JPS6328355B2 - - Google Patents

Info

Publication number
JPS6328355B2
JPS6328355B2 JP714582A JP714582A JPS6328355B2 JP S6328355 B2 JPS6328355 B2 JP S6328355B2 JP 714582 A JP714582 A JP 714582A JP 714582 A JP714582 A JP 714582A JP S6328355 B2 JPS6328355 B2 JP S6328355B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor layer
substrate
charge
coupled device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP714582A
Other languages
Japanese (ja)
Other versions
JPS58124271A (en
Inventor
Nobuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP714582A priority Critical patent/JPS58124271A/en
Publication of JPS58124271A publication Critical patent/JPS58124271A/en
Publication of JPS6328355B2 publication Critical patent/JPS6328355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823406Combination of charge coupled devices, i.e. CCD, or BBD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は電荷結合素子の製造方法に関する。[Detailed description of the invention] Technical field of invention The present invention relates to a method for manufacturing a charge coupled device.

発明の技術的背景 従来、例えばCCDの埋込み型2相駆動の電荷
結合素子は、第1図a〜dに示す如く製造されて
いた。まず、例えばp型のシリコン基板1にリン
イオン(p+31)を打込んだ後、熱処理を施して前
記基板1上にn+型の半導体層2を形成する。次
に、この半導体層2上に絶縁膜例えばSiO2膜3
を形成する。つづいて、このSiO2膜3上に例え
ば多結晶シリコン膜(図示せず)を堆積した後、
写真蝕刻法により形成したレジストパターンをマ
スクとしてエツチングを行ない、複数の第1の多
結晶シリコン電極(第1の電極)4…を形成する
(第1図a図示)。次いで、前記第1の電極4…を
マスクとして露出するSiO2膜3をフツ化アンモ
ン等によりエツチング除去する(第1図b図示)。
つづいて、熱酸化を行なつて前記第1の電極4…
の周囲及び前記エツチングにより露出する半導体
層2上に、夫々熱酸化膜5、ゲート酸化膜6を形
成する。ひきつづき、第1の電極4…を主にマス
クとしてボロンイオン(B+11)をn+型の半導体
層2に打込み、中和して低濃度のn型の半導体層
2′とする(第1図c図示)。この際、前記第1の
電極4…下にボロンイオンが打ちこまれないよう
にイオン打込みの強さを調整する。更に、全面に
多結晶シリコン膜(図示せず)を堆積した後、写
真蝕刻法により形成したレジストパターンをマス
クとしてエツチングを行ない、前記ゲート酸化膜
6上に第2の多結晶シリコン電極(第2の電極)
7…を、一部が熱酸化膜5を介して第1の電極4
…に一部オーバラツプするように形成する。最後
に、Al配線等により隣り合う第1、第2の電極
4…,7…を接続して、φ1電極、φ2電極を形成
し所望の電荷結合素子を製造する(第1図d図
示)。
TECHNICAL BACKGROUND OF THE INVENTION Conventionally, an embedded two-phase drive charge-coupled device for, for example, a CCD has been manufactured as shown in FIGS. 1a to 1d. First, for example, phosphorus ions (p +31 ) are implanted into a p-type silicon substrate 1, and then a heat treatment is performed to form an n + -type semiconductor layer 2 on the substrate 1. Next, an insulating film such as a SiO 2 film 3 is formed on this semiconductor layer 2.
form. Subsequently, after depositing, for example, a polycrystalline silicon film (not shown) on this SiO 2 film 3,
Etching is performed using a resist pattern formed by photolithography as a mask to form a plurality of first polycrystalline silicon electrodes (first electrodes) 4 (as shown in FIG. 1A). Next, using the first electrodes 4 as a mask, the exposed SiO 2 film 3 is removed by etching with ammonium fluoride or the like (as shown in FIG. 1B).
Subsequently, thermal oxidation is performed to form the first electrode 4...
A thermal oxide film 5 and a gate oxide film 6 are formed around the semiconductor layer 2 and on the semiconductor layer 2 exposed by the etching, respectively. Subsequently, using the first electrode 4 as a mask, boron ions (B +11 ) are implanted into the n + type semiconductor layer 2 and neutralized to form a low concentration n type semiconductor layer 2' (first Figure c). At this time, the intensity of ion implantation is adjusted so that boron ions are not implanted under the first electrode 4. Furthermore, after depositing a polycrystalline silicon film (not shown) on the entire surface, etching is performed using a resist pattern formed by photolithography as a mask, and a second polycrystalline silicon electrode (second polycrystalline silicon film) is formed on the gate oxide film 6. electrode)
7..., a part of which is connected to the first electrode 4 through the thermal oxide film 5.
Formed so that it partially overlaps with... Finally, the adjacent first and second electrodes 4..., 7... are connected by Al wiring or the like to form a φ1 electrode and a φ2 electrode to manufacture a desired charge-coupled device (as shown in FIG. 1d). ).

このようにして製造される電荷結合素子におい
て、φ1電極(又はφ2電極)に所定の電圧を印加
すると、ボロンが打込まれていないn型の半導体
層2部分は高濃度で、第2の電極7…下のボロン
が打込まれた半導体層2′部分は低濃度であるた
め、第1の電極4…下の電位井戸は第2の電極7
…下の電位井戸よりも深くなる。従つて、例えば
φ2電極に高レベルの電圧を、φ1電極に低レベル
の電圧を印加した場合、第2図に示すような電位
曲線がえられる。
In the charge-coupled device manufactured in this way, when a predetermined voltage is applied to the φ 1 electrode (or φ 2 electrode), the portion of the n-type semiconductor layer 2 where boron is not implanted is highly concentrated, and the second Since the boron-implanted semiconductor layer 2' portion below the electrode 7 has a low concentration, the potential well below the first electrode 4 is the same as that of the second electrode 7.
...deeper than the potential well below. Therefore, for example, when a high level voltage is applied to the φ 2 electrode and a low level voltage is applied to the φ 1 electrode, a potential curve as shown in FIG. 2 is obtained.

背景技術の問題点 しかしながら、上記製造方法においては、
SiO2膜3をフツ化アンモン等でエツチング除去
する際、エツチングに等方性があるためサイドエ
ツチングがおこり、後工程での第1の電極4…及
び半導体層2′の熱酸化に際して第1の電極4…
の両下端部近くのゲート酸化膜6が厚くなり、第
1の電極4…の両端が持ち上がる、リフテイング
と呼ばれる現象が生じる。かかる場合、打ち込ま
れたボロンの横方向拡散が小さくなるため、φ2
電極に高レベル、φ1電極に低レベルの電圧を印
加すると、リフテイング部分にポテンシヤルポケ
ツト(第2図中矢印部分)と呼ばれる電位のよど
みができ、これが電荷の転送効率の劣化を招く。
なお、前記リフテイング現象はサイドエツチング
量が多い場合顕著に表われてくる。このリフテイ
ング現象に関しては詳しくは、例えばIEEE
IEDM1979 P606にC.L.Chen等により「The
Effect of Interpoly Structure Variation on
Charge Transfer Efficiency of A Buried
Channel CCD」という表現で報告されている。
Problems with the Background Art However, in the above manufacturing method,
When removing the SiO 2 film 3 by etching with ammonium fluoride or the like, side etching occurs because the etching is isotropic. Electrode 4...
The gate oxide film 6 near both lower ends of the first electrode 4 becomes thicker, causing a phenomenon called lifting in which both ends of the first electrode 4 are lifted. In such a case, the lateral diffusion of the implanted boron becomes small, so that φ 2
When a high-level voltage is applied to the electrode and a low-level voltage is applied to the φ1 electrode, a potential stagnation called a potential pocket (arrow in FIG. 2) is created in the lifting area, which causes a deterioration in charge transfer efficiency.
Incidentally, the above-mentioned lifting phenomenon becomes noticeable when the amount of side etching is large. For more information on this lifting phenomenon, see IEEE
“The
Effect of Interpoly Structure Variation on
Charge Transfer Efficiency of A Buried
It is reported under the expression "Channel CCD".

発明の目的 本発明は上記事情に鑑みてなされたもので、ボ
ロンインプラを行なわずに電荷転送駆動を可能に
するとともに、転送効率の劣化の原因となるポテ
ンシヤルポケツトの発生を阻止した電荷結合素子
の製造方法を提供することを目的とするものであ
る。
Purpose of the Invention The present invention has been made in view of the above circumstances, and provides a charge coupled device that enables charge transfer driving without boron implantation and prevents the generation of potential pockets that cause deterioration of transfer efficiency. The purpose is to provide a manufacturing method.

発明の概要 本発明は、1導電型の半導体基板表面に電荷を
転送する埋込みチヤンネルを有する電荷結合素子
の製造に際し、第1、第2の電極下の電位井戸に
段差を設けるためのボロンインプラを行なわず、
埋込みチヤンネルを形成するために用いた砒素イ
ンプラの前記基板上の絶縁膜への吸い出しによ
り、埋込みチヤンネルの温度差を考えて第1、第
2の電極下の電位井戸に段差をつけ、電荷転送駆
動を可能としたものである。特に、埋込みチヤン
ネルの形成に際し基板に打込む砒素イオンを、前
記基板表面にイオン濃度ピークをもつようにする
ことと、後工程の半導体層の形成に際し注入され
た砒素イオンが充分活性化されない程度に熱処理
することを発明の骨子とする。
Summary of the Invention The present invention employs boron implantation to provide a step in a potential well under a first and second electrode when manufacturing a charge-coupled device having a buried channel for transferring charge to the surface of a semiconductor substrate of one conductivity type. without doing it,
By sucking out the arsenic implant used to form the buried channel into the insulating film on the substrate, a step is created in the potential wells under the first and second electrodes in consideration of the temperature difference in the buried channel, and charge transfer drive is performed. This made it possible. In particular, it is important to ensure that the arsenic ions implanted into the substrate when forming the buried channel have an ion concentration peak on the substrate surface, and to ensure that the arsenic ions implanted during the formation of the semiconductor layer in the subsequent process are not sufficiently activated. The gist of the invention is heat treatment.

発明の実施例 本発明を、CCDの埋込み型2相駆動の電荷結
合素子の製造に適用した場合について第3図a〜
dに基づいて説明する。
Embodiments of the Invention When the present invention is applied to the manufacture of an embedded two-phase drive charge-coupled device for a CCD, FIGS.
The explanation will be based on d.

〔〕 まず、埋込み型CCDを形成するため、p型
のシリコン基板11に、砒素イオンをドーズ量
1.0〜5.0×1012cm-2程度で前記基板表面にイオ
ン濃度のピークをもつように打込んだ。次に、
前記基板11に低温酸化膜(図示せず)を堆積
し、1000℃、N2雰囲気中で注入された砒素イ
オンが充分活性化されない程度に数10分〜数時
間の熱処理を行なつて前記基板11上にn+
の半導体層12を形成した。つづいて、前記低
温酸化膜を除去しフイールド領域を形成した
後、前記半導体層12上にSiO2膜13を形成
した。次いで、従来と同様な方法により前記
SiO2膜13上に複数の第1の多結晶シリコン
電極(第1の電極)14…を形成した(第3図
a図示)。
[] First, in order to form an embedded CCD, arsenic ions are dosed into the p-type silicon substrate 11.
The ions were implanted at a concentration of about 1.0 to 5.0×10 12 cm −2 onto the surface of the substrate so as to have a peak in ion concentration. next,
A low-temperature oxide film (not shown) is deposited on the substrate 11, and heat treatment is performed at 1000°C in an N2 atmosphere for several tens of minutes to several hours to the extent that the implanted arsenic ions are not sufficiently activated. An n + type semiconductor layer 12 was formed on the semiconductor layer 11 . Subsequently, after removing the low temperature oxide film to form a field region, a SiO 2 film 13 was formed on the semiconductor layer 12. Next, the above-mentioned
A plurality of first polycrystalline silicon electrodes (first electrodes) 14 were formed on the SiO 2 film 13 (as shown in FIG. 3A).

〔〕 次に、第1の電極14…をマスクとして露
出するSiO2膜13をフツ化アンモン等により
エツチング除去した(第3図b図示)。つづい
て、1000℃DryO2中で熱酸化を行なつて前記第
1の電極14…の周囲及びエツチングにより露
出する半導体層12上に、夫々熱酸化膜15、
ゲート酸化膜16を形成した(第3図c図示)。
なお、この熱酸化により第1の電極14…下の
n+型の半導体層12は高濃度となり、第2の
電極形成予定下の部分は低濃度のn型の半導体
層12′となる。以下、従来例と同様な方法に
より第2の多結晶シリコン電極(第2の電極)
17…及びφ1電極、φ2電極を形成して所望の
電荷結合素子を製造した(第3図d図示)。
[] Next, using the first electrodes 14 as a mask, the exposed SiO 2 film 13 was removed by etching with ammonium fluoride or the like (as shown in FIG. 3B). Subsequently, thermal oxidation is performed in DryO 2 at 1000° C. to form thermal oxide films 15 and 15 on the surroundings of the first electrodes 14 and on the semiconductor layer 12 exposed by etching, respectively.
A gate oxide film 16 was formed (as shown in FIG. 3c).
Note that due to this thermal oxidation, the lower part of the first electrode 14...
The n + -type semiconductor layer 12 has a high concentration, and the portion where the second electrode is to be formed becomes a low-concentration n-type semiconductor layer 12'. Hereinafter, a second polycrystalline silicon electrode (second electrode) is prepared in the same manner as in the conventional example.
17..., a φ 1 electrode, and a φ 2 electrode to manufacture a desired charge-coupled device (as shown in FIG. 3d).

しかして、上述した製造方法によれば、埋込み
型CCDの形成に際しリンイオンに比べて拡散係
数がかなり小さい砒素イオンを用いているため、
後工程の熱処理を経た後も拡散が余り進まないと
ともに、砒素イオンが基板11表面に堆積するた
め、基板11の表面濃度がイオン打込み当初と比
較してあまり変化しない。
However, according to the above-mentioned manufacturing method, since arsenic ions, which have a much smaller diffusion coefficient than phosphorus ions, are used when forming the embedded CCD,
Even after the post-process heat treatment, diffusion does not progress much and the arsenic ions are deposited on the surface of the substrate 11, so the surface concentration of the substrate 11 does not change much compared to the initial stage of ion implantation.

また、基板11に注入された砒素イオン濃度の
ピークが基板11表面に位置するとともに、砒素
イオンが充分に活性化されない程度に熱処理され
ているため、第1の電極14…上に熱酸化膜15
と、第1の電極14…間にゲート酸化膜16を形
成する工程において、第1の電極14…間から露
出するn型の半導体層部分は、第1の電極14…
下のn+型の半導体層12部分と比較して砒素原
子のゲート酸化膜16への吸い出し量が多く低濃
度のn型の半導体層12′となる。その結果、第
1、第2の電極14…,17…下にイオン濃度差
を設けることができ、これら電極14…,17…
に等電圧を印加した時の電位の段差は2〜4V生
じる。従つて、従来の如く第1、第2電極14
…,17…下の電位に落差を設けるためにボロン
イオン(B+11)を打ち込むことがなく、工程の
短縮ができる。
Further, since the peak of the arsenic ion concentration implanted into the substrate 11 is located on the surface of the substrate 11 and the heat treatment is performed to such an extent that the arsenic ions are not sufficiently activated, the thermal oxide film 15 is formed on the first electrode 14.
In the step of forming the gate oxide film 16 between the first electrodes 14 , the n-type semiconductor layer portion exposed between the first electrodes 14 is formed between the first electrodes 14 .
Compared to the n + -type semiconductor layer 12 portion below, the amount of arsenic atoms sucked into the gate oxide film 16 is large, resulting in a low concentration n-type semiconductor layer 12'. As a result, a difference in ion concentration can be provided under the first and second electrodes 14..., 17..., and these electrodes 14..., 17...
When an equal voltage is applied to , a difference in potential of 2 to 4 V occurs. Therefore, as in the conventional case, the first and second electrodes 14
..., 17... There is no need to implant boron ions (B +11 ) to create a drop in the potential below, and the process can be shortened.

更に、第1の電極14…をマスクとしてSiO2
膜13をエツチングする際、サイドエツチングが
生じても前述した理由からサイドエツチングされ
た部分での砒素イオンの吸い出され方はなだらか
に変化している。従つて、第3図d図示の電荷結
合素子においては、第1、第2の電極14…,1
7…との重なり部分においても第4図図示の電位
曲線の如くポテンシヤルポケツトと呼ばれる電位
のよどみがなく、これに起因する転送効率の劣化
は生じない。
Furthermore, using the first electrodes 14 as a mask, SiO 2
Even if side etching occurs when the film 13 is etched, the way arsenic ions are sucked out at the side etched portion changes gradually for the reasons described above. Therefore, in the charge coupled device shown in FIG. 3d, the first and second electrodes 14..., 1
7, there is no potential stagnation called a potential pocket as shown in the potential curve shown in FIG. 4, and no deterioration in transfer efficiency occurs due to this.

なお、上記実施例では駆動方法として2相駆動
の場合について述べたが、これに限らず、単相、
3相、4相駆動でも同様に適用できる。
Note that in the above embodiment, the case of two-phase drive was described as the drive method, but the drive method is not limited to this, and single-phase,
The same applies to three-phase and four-phase drives.

発明の効果 以上詳述した如く本発明によれば、ボロンイン
プラ工程を省略して2相駆動を可能にするととも
に、ポテンシヤルポケツトの発生を阻止して転送
効率の劣化を防止した信頼性の高いCCDの埋込
み型2相駆動の電荷結合素子等の電荷結合素子の
製造方法を提供できるものである。
Effects of the Invention As detailed above, according to the present invention, a highly reliable CCD that eliminates the boron implantation process, enables two-phase drive, prevents the occurrence of potential pockets, and prevents deterioration of transfer efficiency. The present invention provides a method for manufacturing a charge coupled device such as an embedded two-phase drive charge coupled device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは従来の電荷結合素子の製造方法
を製造工程順に示す断面図、第2図は第1図d図
示の電荷結合素子における電位曲線を示す特性
図、第3図a〜dは本発明の電荷結合素子の製造
方法を製造工程順に示す断面図、第4図は第3図
d図示の電荷結合素子における電位曲線を示す特
性図である。 11……p型のシリコン基板、12……n+
の半導体層、12′……n型の半導体層、13…
…SiO2膜、14……第1の多結晶シリコン電極
(第1の電極)、15……熱酸化膜、16……ゲー
ト酸化膜、17……第2の多結晶シリコン電極
(第2の電極)。
Figures 1 a to d are cross-sectional views showing the conventional method for manufacturing a charge coupled device in the order of manufacturing steps, Figure 2 is a characteristic diagram showing the potential curve of the charge coupled device shown in Figure 1 d, and Figures 3 a to d 4 is a cross-sectional view showing the method for manufacturing a charge-coupled device according to the present invention in the order of manufacturing steps, and FIG. 4 is a characteristic diagram showing a potential curve of the charge-coupled device shown in FIG. 3d. 11... p-type silicon substrate, 12... n + type semiconductor layer, 12'... n-type semiconductor layer, 13...
...SiO 2 film, 14... First polycrystalline silicon electrode (first electrode), 15... Thermal oxide film, 16... Gate oxide film, 17... Second polycrystalline silicon electrode (second electrode).

Claims (1)

【特許請求の範囲】[Claims] 1 1導電型の半導体基板表面に電荷を転送する
埋込みチヤンネルを有する電荷結合素子の製造に
際し、前記基板に、砒素イオンを該基板表面にイ
オン濃度ピークをもつように打込む工程と、注入
された砒素イオンが充分活性化されない程度に熱
処理を施して前記基板上に第2導電型の半導体層
を形成する工程と、この半導体層の絶縁膜上に複
数の第1の電極を形成する工程と、第1の電極を
マスクとして前記絶縁膜をエツチングする工程
と、熱酸化を施して少なくとも露出する半導体層
に熱酸化膜を形成する工程と、この熱酸化膜上に
第2の電極を、絶縁膜を介して第1の電極に一部
オーバラツプするように形成する工程とからなる
ことを特徴とする電荷結合素子の製造方法。
1. In manufacturing a charge-coupled device having a buried channel for transferring charge to the surface of a semiconductor substrate of one conductivity type, a step of implanting arsenic ions into the substrate such that the ion concentration peaks at the surface of the substrate, forming a second conductivity type semiconductor layer on the substrate by performing heat treatment to such an extent that arsenic ions are not sufficiently activated; forming a plurality of first electrodes on the insulating film of the semiconductor layer; a step of etching the insulating film using the first electrode as a mask; a step of performing thermal oxidation to form a thermal oxide film on at least the exposed semiconductor layer; and forming a second electrode on the thermal oxide film; A method for manufacturing a charge coupled device, comprising the step of forming a first electrode so as to partially overlap the first electrode via the first electrode.
JP714582A 1982-01-20 1982-01-20 Manufacture of charge coupled element Granted JPS58124271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP714582A JPS58124271A (en) 1982-01-20 1982-01-20 Manufacture of charge coupled element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP714582A JPS58124271A (en) 1982-01-20 1982-01-20 Manufacture of charge coupled element

Publications (2)

Publication Number Publication Date
JPS58124271A JPS58124271A (en) 1983-07-23
JPS6328355B2 true JPS6328355B2 (en) 1988-06-08

Family

ID=11657897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP714582A Granted JPS58124271A (en) 1982-01-20 1982-01-20 Manufacture of charge coupled element

Country Status (1)

Country Link
JP (1) JPS58124271A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265397B1 (en) * 2000-08-30 2007-09-04 Sarnoff Corporation CCD imager constructed with CMOS fabrication techniques and back illuminated imager with improved light capture

Also Published As

Publication number Publication date
JPS58124271A (en) 1983-07-23

Similar Documents

Publication Publication Date Title
US4613402A (en) Method of making edge-aligned implants and electrodes therefor
JP2006261703A (en) Mesa separated silicon on insulator transistor and manufacturing method of the same
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPH0628311B2 (en) Buried channel charge coupled device fabrication method
JP2008153685A (en) Method for manufacturing semiconductor device
JPH0640582B2 (en) Method for manufacturing insulating gate field effect transistor
JPS6038874A (en) Method of producing semiconductor device
JPS62203380A (en) Semiconductor device and manufacture of the same
JPH0348656B2 (en)
JP4054557B2 (en) Manufacturing method of semiconductor device
JPS6328355B2 (en)
WO1988007758A1 (en) Method of manufacture of a two-phase ccd
JPS6252950B2 (en)
JP3016607B2 (en) Manufacturing method of nonvolatile memory
JPS5837990B2 (en) Manufacturing method of semiconductor device
JPS61502993A (en) 3-well CMOS technology
JP2003518771A (en) Method of manufacturing a semiconductor device having a semiconductor element formed on a top layer disposed on a buried insulating layer of a silicon wafer
JPH0917799A (en) Method of preparing substrate surface for semiconductor device
JP2926817B2 (en) Method for manufacturing semiconductor device
JP3366709B2 (en) Method for manufacturing MOS transistor
JPH04165629A (en) Mos semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET
JP2712424B2 (en) Method for manufacturing charge transfer device
JPS6184051A (en) Semiconductor element
JPS5847869B2 (en) Denkai Sousoshi