JPS63284869A - Heterojunction field-effect semiconductor device - Google Patents

Heterojunction field-effect semiconductor device

Info

Publication number
JPS63284869A
JPS63284869A JP11911487A JP11911487A JPS63284869A JP S63284869 A JPS63284869 A JP S63284869A JP 11911487 A JP11911487 A JP 11911487A JP 11911487 A JP11911487 A JP 11911487A JP S63284869 A JPS63284869 A JP S63284869A
Authority
JP
Japan
Prior art keywords
thin film
layer
semiconductor thin
film layer
ingaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11911487A
Other languages
Japanese (ja)
Inventor
Hitoshi Abe
仁志 阿部
Seiji Nishi
清次 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11911487A priority Critical patent/JPS63284869A/en
Publication of JPS63284869A publication Critical patent/JPS63284869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To hold a high driving force of an electric current by providing InGaAs, GaAlAs, and InAlAs semiconductor thin film layers on a GaAs semiconductor substrate where their composition ratios and film thicknesses are controlled so that a misfit transposition due to lattice constant mismatching may not develop. CONSTITUTION:An InAlAs semiconductor thin film layer 5 as a carrier feeding layer, an InGaAs semiconductor thin film layer 3 as a channel layer where their composition ratios and film thicknesses are controlled so that a misfit transposition due to lattice constant mismatching may not develop are formed on a GaAs semiconductor substrate 1 and a GaAlAs semiconductor thin film layer 4 is formed between layers 5 and 3. In other words, the highly reliable InAlAs semiconductor thin film on the GaAs semiconductor layer substrate is formed as a carrier feeding layer and the InGaAs semiconductor thin film layer is formed as a channel layer by adding an n-type impurity to a density which is higher than that of a GaAs layer and, making its mobility, saturation rate, and peak speed greater than those of the GaAs layer, the GaAlAs semiconductor thin film layer located between the InAlAs and InGaAs semiconductor thin film layers is formed as a spacer and then, its layer alleviates lattice constant mismatching deformations; besides, it makes a band gap at a conduction band connecting with the InGaAs semiconductor thin film layer large.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、2次元電子ガス層を利用して高速化を図つ
九ヘテロ接合゛鑞界効果半導体装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an improvement in a nine-heterojunction field effect semiconductor device that utilizes a two-dimensional electron gas layer to achieve higher speed.

(従来の技術) 現在、ヘテロ接合電界効果半導体装置として実現してい
るのは、主にGaAl!As/GaAs系である。これ
は高濃度にドーグされたGa M As層を電子供給層
とし、GaAs層をチャンネルとする所謂選択ドーグ構
造でラシ、また、このような構造に加えて前記Ga A
t Al1層を界面近傍で量子井戸構造とするものも知
られている。
(Prior Art) Currently, heterojunction field effect semiconductor devices are mainly made of GaAl! It is As/GaAs based. This is a so-called selective dog structure in which a GaM As layer doped with high concentration is used as an electron supply layer and the GaAs layer is used as a channel.
It is also known that the tAl1 layer has a quantum well structure near the interface.

しかしながら、このGaAl!As/GaAa系電界効
果半導体装置も完成されたものではなく、まだ多くの問
題点を持っている。
However, this GaAl! As/GaAa field effect semiconductor devices are not yet complete and still have many problems.

Ga、M’As層に添加したn型不純物はD−X中心と
呼ばれる深い準位を形成し素子特性を劣化させる。
The n-type impurity added to the Ga and M'As layers forms a deep level called a DX center and deteriorates device characteristics.

Ga Al!Al1層には3 X IQ”m−”以上S
tを添加するのが困難であり、2次元電子濃度も8 X
 1011.−zよシも大きくするのは困難で、それが
素子特性の性能限界の一因となっている。
GaAl! 3 x IQ”m-” or more S for Al1 layer
It is difficult to add t, and the two-dimensional electron concentration is also 8
1011. It is difficult to increase the -z ratio, which is one of the reasons for the performance limits of the device characteristics.

石川知則氏ら(電子通信学会技術研究報告ED86−5
6 、 P51 )はプレーナドープなどの不純物添加
法の改善などにより、シートキャリア増加の努力をして
いるが、  1,2X1012w−”以上を達成するの
は困難であった。
Tomonori Ishikawa et al. (IEICE Technical Research Report ED86-5
6, P51) has made efforts to increase the number of sheet carriers by improving impurity addition methods such as planar doping, but it has been difficult to achieve 1,2 x 1012w-'' or more.

−1、I n AI AllにはI X 10”3−”
以上添加するのが容易にできるなどの利点が”)、In
P基板上に格子定数がマツチし九Ino、ss Gaa
ty As/Inas* Alhas As系電界効果
半導体素子(以下FETという)が試作され、良好な特
性を得ている( K、Hiroae et at。
-1, I x 10"3-" for I n AI All
The advantages include that it is easy to add
The lattice constants match on the P substrate, 9 Ino, ss Gaa
ty As/Inas* Alhas As-based field effect semiconductor devices (hereinafter referred to as FETs) have been prototyped and have obtained good characteristics (K, Hiroae et at.

インスト フイゼツクス コンファレンス、 Inat
 Phys (:onfSer 、 N1179 Ch
apter 10 (1985) P529 )。
Instrument Physics Conference, Inat
Phys (:onfSer, N1179 Ch
apter 10 (1985) P529).

すなわち、  In混晶系では、 GaAaに比べ大き
な電子移動度μn 大きな電子速度V、が得られること
、2次元電子ガス密度が2 X 1010l2”とGa
As/GaAlAs系に比べ2.5倍程大きくできるこ
となどの利点を持つ。
That is, in the In mixed crystal system, larger electron mobility μn and larger electron velocity V can be obtained compared to GaAa, and the two-dimensional electron gas density is 2 x 1010 l2'' and Ga
It has the advantage that it can be made about 2.5 times larger than the As/GaAlAs system.

しかしながら、GaAaはInPなどの他の化合物半導
体に比べ研究開発も古く、グロセス技術も確立しておシ
、良質のGaAs基板が入手でき、この種の半導体装置
を生産ラインにのせて量産する際の大きな利点になるも
のと考えられる。
However, compared to other compound semiconductors such as InP, GaAa has been researched and developed for a long time, and its production technology has been established. This is considered to be a big advantage.

そこで、半導体基板としてQa Al!lを用い、その
上に成長させる半導体層としては、  In系混晶を使
用することができれば好都合である。GaAsの格子定
数が5.564スなのに対し、InAaは6.058λ
でめるため、GaAs基板上にIn系混晶を単純に成長
させると、格子定数不整合によるミスフィツト転位が発
生する。
Therefore, as a semiconductor substrate, QaAl! It would be advantageous if an In-based mixed crystal could be used as the semiconductor layer grown thereon. The lattice constant of GaAs is 5.564, while that of InAa is 6.058λ.
If an In-based mixed crystal is simply grown on a GaAs substrate to prevent this, misfit dislocations will occur due to lattice constant mismatch.

しかしながら、GaAs基板上に格子定数が一致しなく
てもミスフィツト欠陥の発生しないようにInGaAs
などのIn混晶薄膜を成長できる。後述するこの発明の
発明者らによってInの組成比が0.2で250λ程度
の厚さまでミスフィツト欠陥が発生しないことが確認さ
れている。
However, in order to prevent misfit defects from occurring even if the lattice constants do not match on the GaAs substrate, InGaAs is
It is possible to grow In mixed crystal thin films such as The inventors of the present invention, which will be described later, have confirmed that misfit defects do not occur up to a thickness of about 250λ when the In composition ratio is 0.2.

(発明が解決しようとする問題点) 従来はミスフィツト欠陥の発生とIn混晶膜の成長条件
の関係が把握できておらず、GaAtA1層にドーグし
InGaAs m t−チャンネル層に応用するにとど
まってい次。
(Problems to be Solved by the Invention) Conventionally, the relationship between the occurrence of misfit defects and the growth conditions of In mixed crystal films was not understood, and the application to the InGaAs m t-channel layer was limited to doping in a single GaAtA layer. Next.

F E T 04!性パラメータである電流駆動力fm
は2次元電子層のシートキャリア密度にほぼ比例する形
で増加することが知られている。しかしながら、従来型
のGa l’J A11に不純物をドーグしたヘテロ接
合FETでは、シートキャリア密度の高いものが得られ
ないなどの欠点が6つ九。
FET 04! Current driving force fm, which is a physical parameter
is known to increase approximately in proportion to the sheet carrier density of the two-dimensional electronic layer. However, the conventional heterojunction FET made by doping impurities into Gal'J A11 has several drawbacks, such as the inability to obtain a high sheet carrier density.

この発明は、前記従来技術がもっている問題点のうち、
GaAlAsに不純物をドーグしたヘテロ接合FITで
は、シートキャリア増加の高いものが得られない点につ
いて解決し九ヘテロ接合電界効果半導体装置を提供する
ものである。
This invention solves the problems of the above-mentioned prior art.
The present invention solves the problem that a heterojunction FIT in which GaAlAs is doped with impurities cannot achieve a high increase in sheet carriers, and provides a nine-heterojunction field effect semiconductor device.

(問題点を解決するための手段) この発明はヘテロ接合電界効果半導体装置において、 
GaAs半導体基板上に1格子定数不整合によるミスフ
ィツト転位が発生しない組成比および膜厚に制御したI
nGaAs半導体薄膜層、GaA/As半導体薄膜層、
およびI n I’J As半導体薄膜層を形成したも
のである。
(Means for Solving the Problems) The present invention provides a heterojunction field effect semiconductor device including:
The composition ratio and film thickness of I are controlled so that misfit dislocations due to 1 lattice constant mismatch do not occur on the GaAs semiconductor substrate.
nGaAs semiconductor thin film layer, GaA/As semiconductor thin film layer,
and an I n I'J As semiconductor thin film layer.

(作用) この発明によれば1以上のようにヘテロ接合電界効果半
導体装置を構成し九ので、信頼性が高いGaAs半導体
基板上のI n AI As半導体薄膜層をキャリア供
給層とし、 GaAs層に比べ高萱度にn型不純物を添
加し、  InGaAs半導体薄膜層をチャンネル層と
し、GaAs層に比べ移動度、飽和速度、ピーク速度を
大きくするとともKI  InAtAs半導体薄膜層と
InGaAs半導体薄膜層との間のGaAjAa半導体
薄膜がスペーサとなり、格子定数不整合歪を緩和し、し
かもチャンネル層となるInGaA3半導体薄膜層との
伝導帯でのバンドギヤラグを〜0,4eV程度と大きく
する。
(Function) According to the present invention, since a heterojunction field effect semiconductor device is constructed as described above, an In AI As semiconductor thin film layer on a highly reliable GaAs semiconductor substrate is used as a carrier supply layer, and the GaAs layer is The InGaAs semiconductor thin film layer is doped with n-type impurities to a higher degree than the GaAs layer, and the mobility, saturation velocity, and peak velocity are increased compared to the GaAs layer. The GaAjAa semiconductor thin film acts as a spacer, alleviates the lattice constant mismatch strain, and increases the band gear lag in the conduction band with the InGaA3 semiconductor thin film layer, which becomes the channel layer, to about 0.4 eV.

(実施例) 以下、第1図乃至第4図に本発明装置の要部断面図、第
5図にInGaAs膜における膜厚とキャリア供給密度
との関係を示す特性図及び第6図にInGaAs膜にお
ける膜厚とキャリア移動度との関係を示す特性図を示し
て、本発明の詳細な説明する。
(Example) Below, Figs. 1 to 4 are sectional views of essential parts of the device of the present invention, Fig. 5 is a characteristic diagram showing the relationship between film thickness and carrier supply density in an InGaAs film, and Fig. 6 is a sectional view of an InGaAs film. The present invention will be explained in detail by showing a characteristic diagram showing the relationship between film thickness and carrier mobility in .

第1図において、図示の半導体装置を製造する場合の工
程について説明する。まずMBE (分子エピタキシ)
法により半絶縁性GaAs基板l上にノンドーグGaA
l!As半導体薄膜層2t−約1000人成長する。
Referring to FIG. 1, steps for manufacturing the illustrated semiconductor device will be described. First, MBE (molecular epitaxy)
Non-doped GaA was deposited on a semi-insulating GaAs substrate by
l! As semiconductor thin film layer 2t - about 1000 people grow.

次に、ドーグI nxi G!LX −xIAI半導体
薄膜層3を、例えば第6図の特性図よりキャリアの移動
度が大となる膜厚100^程度に形成し、さらにその上
にノンドーグGa Aj Al半導体薄膜層4を、例え
ば40λの厚さにスペーサ層として成長させる。
Next, Dawg Inxi G! The LX-xIAI semiconductor thin film layer 3 is formed to have a thickness of, for example, about 100^, which increases carrier mobility as shown in the characteristic diagram of FIG. as a spacer layer to a thickness of .

次に、ノンドーグInytA/1−ytAs半導体薄膜
層5を、例えば第5図の特性図より高凹度のキャリアが
供給できる膜厚100^積みXlとYlが0.2ならば
、In液晶系の厚さを全体で300λ程度まで厚くする
ことができる。次に、ドーグGa As半導体薄膜層6
を形成する。
Next, if the non-doped InytA/1-ytAs semiconductor thin film layer 5 is made with a film thickness of 100^ that can supply highly concave carriers from the characteristic diagram of FIG. The total thickness can be increased to about 300λ. Next, Dogue GaAs semiconductor thin film layer 6
form.

ここで、成長させるドーグInGaAs半導体薄膜層3
のドーパントはMBEでn型の不純物として王に使用さ
れているシリコン(St)である。
Here, the grown InGaAs semiconductor thin film layer 3
The dopant is silicon (St), which is commonly used as an n-type impurity in MBE.

上記ドーグGaA1半導体薄膜層6上には金rルマニウ
ム/ Au (AuGe/Au )によるソース1他7
とドレイン電極8が形成されているとともに、アルミニ
ウムによるr−上電極9が形成されている。
On the above-mentioned Dogu GaA1 semiconductor thin film layer 6 are sources 1 and 7 made of gold/rumanium/Au (AuGe/Au).
A drain electrode 8 is formed, and an r-upper electrode 9 made of aluminum is formed.

半導体基板などに格子整合しない半導体薄膜の膜厚が薄
ければ、ミスフィツト転位が発生しないことが仰られて
いる。
It is said that misfit dislocations will not occur if the thickness of a semiconductor thin film that is not lattice matched to a semiconductor substrate is thin.

そこで、この発明では、上記からも明らかなように、ミ
スフィツト転位が発生しない条件下で半絶縁性Ga A
s基板上にGaMAs 、 InGaAs 、 GaA
A’As 。
Therefore, in this invention, as is clear from the above, semi-insulating GaA
GaMAs, InGaAs, GaA on s substrate
A'As.

InAA’As 、 GaAa 11どt−MBE法で
連続的に成長して形成しているので、  InGaAa
 (ドーグInxxGat−xxAa半導体薄膜層3)
とInA/AI! (ノンドーグInyt Aj1−)
Q Ass半導体薄膜層5)との間にGa AI AB
(ノンドーグGa At As手中4体膜層4)をスペ
ーサ層として挾むことによシ、格子定数不整合を緩和で
き、しかもチャンネル層となるInGaAsとの伝導帯
でのバンドギヤラグを〜0,4eV程度大きくすること
ができる。
Since InAA'As and GaAa 11 are formed by continuous growth using the t-MBE method, InGaAa
(Dawg InxxGat-xxAa semiconductor thin film layer 3)
and InA/AI! (Nondawg Inyt Aj1-)
Ga AI AB between Q Ass semiconductor thin film layer 5)
By sandwiching (Non-Dog Ga At As 4 body film layer 4) as a spacer layer, the lattice constant mismatch can be alleviated, and the band gear lag in the conduction band with InGaAs, which becomes the channel layer, can be reduced to about ~0.4 eV. Can be made larger.

第2図はこの発明の第2の実施例の要部を切断して示す
断面図である。この第2図においては、半絶縁性GaA
s基板lI上にノンドーグGaAs半導体薄膜層12、
ドーグInxzGal−x2As半導体薄膜層13、ノ
ンドーグGa Al!A!1半導体薄膜層14%ノンド
ーグIn yz Aj l−yz As半導体薄膜層1
5、ノンドーグGaAs半導体薄膜層16、ドーグGa
A1半導体薄膜層17が順次形成されている。
FIG. 2 is a sectional view showing a main part of a second embodiment of the invention. In this figure 2, semi-insulating GaA
a non-doped GaAs semiconductor thin film layer 12 on the s-substrate lI;
Dawg InxzGal-x2As semiconductor thin film layer 13, non-Dawg Ga Al! A! 1 Semiconductor thin film layer 14% non-doped In yz Aj l-yz As semiconductor thin film layer 1
5, non-dawg GaAs semiconductor thin film layer 16, dodged Ga
A1 semiconductor thin film layers 17 are sequentially formed.

ドーグGa As半導体薄膜層17上には金ゲルマニウ
ム/金(AuGe/Au )からなるソース電極18と
ドレイン電極19、アルミニュウムからなるf −上電
極20がそれぞれ形成されている。
A source electrode 18 and a drain electrode 19 made of gold germanium/gold (AuGe/Au) and an f-upper electrode 20 made of aluminum are formed on the Dogu GaAs semiconductor thin film layer 17, respectively.

この第2図の実施例を製造する場合の工程は第1図の実
施例とほぼ同じで6夕詳述を避ける。
The process for manufacturing the embodiment shown in FIG. 2 is almost the same as the embodiment shown in FIG. 1, and will not be described in detail.

第1図および第2図の実施例において、GaAjAg半
導体薄膜層はノンドーグである几め、AI!の組成比を
InGaAsとのバンドギヤラグ差が最大になる値、た
とえば0.45程度まで大きくすることができる利点を
持つ。
In the embodiments of FIGS. 1 and 2, the GaAjAg semiconductor thin film layer is non-drug, AI! It has the advantage that the composition ratio of InGaAs can be increased to a value that maximizes the band gear lag difference with InGaAs, for example, about 0.45.

第3図はこの発明の第3の実施例の要部を切断して示す
断面図であり、図中の21はI n At A8半導体
薄膜層であシ、このInAjAs半導体薄膜層21に不
純物22がプレーナドープされている。
FIG. 3 is a cross-sectional view showing a main part of a third embodiment of the present invention, and 21 in the figure is an In At A8 semiconductor thin film layer, and this InAjAs semiconductor thin film layer 21 is doped with impurities 22. is planar doped.

このI n kl As半導体層21上には、ノンドー
グGa At As半導体薄膜層23、ノンドーグIn
GaAl半導体薄膜層24が順次形成されている。
On this I n kl As semiconductor layer 21, a non-doped Ga At As semiconductor thin film layer 23 and a non-doped In
GaAl semiconductor thin film layers 24 are successively formed.

第4図はこの発明の第4の実施例の要部を切断して示す
断面図である。この第4図において、 31はInAs
とAI!A8とからなる超格子薄膜であり、32はノン
ドーグA/As単原子層であシ、33はドーグInAa
単原子層である。・ この超格子薄yX31上にノンドーグのGaAl!As
半導体薄膜層34、ノンドーグのI n Ga As半
導体薄膜層35が順次形成されている。
FIG. 4 is a sectional view showing a main part of a fourth embodiment of the present invention. In this Figure 4, 31 is InAs
And AI! It is a superlattice thin film consisting of A8, 32 is a non-doped A/As monoatomic layer, and 33 is a doped InAa.
It is a monoatomic layer.・Non-dawg GaAl on this superlattice thin yX31! As
A semiconductor thin film layer 34 and a non-doped In GaAs semiconductor thin film layer 35 are sequentially formed.

以上の第1図ないし第4図のq!r笑施実施おいて、ド
ーパントとしてはMBE法で主にnilド一ノクントと
して使用されているシリコン(St)でアク。
q! in Figures 1 to 4 above! In carrying out this process, silicon (St), which is mainly used as a nil dopant in the MBE method, is used as a dopant.

Ga AI As層には3X1018m−3以上添加す
るのか困難であったのに対し、  InAl!As層に
はI X 10’m−’程度添加するのが容易であシ、
第3図のように不純物22をInAl!As半導体薄膜
層21にプレーナドーグすることにより、また、第4図
のように超格子薄膜31の構造にすることにより、さら
に高濃度にすることができる。
While it was difficult to add more than 3X1018m-3 to the GaAIAs layer, InAl! It is easy to add about I x 10'm-' to the As layer;
As shown in FIG. 3, the impurity 22 is replaced with InAl! A higher concentration can be achieved by planarizing the As semiconductor thin film layer 21 or by creating a superlattice thin film 31 structure as shown in FIG.

ヘテロ接合型電界効果半帰休装置の要因を決める移動度
、飽和速度などを劣化させることなく。
Without deteriorating the mobility, saturation speed, etc. that determine the factors of heterojunction type field effect semi-vacuum devices.

チャンネル層に2 X 10’cIn−”以上の中ヤリ
アを供給することが可能である。
It is possible to provide a medium layer of 2 x 10'cIn-'' or more in the channel layer.

この発明に適用する結晶成長法としては、MBE法に限
らず、MO−CND法などによって実現できることはも
ちろんである。
The crystal growth method applied to this invention is not limited to the MBE method, but can of course be realized by the MO-CND method or the like.

(発明の効果) 以上詳細に説明し友ように、この発明によれば、信頼性
が高いGaAs半導体基板上に格子定数不整合によるミ
スフィツト転位が発生しない組成比、膜厚に制御してキ
ャリア供給層となるI n At As半導体薄膜層と
、チャンネル層となるI n Ga As半導体薄膜層
とを形成し、その間にスペーサ層となるGaA/As半
導体薄膜層を形成するようにし友ので、化合物半導体の
うちで最も信頼性の高いGa As半導体基板を用いる
ことができ、GaAs/GaAl!Aa系に比べ2倍以
上の高い電流駆動力tm t−持つヘテロ接合FETを
提供できる。
(Effects of the Invention) As described above in detail, according to the present invention, carriers can be supplied to a highly reliable GaAs semiconductor substrate by controlling the composition ratio and film thickness such that misfit dislocations due to lattice constant mismatch do not occur. A compound semiconductor is formed by forming an In At As semiconductor thin film layer as a layer, an In Ga As semiconductor thin film layer as a channel layer, and a GaA/As semiconductor thin film layer as a spacer layer between them. Among them, the most reliable GaAs semiconductor substrate can be used, and GaAs/GaAl! It is possible to provide a heterojunction FET having a current driving force tm t- that is more than twice as high as that of the Aa type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のヘテロ接合電界効果半導体装置の一
実施例の要部を切断して示す断面図、第2白ないし第4
図はそれぞれこの発明の他の実施例の要部を切断して示
す断面図、第5図はIn AI As膜の特性図、第6
図はInGaAs膜の特性図である。 1.11・・・半絶縁性Ga As基板、2・・・ノン
ドーグGa AI Ag半導体薄膜層、3・・・ドーグ
Inx1Gat−XIA8半導体薄膜層、4,23・・
・ノンドーグGaA/As半導体薄膜層、5・・・ノン
ドーグInytAJt−ytAs半導体薄膜層、6,1
7・・・ドーグGaAg半専体薄膜層、12・・・ノン
ドーグGa As半導体薄膜層、 13・・・ドーグI
nx2Gax−X2A8半導体薄膜ノー、l 4−・・
ノンドーグGa Al! As半導体薄膜層、15−・
・ノンドーグInyzAI!を−y2As半導体薄膜層
、16・・・ノンドーグGaA/As半導体薄膜層、2
1・・・I n he A11半導体薄膜層、22・・
・不純物、24・・・ノンドーグエn Qa Ag半導
体薄膜層、31・・・超格子薄膜、32・・・ノンドー
グhths単原子層、33−・・ドープInAs単原子
層、34− GaAl!As半導体薄膜層、35・・・
I n Ga A11半導体薄膜層。 オ(弔シーHの111918毬1−1ロlり第1図 木端」日の第2I景ビタ11/1席なでff1lAり第
2図 本率哨の第3夫)tイチ1の雫fFl’n度1再■n第
3図 第4図 InGa As rI莢cr++’r Ia5第6図
FIG. 1 is a sectional view showing a main part of an embodiment of a heterojunction field effect semiconductor device of the present invention;
The figures are cross-sectional views showing main parts of other embodiments of the present invention, FIG. 5 is a characteristic diagram of an In AI As film, and FIG.
The figure is a characteristic diagram of an InGaAs film. 1.11...Semi-insulating Ga As substrate, 2...Non-Dawg Ga AI Ag semiconductor thin film layer, 3...Dawg Inx1Gat-XIA8 semiconductor thin film layer, 4,23...
・Non-dawg GaA/As semiconductor thin film layer, 5...Non-dawged InytAJt-ytAs semiconductor thin film layer, 6,1
7...Dogue GaAg semi-dedicated thin film layer, 12...Non-Dogue GaAs semiconductor thin film layer, 13...Dogue I
nx2Gax-X2A8 semiconductor thin film no, l 4-...
Nondawg Ga Al! As semiconductor thin film layer, 15-.
・Nondog InyzAI! -y2As semiconductor thin film layer, 16...Non-doped GaA/As semiconductor thin film layer, 2
1... In he A11 semiconductor thin film layer, 22...
- Impurity, 24--Non-dogue n Qa Ag semiconductor thin film layer, 31--Superlattice thin film, 32--Non-dogue hths monoatomic layer, 33--Doped InAs monoatomic layer, 34- GaAl! As semiconductor thin film layer, 35...
In Ga A11 semiconductor thin film layer. O (Mourning Sea H's 111918 ball 1-1 roll 1st figure kibata) day 2I view bita 11/1 seat pat ff1lA 2nd figure 3rd husband of the main post) tichi 1 drop fFl'n degree 1 re■n Fig. 3 Fig. 4 InGa As rI capsule cr++'r Ia5 Fig. 6

Claims (3)

【特許請求の範囲】[Claims] (1)キャリア供給層とチャンネル層を分離して形成す
るヘテロ接合電界効果半導体装置において、(a)Ga
As半導体基板上に格子定数不整合によるミスフィット
転位が発生しない組成および膜厚に制御して形成され、
チャンネル層となるInGaAs半導体薄膜層と、 (b)このInGaAs半導体薄膜層の上部に格子定数
不整合によるミスフィット転位が発生しない組成および
膜厚に制御して形成され、キャリア供給層となるInA
lAs半導体薄膜層と、 (c)上記InGaAs半導体薄膜層と上記InAlA
s半導体薄膜層との間に格子定数不整合によるミスフィ
ット転位が発生しない組成および膜厚に形成され、スペ
ーサ層となるGaAlAs半導体薄膜層と、よりなるヘ
テロ接合電界効果半導体装置。
(1) In a heterojunction field effect semiconductor device in which a carrier supply layer and a channel layer are formed separately, (a) Ga
Formed on an As semiconductor substrate by controlling the composition and film thickness so that misfit dislocations due to lattice constant mismatch do not occur,
(b) An InGaAs semiconductor thin film layer that becomes a channel layer, and (b) an InA film that becomes a carrier supply layer and is formed on top of this InGaAs semiconductor thin film layer by controlling the composition and film thickness so that misfit dislocations due to lattice constant mismatch do not occur.
(c) the InGaAs semiconductor thin film layer and the InAlA
1. A heterojunction field effect semiconductor device comprising a GaAlAs semiconductor thin film layer, which is formed to have a composition and thickness such that misfit dislocations due to lattice constant mismatch do not occur between the semiconductor thin film layer and the s semiconductor thin film layer, and which serves as a spacer layer.
(2)InGaAs半導体薄膜層は不純物をプレーナド
ープされることを特徴とする特許請求の範囲第1項記載
のヘテロ接合電界効果半導体装置。
(2) The heterojunction field effect semiconductor device according to claim 1, wherein the InGaAs semiconductor thin film layer is planarly doped with impurities.
(3)InGaAs半導体薄膜層は超格子構造にしてI
nAs層のみにn型不純物を添加したことを特徴とする
特許請求の範囲第1項記載のヘテロ接合電界効果半導体
装置。
(3) The InGaAs semiconductor thin film layer has a superlattice structure and I
2. The heterojunction field effect semiconductor device according to claim 1, wherein an n-type impurity is added only to the nAs layer.
JP11911487A 1987-05-18 1987-05-18 Heterojunction field-effect semiconductor device Pending JPS63284869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11911487A JPS63284869A (en) 1987-05-18 1987-05-18 Heterojunction field-effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11911487A JPS63284869A (en) 1987-05-18 1987-05-18 Heterojunction field-effect semiconductor device

Publications (1)

Publication Number Publication Date
JPS63284869A true JPS63284869A (en) 1988-11-22

Family

ID=14753269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11911487A Pending JPS63284869A (en) 1987-05-18 1987-05-18 Heterojunction field-effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS63284869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075744A (en) * 1990-12-03 1991-12-24 Motorola, Inc. GaAs heterostructure having a GaAsy P1-y stress-compensating layer
US5306924A (en) * 1992-03-12 1994-04-26 Kokusai Denshin Denwa Kabushiki Kaisha Semiconductor device with strained-layer superlattice

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075744A (en) * 1990-12-03 1991-12-24 Motorola, Inc. GaAs heterostructure having a GaAsy P1-y stress-compensating layer
US5306924A (en) * 1992-03-12 1994-04-26 Kokusai Denshin Denwa Kabushiki Kaisha Semiconductor device with strained-layer superlattice

Similar Documents

Publication Publication Date Title
JP3086748B2 (en) High electron mobility transistor
JP2679396B2 (en) Field effect transistor
JPS63284869A (en) Heterojunction field-effect semiconductor device
JP3447438B2 (en) Field effect transistor
JPS6353711B2 (en)
JPS63272080A (en) Semiconductor device
JPS61268069A (en) Semiconductor device
JPS63228763A (en) Semiconductor device
JPS6344774A (en) Compound semiconductor device
JP2773338B2 (en) Field effect transistor
JPS63311772A (en) Field-effect semiconductor device
JPH02254731A (en) Hetero-junction type field effect transistor
JP3299188B2 (en) Semiconductor device
JPS62165317A (en) Manufacture of semiconductor device
JPS609174A (en) Semiconductor device
JPS61241972A (en) Compound semiconductor device
JP3423812B2 (en) HEMT device and manufacturing method thereof
JP3057503B2 (en) Compound semiconductor growth method
JPS63273364A (en) Hetero junction field-effect semiconductor device
JP2614490B2 (en) Heterojunction field effect transistor
JPH01199474A (en) Heterojunction type field-effect transistor
JPS63172A (en) Semiconductor device
JPH03165576A (en) Quantum fine line semiconductor device and manufacture thereof
JPS61248479A (en) Compound semiconductor device
JPH04186720A (en) Manufacturing device for semiconductor of laminated structure