819187A
Other languages
Japanese (ja)
Other versions
JPS63285106A (en
Inventor
Masaya Yukinobu
Juichi Oowa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11819187A priority Critical patent/JPS63285106A/en
Publication of JPS63285106A publication Critical patent/JPS63285106A/en
Publication of JPH0475846B2 publication Critical patent/JPH0475846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、光学用単結晶等の素材として使用さ
れる高純度二酸化テルルの製造方法に関する。 〔従来の技術〕 二酸化テルルは一般に化学薬品として使用され
ているが99.999重量%以上の高純度二酸化テルル
を原料として単結晶化したものは、レーザープリ
ンター、カラースキヤナー、スペクトラムアナラ
イザー等の超音波光変調器、偏光器等の特殊用途
に威力を発揮する。 従来この高純度の二酸化テルルは、金属テルル
に濃硝酸を作用させて得られる塩基性硝酸塩を加
熱する方法で製造されていた。この方法により製
造される二酸化テルルは純度が低く、製品純度を
高める為には原料として用いられる金属テルルを
予じめ充分に精製しておかなければならないばか
りか、金属テルルを溶解するための試薬にも高純
度に精製されたものを使用せねばならず、更に反
応工程としての湿式処理にる工程内汚染等もあつ
て、原料試薬の純度以上にはならないという問題
点があつた。 更に光学用単結晶の製造原料とするためには、
二酸化テルルへの吸着ガス量も極力抑えねばなら
ず、この点から粒径が大きくしかも安定したもの
が望まれる。 〔発明が解決しようとする問題点〕 本発明は上記の問題点を解決するため、通常品
位である純度約99.9重量%の金属テルルを原料と
しながら99.999重量%以上の純度が保証される粒
径の大きい高純度の二酸化テルルを得ることので
きる製造方法を提供しようとするものである。 〔問題点を解決するための手段〕 本発明は、通常品位である99.9重量%程度の金
属テルルに乾燥塩素ガスを通じて四塩化テルルと
し、該四塩化テルルを蒸溜器によつて蒸溜精製す
る際、先ず処理量の5〜15重量%に当る四塩化テ
ルルの初溜を分離除去した後、改めて蒸溜処理を
進め、その際得られた溜分を本溜分として精製四
塩化テルルを回収し、該精製四塩化テルルに純水
を加え加水分解して二酸化テルルとすることにあ
る。 〔作用〕 本発明で四塩化テルルを蒸溜精製する際、処理
量の5〜15重量%に当る初溜を分離除去するの
は、除去する初溜の割合が5重量%未満では低沸
点不純物としてのセレン、燐、硫黄、砒素、アン
チモン、錫、ガリウム等が本溜中に混入してきて
結果的には、目的に反して二酸化テルルの純度を
下げてしまうためであり、分離除去する初溜の割
合が15重量%を超えると入手できる製品歩留りが
減少するばかりでなく、製品純度の向上にも顕著
性を欠いてくるためである。 金属テルルに乾燥塩素ガスを通じて四塩化テル
ルを製造するに際して、乾燥塩素ガスの供給量が
不足すると黒色の二塩化テルルが系内に混入して
くる為、この工程における乾燥塩素ガスの供給量
は四塩化テルルを継続して生産するのに充分な量
であることが必要である。 二酸化テルルの粒径は、精製四塩化テルルを加
水分解するための純水の液温が高く、液量も多い
方が粗粒品となり易い。常温では純水の液量を多
くしても数μmの粒径しか得られない。一方、純
水の温度が60℃程度では精製四塩化テルルを加水
分解する為の純水の液量を多くして四塩化テルル
の500倍程度の純水を用いた場合には7〜12μm
程度の粒径の二酸化テルルが得られる。純水の温
度を90℃に上げると、精製四塩化テルルを加水分
解するための純水の液量を四塩化テルルの50倍程
度に保つだけでも粒径10〜20μm程度の二酸化テ
ルルが得られる。純水の温度を95℃以上に保てた
場合には、粒径30〜50μmの二酸化テルルを入手
することができる。 二酸化テルルの粒径μmに対する加水分解の条
件関係を第1表に示す。
[Industrial Application Field] The present invention relates to a method for producing high-purity tellurium dioxide, which is used as a material for optical single crystals and the like. [Prior art] Tellurium dioxide is generally used as a chemical, but single crystals made from high-purity tellurium dioxide of 99.999% by weight or more can be used with ultrasonic light from laser printers, color scanners, spectrum analyzers, etc. It is effective for special applications such as modulators and polarizers. Conventionally, this high-purity tellurium dioxide has been produced by heating a basic nitrate obtained by reacting concentrated nitric acid with metallic tellurium. The tellurium dioxide produced by this method has low purity, and in order to increase the purity of the product, it is not only necessary to sufficiently purify the tellurium metal used as a raw material in advance, but also to use a reagent to dissolve the tellurium metal. However, it is necessary to use highly purified products, and there is also the problem of in-process contamination due to wet treatment as a reaction step, so that the purity of the raw reagent cannot be higher than that of the raw reagent. Furthermore, in order to use it as a raw material for manufacturing optical single crystals,
The amount of adsorbed gas on tellurium dioxide must be suppressed as much as possible, and from this point of view, particles with large and stable particle sizes are desired. [Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present invention uses tellurium metal as a raw material with a purity of about 99.9% by weight, which is a normal grade, and has a particle size that guarantees a purity of 99.999% by weight or more. The object of the present invention is to provide a manufacturing method that can obtain high-purity tellurium dioxide with a large amount of tellurium dioxide. [Means for Solving the Problems] The present invention provides tellurium tetrachloride by passing dry chlorine gas into metallic tellurium of about 99.9% by weight, which is a normal grade, and distilling and refining the tellurium tetrachloride in a distiller. First, the initial distillation of tellurium tetrachloride, which accounts for 5 to 15% by weight of the treated amount, is separated and removed, and then the distillation process is carried out again, and the distillation obtained at this time is used as the main distillation to recover purified tellurium tetrachloride. The purpose is to add pure water to purified tellurium tetrachloride and hydrolyze it to produce tellurium dioxide. [Function] When distilling and refining tellurium tetrachloride in the present invention, the initial distillate, which accounts for 5 to 15% by weight of the processed amount, is separated and removed. This is because selenium, phosphorus, sulfur, arsenic, antimony, tin, gallium, etc. get mixed into the main distillation tank, and as a result, the purity of tellurium dioxide is lowered, which is contrary to the purpose of the main distillation. This is because if the proportion exceeds 15% by weight, not only the yield of the available product decreases, but also the improvement in product purity becomes less noticeable. When producing tellurium tetrachloride by passing dry chlorine gas through tellurium metal, if the supply of dry chlorine gas is insufficient, black tellurium dichloride will mix into the system, so the supply of dry chlorine gas in this process is It is necessary that the amount be sufficient for continuous production of tellurium chloride. Regarding the particle size of tellurium dioxide, the higher the temperature of the pure water used to hydrolyze purified tellurium tetrachloride and the larger the amount of liquid, the more likely it will be a coarse particle product. At room temperature, even if the amount of pure water is increased, a particle size of only a few μm can be obtained. On the other hand, when the temperature of pure water is about 60℃, the amount of pure water used to hydrolyze purified tellurium tetrachloride is increased, and if pure water is used that is about 500 times stronger than tellurium tetrachloride, the particle diameter is 7 to 12 μm.
tellurium dioxide with a particle size of approximately When the temperature of pure water is raised to 90℃, tellurium dioxide with a particle size of about 10 to 20 μm can be obtained by simply maintaining the amount of pure water for hydrolyzing purified tellurium tetrachloride at about 50 times that of tellurium tetrachloride. . If the temperature of pure water can be maintained at 95°C or higher, tellurium dioxide with a particle size of 30 to 50 μm can be obtained. Table 1 shows the relationship between the hydrolysis conditions and the particle size μm of tellurium dioxide.

〔実施例〕〔Example〕

実施例 1 純度99.9重量%の砂粒状金属テルル450gを耐
熱ガラス製ボートに入れ、直径90mm、長さ2mの
耐熱ガラス製の炉心管に装入した。管内空気を窒
素ガスで置換した後、塩素ガスを2/minの流
量で炉心管内に導入しながら炉心管を囲つた管状
炉により金属テルルの装入部を420℃に加熱した。 金属テルルは塩素ガスによる塩化作用により、
四塩化テルルの気体となつて蒸発し、最終的には
管状炉の炉心管両端の低温部に黄白色の固体とな
つて付着してきた。 金属テルルの装入部を加熱を3時間継続した
後、耐熱ガラス製ボート内に約60gの残留金属テ
ルルを残して反応を終了させた。 吸湿性の高い四塩化テルルを採取する為に、窒
素雰囲気中で作業を行い、約800gの四塩化テル
ルを回収した。この四塩化テルルを容量1の耐
熱ガラス製フラスコに移し、窒素ガスにより置換
されている蒸溜器を430℃に加熱し、コンデンサ
一部をリボンヒーターにより270℃に保温しなが
ら蒸溜を進めた。四塩化テルルの溜出が始まつて
から、75gの溜出をみたところで一度加熱を止
め、初溜としてこの時点の溜出分を分離した後再
び蒸溜操作を続けた。この後の溜出分を本溜分と
して603g入手した。 この本溜分603gに対して純水を600g加えるこ
とにより溶解した精製四塩化テルル水溶液を得
た。更に、こゝで得られた精製四塩化テルル水溶
液100gを容量5のビーカーに満された純水中
に摘下することにより加水分解を生ぜしめて二酸
化テルルを得た。この場合、純水の温度は90℃と
し純水はテフロン回転子を用いて200rpm程度の
撹拌操作を持続しながら処理を進めた。 このようにして生成した二酸化テルルの白色沈
殿はデカンテーシヨンにより上澄み液と分離した
後、5容量のビーカー中で純水によるレパルプ
洗浄を繰り返しPHが7程度にまでなつたら更に95
℃以上の熱水でレパルプ洗浄を3回行なつて脱塩
素を充分にした上、濾過乾燥の工程を経て入手し
た二酸化テルルの分析結果は、銅、ニツケル、マ
グネシウムが夫々0.1ppm未満であると共に、鉄
は0.1ppm、塩素が10ppm未満ということで99.99
重量%以上の純度を有しており充分に高純度な二
酸化テルルの入手ができた。こゝで得られた二酸
化テルルの粒径は20〜30μmであつた。 実施例 2 純度99.9重量%の金属テルル1000gを三つ口の
耐熱ガラス製フラスコに入れ、側口にキヤピラリ
ーを入れておき、先ずマントルヒーターを加熱し
て250℃とし、塩素ガスを1.3/minの割合で吹
込んだ。 この場合、金属テルルは先ず黒色の二塩化テル
ルとして液状になつた。更に塩素の吹込みを続け
ると二酸化テルルは次第に四塩化テルルへと変化
していきやがてだいだい色の液体である四塩化テ
ルルが得られるようになつた。 この場合の四塩化テルルにはまだ若干の二塩化
テルルを含んでいる為、マントルヒーターを420
℃に加熱し、塩素気流と共に別のフラスコに溜出
させて完全に四塩化テルルとした。 こゝで得られた四塩化テルルの重量は1950gで
あつた。この四塩化テルルを蒸溜塔に移し、蒸溜
塔内部を窒素ガスで置換したのち、マントルヒー
ターを420℃に加熱しコンデンサー部を約270℃に
加熱した。四塩化テルルの溜出が始まり、290g
の四塩化テルルが溜出したところで溜出導入管を
切り替え、初溜と本溜分を分離し、以後の溜出分
を本溜として1450gの四塩化テルルを回収した。 この本溜1450gに等重量の純水1450gを加えて
両者を完全に混合して四塩化テルルの水溶液とし
た。この四塩化テルルの水溶液を200g採取し、
ビーカーにはつた95℃の純水5中に添加して四
塩化テルルの加水分解による二酸化テルルを製造
した。 このようにして得られた二酸化テルルの分析結
果は、銅、ニツケル、マグネシウムが夫々
0.1ppm未満である上、塩素は10ppm未満、鉄
0.1ppmと云うもので99.999重量%以上の充分に
高純度の二酸化テルルが入手できた。こゝで得ら
れた二酸化テルルの粒径は30〜50μmであつた。 〔発明の効果〕 以上の如く、本発明によると光学用単結晶等の
素材として使用される粒度が大きく純度99.999重
量%を超える二酸化テルルを容易に安定して得る
ことができる。
Example 1 450 g of sand granular metal tellurium with a purity of 99.9% by weight was placed in a heat-resistant glass boat and charged into a heat-resistant glass furnace tube having a diameter of 90 mm and a length of 2 m. After the air in the tube was replaced with nitrogen gas, the metal tellurium charging section was heated to 420° C. in a tube furnace surrounding the core tube while introducing chlorine gas into the core tube at a flow rate of 2/min. Tellurium metal is chlorinated by chlorine gas,
It evaporated as tellurium tetrachloride gas, and eventually became a yellowish-white solid that adhered to the low-temperature parts at both ends of the core tube of the tube furnace. After continuing to heat the charging portion of metallic tellurium for 3 hours, the reaction was terminated with about 60 g of residual metallic tellurium remaining in the heat-resistant glass boat. In order to collect tellurium tetrachloride, which is highly hygroscopic, work was carried out in a nitrogen atmosphere, and approximately 800 g of tellurium tetrachloride was recovered. This tellurium tetrachloride was transferred to a heat-resistant glass flask with a capacity of 1, and the distiller, which had been purged with nitrogen gas, was heated to 430°C, and distillation proceeded while keeping part of the condenser at 270°C with a ribbon heater. After distillation of tellurium tetrachloride started, heating was stopped once 75 g had been distilled, and after separating the distillate at this point as the first distillation, the distillation operation was continued again. 603g of the subsequent distillate was obtained as the main distillate. By adding 600 g of pure water to 603 g of this main fraction, a purified tellurium tetrachloride aqueous solution was obtained. Further, 100 g of the purified tellurium tetrachloride aqueous solution obtained in this manner was dropped into pure water filled in a beaker with a capacity of 5 to cause hydrolysis and to obtain tellurium dioxide. In this case, the temperature of the pure water was 90°C, and the process was continued while stirring the pure water at about 200 rpm using a Teflon rotor. The white precipitate of tellurium dioxide produced in this way is separated from the supernatant liquid by decantation, and then repulped and washed with pure water in a 5-capacity beaker until the pH reaches about 7.
The analysis results of tellurium dioxide, which was obtained by washing the repulp three times with hot water at temperatures above ℃ to ensure sufficient dechlorination and then filtering and drying, showed that copper, nickel, and magnesium were each less than 0.1 ppm. , iron is 0.1ppm, chlorine is less than 10ppm, so 99.99
It was possible to obtain tellurium dioxide of sufficiently high purity, which had a purity of at least 1% by weight. The particle size of the tellurium dioxide thus obtained was 20 to 30 μm. Example 2 1,000 g of metallic tellurium with a purity of 99.9% by weight was placed in a three-necked heat-resistant glass flask, a capillary was inserted into the side port, the mantle heater was heated to 250°C, and chlorine gas was supplied at a rate of 1.3/min. Injected in proportion. In this case, the metallic tellurium first liquefied as black tellurium dichloride. As the chlorine injection was continued, the tellurium dioxide gradually changed to tellurium tetrachloride, and eventually tellurium tetrachloride, a orange-colored liquid, was obtained. In this case, the tellurium tetrachloride still contains some tellurium dichloride, so the mantle heater should be
℃ and distilled into another flask with a chlorine stream to completely convert it into tellurium tetrachloride. The weight of the tellurium tetrachloride thus obtained was 1950 g. This tellurium tetrachloride was transferred to a distillation tower, and the inside of the distillation tower was replaced with nitrogen gas, and then the mantle heater was heated to 420°C and the condenser section was heated to about 270°C. Distillation of tellurium tetrachloride begins, 290g
When tellurium tetrachloride had been distilled out, the distillation inlet pipe was switched to separate the first distillation and the main fraction, and the subsequent distillate was used as the main distillation to recover 1450 g of tellurium tetrachloride. An equal weight of 1,450 g of pure water was added to 1,450 g of this main reservoir, and the two were thoroughly mixed to form an aqueous solution of tellurium tetrachloride. Collect 200g of this tellurium tetrachloride aqueous solution,
Tellurium dioxide was produced by hydrolyzing tellurium tetrachloride by adding it to pure water 5 at 95°C in a beaker. The analysis results of tellurium dioxide obtained in this way show that copper, nickel, and magnesium are respectively
Less than 0.1ppm, chlorine less than 10ppm, iron
At 0.1 ppm, we were able to obtain tellurium dioxide with a sufficiently high purity of over 99.999% by weight. The particle size of the tellurium dioxide thus obtained was 30 to 50 μm. [Effects of the Invention] As described above, according to the present invention, tellurium dioxide having a large particle size and a purity exceeding 99.999% by weight, which is used as a material for optical single crystals, etc., can be easily and stably obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 通常品位の金属テルルに乾燥塩素ガスを通じ
て四塩化テルルとし、該四塩化テルルを蒸溜器に
よつて蒸溜精製する際、先ず処理量の5〜15重量
%に当る四塩化テルルの初溜を分離除去した後、
改ためて蒸溜処理を進め、得られた溜分を本溜分
として精製四塩化テルルを回収し、該精製四塩化
テルルを純水により加水分解して、二酸化テルル
を得ることを特徴とする高純度二酸化テルルの製
造方法。
1. Dry chlorine gas is passed through ordinary grade metal tellurium to produce tellurium tetrachloride, and when the tellurium tetrachloride is purified by distillation in a distiller, first the initial distillation of tellurium tetrachloride, which accounts for 5 to 15% by weight of the processed amount, is separated. After removing
The distillation process is carried out again, the obtained fraction is used as the main fraction, purified tellurium tetrachloride is recovered, and the purified tellurium tetrachloride is hydrolyzed with pure water to obtain tellurium dioxide. Method for producing pure tellurium dioxide.
JP11819187A 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide Granted JPS63285106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11819187A JPS63285106A (en) 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11819187A JPS63285106A (en) 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide

Publications (2)

Publication Number Publication Date
JPS63285106A JPS63285106A (en) 1988-11-22
JPH0475846B2 true JPH0475846B2 (en) 1992-12-02

Family

ID=14730410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11819187A Granted JPS63285106A (en) 1987-05-15 1987-05-15 Production of high-purity tellurium dioxide

Country Status (1)

Country Link
JP (1) JPS63285106A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923678A (en) * 2012-11-22 2013-02-13 浏阳市亚光高新材料有限公司 Method for preparing anhydrous tellurium tetrachloride by using tellurium dioxide as raw material

Also Published As

Publication number Publication date
JPS63285106A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
US4374110A (en) Purification of silicon source materials
JPS62187138A (en) Purification of quartz sand
AU644860B2 (en) Producing high purity silica
JPS6379718A (en) Manufacture of high purity silicon
US3540861A (en) Purification of silicon compounds
RU2451635C2 (en) Method of producing highly pure elementary silicon
JPS6034498B2 (en) Collection and purification method of germanium valuables and germanium valuables obtained by this method
EP0334713B1 (en) Process for the preparation of hydrated zirconium-oxide from granular cristalline zirconiumoxide
GB1560568A (en) Method for the large-scale industrial obtaining of magnesium oxide of high purity
CN113184859A (en) Purification method of quartz sand
JPH0475846B2 (en)
JP2687361B2 (en) Method for producing tin oxide sol
JP2539858B2 (en) Method for separating and collecting iodine
JP3725765B2 (en) Germanium recovery method and apparatus
JPH04300206A (en) Purification of silicon chloride
GB2222823A (en) A process for producing high purity silica
JPH0531487B2 (en)
JPH0379413B2 (en)
US3460900A (en) Method of removing titanium tetrachloride from gases
Hoffmann Extracting and refining germanium
KR100262820B1 (en) The method of seperation andpurification of germanium oxide from germanium mineral
CN109019682A (en) A kind of zirconium oxychloride and preparation method thereof
KR0128123B1 (en) Refining method of wasting acid
US1924129A (en) Separation of iron and chromium chlorides
US3059996A (en) Process for producing boron- and phosphorus-free high purity silicon dioxide