JPS63283553A - Production of sterilized blood powder - Google Patents
Production of sterilized blood powderInfo
- Publication number
- JPS63283553A JPS63283553A JP62116781A JP11678187A JPS63283553A JP S63283553 A JPS63283553 A JP S63283553A JP 62116781 A JP62116781 A JP 62116781A JP 11678187 A JP11678187 A JP 11678187A JP S63283553 A JPS63283553 A JP S63283553A
- Authority
- JP
- Japan
- Prior art keywords
- dried
- blood
- sterilization
- superheated steam
- blood components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 75
- 239000008280 blood Substances 0.000 title claims abstract description 75
- 239000000843 powder Substances 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000012503 blood component Substances 0.000 claims abstract description 78
- 210000002966 serum Anatomy 0.000 claims abstract description 39
- 238000001816 cooling Methods 0.000 claims abstract description 25
- 238000000926 separation method Methods 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 210000002381 plasma Anatomy 0.000 claims description 51
- 238000001035 drying Methods 0.000 claims description 19
- 210000000601 blood cell Anatomy 0.000 claims description 15
- 230000001954 sterilising effect Effects 0.000 abstract description 112
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 94
- 230000000694 effects Effects 0.000 abstract description 12
- 239000000306 component Substances 0.000 abstract description 9
- 230000015271 coagulation Effects 0.000 abstract description 5
- 238000005345 coagulation Methods 0.000 abstract description 5
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000002411 adverse Effects 0.000 abstract 1
- 238000013019 agitation Methods 0.000 abstract 1
- 241000894006 Bacteria Species 0.000 description 60
- 238000010438 heat treatment Methods 0.000 description 30
- 238000000034 method Methods 0.000 description 30
- 239000000047 product Substances 0.000 description 29
- 230000007423 decrease Effects 0.000 description 23
- 244000005700 microbiome Species 0.000 description 22
- 239000002245 particle Substances 0.000 description 20
- 235000013305 food Nutrition 0.000 description 17
- 239000005996 Blood meal Substances 0.000 description 14
- 239000012530 fluid Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000000813 microbial effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 5
- 230000036425 denaturation Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 102000009123 Fibrin Human genes 0.000 description 4
- 108010073385 Fibrin Proteins 0.000 description 4
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 229950003499 fibrin Drugs 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000001073 sample cooling Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000065698 Teredo navalis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、動物の血液から低温乾燥によって得られる
乾燥血漿、乾燥血液、乾燥血球あるいは乾燥全血等の未
変性乾燥血液成分から、食品または食品、医薬品等の加
工材料として緒特性を損うことなく加熱殺菌された血粉
を得ることのできる血粉の製造方法に関するものである
。Detailed Description of the Invention "Industrial Application Field" The present invention is directed to the production of foods or products from undenatured dried blood components such as dried plasma, dried blood, dried blood cells, or dried whole blood obtained from animal blood by low-temperature drying. The present invention relates to a method for producing blood powder that can be heat-sterilized and used as a processing material for foods, medicines, etc. without impairing its properties.
「従来の技術および問題点」
周知のように、牛、豚等の屠殺の血液は、高蛋白質、低
脂肪であり、しかも、蛋白質中に含まれるアミノ酸構成
も栄養的に優れたものである。"Prior Art and Problems" As is well known, blood from slaughtered cows, pigs, etc. is high in protein and low in fat, and the amino acid composition contained in the protein is nutritionally excellent.
しかし、このような屠殺動物の血液の利用状況をみると
、ごく一部が煮沸凝固等の簡単な処理法で低品質のもの
が製造され、肥料用または飼料用として利用されている
に過ぎず、大部分は未利用のまま排゛水処理され、排水
処理上の大きな負担になっているのが現状である。However, if we look at the state of use of blood from slaughtered animals, only a small portion of it is manufactured using simple processing methods such as boiling and coagulation to produce low-quality blood, and is used for fertilizer or feed. At present, most of the waste water is treated unused, creating a huge burden on wastewater treatment.
そこで、近年、畜産動物の副生物質の有効利用と、屠殺
場の近代化の立場から血液成分の優れた栄養価値の他に
血液成分の持つ優れた食品等の加工上の諸物性を生かす
血液処理方法として、血液を遠心分離機にかけて血液を
血球と血漿に分離するか、あるいは血液からフィブリン
を取り除き、その血液を遠心分離機にかけて血球と血清
とに分離して、分離したそれぞれをスプレー乾燥、凍結
乾燥、真空乾燥等の低温乾燥によって蛋白を変性させず
に乾燥製品である血粉を得る方法が提供されている。
この方法で得た血粉の内、例えば、血漿または血清は、
淡黄色をしており、またゲル強度が乾燥血粉の状態で、
例えば、豚血漿では300g/cut以上、牛血類で5
00g/cd以上あり、本来、粘弾性、こし、歯ごたえ
等が重要視される食品の添加剤となり得る。例えば、代
用卵白などとして有効利用が可能である。Therefore, in recent years, from the viewpoint of effective use of by-products of livestock animals and modernization of slaughterhouses, in addition to the excellent nutritional value of blood components, blood components that take advantage of their excellent physical properties for food processing have been developed. As a processing method, blood is separated into blood cells and plasma using a centrifuge, or fibrin is removed from the blood, the blood is separated into blood cells and serum using a centrifuge, and the separated parts are spray-dried. BACKGROUND ART A method of obtaining blood powder as a dried product without denaturing proteins by low-temperature drying such as freeze drying or vacuum drying has been provided.
Among the blood powder obtained by this method, for example, plasma or serum
It has a pale yellow color and the gel strength is that of dried blood powder.
For example, pig plasma has a concentration of 300 g/cut or more, and bovine blood has a concentration of 5 g/cut or more.
00g/cd or more, it can be used as an additive for foods where viscoelasticity, texture, texture, etc. are important. For example, it can be effectively used as an egg white substitute.
しかし、前記従来の方法では、濃縮乾燥温度が低いため
に、温度による殺菌は考えられず、得られる血漿または
血清製品には、おおよそ1g当たり10’−10”ケ位
の多量の一般生菌数があるケースが多く、また、耐熱芽
胞菌数も103ケ/gより多く、大腸菌群数も陽性であ
り、食品としての安全性に問題があった。However, in the conventional method, sterilization by temperature cannot be considered because the concentration and drying temperature is low, and the obtained plasma or serum product contains a large number of general viable bacteria of approximately 10'-10'' per gram. In addition, the number of heat-resistant spore bacteria was more than 103 cases/g, and the number of coliform bacteria was also positive, which posed a problem in terms of safety as a food.
血粉を食品または食品、医薬等の加工材料とする場合、
最も注意を要するのは、微生物による汚染である。その
ためには、血粉の原料を得る採血工程で衛生的な採血方
法を採用する必要があり、また、それ以後の分離乾燥工
程においても、外部からの微生物の混入や工程内での微
生物の増殖を揚力抑えることが大切である。しかし、製
造工程上で、これらの微生物を完全に抑えることが困難
である。When blood powder is used as food or a processing material for foods, medicines, etc.
What requires the most attention is contamination by microorganisms. To this end, it is necessary to adopt a hygienic blood collection method in the blood collection process to obtain the raw material for blood powder, and also to prevent the contamination of external microorganisms and the growth of microorganisms within the process in the subsequent separation and drying process. It is important to suppress lift. However, it is difficult to completely suppress these microorganisms during the manufacturing process.
そこで、得られた血粉の殺菌が重要となるが、従来、血
粉の殺菌の方法としては、一つにはエチレンオキサイド
、プロピレンオキサイド等によるガス殺菌が知られてい
る。この殺菌法は、蛋白質の変性も少なく、血粉の溶解
度やゲル強度の低下を起こすことなく、殺菌が可能であ
るが、使用ガスの残留毒性の問題が未解決である。その
他の殺菌法としては、加熱殺菌法がある。この殺菌法は
、衛生的には優れた殺菌法であるが、蛋白質の熱変性が
起こり、ゲル強度等の諸物性が低下し、血粉の商品価値
の著しい低下の原因となる。Therefore, it is important to sterilize the obtained blood powder, and gas sterilization using ethylene oxide, propylene oxide, etc. has been known as one of the conventional methods for sterilizing blood powder. This sterilization method causes little protein denaturation and enables sterilization without reducing blood meal solubility or gel strength, but the problem of residual toxicity of the gas used remains unsolved. Other sterilization methods include heat sterilization. Although this sterilization method is excellent from a hygienic standpoint, thermal denaturation of proteins occurs, resulting in a decrease in physical properties such as gel strength, and a significant decrease in the commercial value of blood meal.
ところで、本願発明に先立って、本出願人は血液または
血漿等の血液成分から、それらの水溶性(溶解性)と、
熱凝固性を50%を越えて低下させずに殺菌された乾燥
製品を得る方法を提案した(特公昭60−15号)。こ
の方法は、血液または遠心分離機等によって分離された
各血液成分を低温乾燥し、含水率30重量%以下の乾燥
品とし、それらの乾燥品をそれぞれの含水率に対して8
0〜160 ℃の温度に加熱、殺菌するものであるが、
粘弾性、こし、歯ごたえ等が重要視される添加剤として
の物性であるゲル強度については考慮されていなかった
。By the way, prior to the present invention, the present applicant determined the water solubility (solubility) of blood components such as blood or plasma,
A method for obtaining a sterilized dry product without reducing thermal coagulability by more than 50% was proposed (Japanese Patent Publication No. 1983-15). In this method, blood or each blood component separated by a centrifuge or the like is dried at low temperature to produce a dried product with a moisture content of 30% by weight or less, and the dried product is made into a dried product with a moisture content of 8% or less.
It is heated to a temperature of 0 to 160 °C and sterilized,
No consideration was given to gel strength, which is a physical property of an additive in which viscoelasticity, stiffness, texture, etc. are important.
ゲル強度は、溶解度(水溶性)や熱凝固性とは異なった
現象で、例えば、血球は赤褐色をしており、栄養的には
血漿や血清同様に優れた組成のものであり、蛋白質の含
量の点で見ると乾燥物換算で約90%と血漿や血清の7
0〜75%に比較して優れている。しかし、血球は本来
ゲル強度を有しておらず、また血漿や血清の乾燥製品を
得る際に溶解度や熱凝固性を維持できても、その乾燥製
品を加熱凝固させた物がぼろぼろで軟らかいためにゲル
強度を測定するのが不可能になる場合が多い。たとえ、
乾燥製品を得る際に溶解度を80%程度に維持できても
、このゲル強度は非常に低下してしまう。Gel strength is a phenomenon different from solubility (water solubility) and thermocoagulability.For example, blood cells are reddish-brown in color and have a nutritionally superior composition similar to plasma and serum. In terms of dry matter, it is about 90% and 7% of plasma and serum.
This is superior compared to 0 to 75%. However, blood cells do not inherently have gel strength, and even if solubility and heat coagulation properties can be maintained when dry plasma or serum products are obtained, the dried products that are heated and coagulated are crumbly and soft. It is often impossible to measure gel strength. parable,
Even if the solubility can be maintained at about 80% when obtaining a dry product, the gel strength will be significantly reduced.
従って、全血、血球成分ばかりでなく、血漿成分、血清
成分をも含めたすべての種類の血液成分を各々乾燥品と
した各血粉を同等に殺菌する方法としては、処理後の血
粉の水溶性や熱凝固性を損なわないばかりでなく、ゲル
強度をも維持できる方法でなければならない。Therefore, as a method for equally sterilizing blood powder made by drying all types of blood components, including not only whole blood and blood cell components, but also plasma components and serum components, it is necessary to sterilize the water-soluble blood powder after processing. It must be a method that not only does not impair thermal coagulation properties but also maintains gel strength.
本発明者らは、上記事情に鑑みて種々検討した結果、前
記の低温乾燥で得られた血漿、血清等のゲル強度を有す
る乾燥血液成分(血粉)を初期水分3〜12重量%の状
態で、120〜180℃の過熱蒸気と接触させ、この過
熱蒸気と乾燥血液成分との完全接触状態を5〜20秒間
持続させた後、過熱蒸気と乾燥血液成分とを分離し、分
離後、直ちに乾燥血液成分を110℃以下に冷却すれば
、そのゲル強度がほとんど低下せず、一般生菌、大腸菌
群のみならず耐熱芽胞菌の殺菌にも有効であることを知
見した。As a result of various studies in view of the above circumstances, the present inventors have determined that dried blood components (blood powder) having gel strength such as plasma and serum obtained by the above-mentioned low temperature drying are dried at an initial moisture content of 3 to 12% by weight. , contact with superheated steam at 120 to 180° C., maintain complete contact between the superheated steam and the dried blood component for 5 to 20 seconds, separate the superheated steam and the dried blood component, and dry immediately after separation. It has been found that if the blood component is cooled to 110° C. or lower, its gel strength hardly decreases and it is effective in sterilizing not only general viable bacteria and coliform bacteria but also heat-resistant spore-forming bacteria.
本発明は、上記知見に基づいてなされたもので、その目
的は、水溶性、熱凝固性ばかりでなくゲル強度の低下を
もほとんど生じさせることなく、血粉の一般生菌、大腸
菌、耐熱芽胞菌の滅菌(商業滅菌)を行なうことができ
る血粉の製造方法を提供することにある。The present invention has been made based on the above findings, and its purpose is to improve blood meal's general viable bacteria, Escherichia coli, and heat-resistant spore-forming bacteria without causing any decrease in not only water solubility and heat coagulation properties but also gel strength. An object of the present invention is to provide a method for producing blood meal that can be sterilized (commercial sterilization).
「問題点を解決するための手段」
この発明に係る血粉の製造方法は、血液から得られた初
期水分が3〜12重量%の未変性乾燥血液成分に120
〜180℃の過熱蒸気(Superheated St
eam)を接触させ、この過熱蒸気と乾燥血液成分との
完全接触状態を5〜20秒間持続させた後、過熱蒸気と
乾燥血液成分とを分離し、分離後、直ちに乾燥血液成分
を110℃以下に冷却することを特徴とする方法である
。"Means for Solving the Problems" The method for producing blood meal according to the present invention is characterized in that the initial moisture obtained from blood is reduced to 120% by weight of undenatured dried blood components of 3 to 12% by weight.
~180℃ superheated steam (Superheated St
After maintaining complete contact between the superheated steam and the dried blood components for 5 to 20 seconds, the superheated steam and the dried blood components are separated, and immediately after separation, the dried blood components are heated to 110°C or below. This method is characterized by cooling to .
「作用」
上記方法によれば、低温乾燥で得られた乾燥全血、乾燥
血球ばかりでなく、乾燥血漿、乾燥血清をも含めたすべ
ての種類の未変性乾燥血液成分を、その水溶性や熱凝固
性を損なわないばかりでなく、そのゲル強度をほとんど
低下させずに十分殺菌することが可能となる。``Effect'' According to the above method, all types of undenatured dried blood components, including not only dried whole blood and dried blood cells obtained by low-temperature drying, but also dried plasma and dried serum, can be extracted by their water solubility and heat. Not only does it not impair coagulability, but it also becomes possible to sufficiently sterilize the gel without reducing its gel strength.
係る血粉の殺菌において、血粉の内、乾燥血漿、乾燥血
清の殺菌がそのゲル強度を低下させないで、行なえる条
件であるならば、乾燥血球、乾燥全血の殺菌において必
要な血粉の水溶性、熱凝固性の維持も処理条件的に自動
的に確保される。従って、以下の実施例においては、未
変性乾燥血液成分として主に乾燥血漿挙げて説明する。In the sterilization of blood powder, if the conditions allow dry plasma and dried serum to be sterilized without reducing their gel strength, the water solubility of blood powder necessary for sterilization of dried blood cells and dried whole blood, Maintenance of thermal coagulability is also automatically ensured based on processing conditions. Therefore, in the following examples, dried plasma will mainly be used as the undenatured dried blood component.
「実施例」
第6図に示すように、套管状ナイフ等で家畜動物1から
衛生的に採血を行なうと同時に抗凝固剤タンク2のクエ
ン酸ソーダ水溶液等の抗凝固剤を直ちに血液に対して例
えばクエン酸ソーダとして0.5重量%程度混合して血
液の凝固を防止する。"Example" As shown in Fig. 6, blood is hygienically collected from a domestic animal 1 using a cannula-like knife, and at the same time an anticoagulant such as a sodium citrate aqueous solution in an anticoagulant tank 2 is immediately applied to the blood. For example, about 0.5% by weight of sodium citrate is mixed to prevent blood coagulation.
採血された血液は、ストレーナ−3を通して混入した肉
片、脂肪片、毛などの夾雑物を除去した後に、一旦検査
タンク4に貯留する。検査タンク4に貯留している間に
屠体の検査等で病気の屠畜等の有無を調べた後に、衛生
的であると確認された血液のみを次の熱交換器5を通し
、冷却したあと、遠心分離機6に送る。この高速連続式
の遠心分離機6で分離を行ない、軽液部分を血漿液、重
液部分を血球液として回収する。得られた血漿液を次の
血漿真空低温乾燥機7に送り、ここで血漿液の濃度が薄
い段階では品温を好ましくは40℃以下に、濃度が50
重量%以上と高くなった段階でも品温を50℃以下に保
ちながら低温で乾燥を行ない、血漿液中の蛋白質が熱変
性しないように留意する。真空低温乾燥機7での乾燥の
程度は、次の工程の殺菌段階を考慮に入れて乾燥の度合
を調整し、適切な水分の段階で乾燥を止める。乾燥した
血漿粉は、粉砕機8で通常60メツシユアンダ一位に粉
砕を行なう。The collected blood is passed through a strainer 3 to remove contaminants such as meat pieces, fat pieces, and hair, and then temporarily stored in a test tank 4. While the blood was stored in the inspection tank 4, the carcasses were inspected for the presence of diseased animals, and only blood that was confirmed to be hygienic was passed through the next heat exchanger 5 and cooled. Then, send it to centrifuge 6. Separation is performed using this high-speed continuous centrifuge 6, and the light liquid portion is recovered as plasma liquid and the heavy liquid portion is recovered as blood cell liquid. The obtained plasma solution is sent to the next plasma vacuum low-temperature dryer 7, where the product temperature is preferably kept at 40°C or less at the stage where the concentration of the plasma solution is low, and the concentration is lowered to 50°C.
Even when the temperature exceeds 50% by weight, drying is performed at a low temperature while keeping the product temperature below 50°C, and care is taken to prevent proteins in the plasma from being thermally denatured. The degree of drying in the vacuum low-temperature dryer 7 is adjusted taking into account the sterilization step of the next step, and the drying is stopped at an appropriate moisture level. The dried plasma powder is usually pulverized by a pulverizer 8 to about 60 mesh particles.
なお、乾燥血漿に代えて乾燥血清を得る場合は、血液か
ら捕捉素子等を血液中で緩やかにかきまぜて血液中のフ
ィブリンをまつわりつけて取り除いた後、遠心分離機で
血清液と血球液に分離するか、遠心分離機で分離された
血漿液をしばらく貯留槽に蓄え、フィブリンを凝固させ
、凝固したフィブリンを篩別、濾別またはストレーナ等
を用いて取り除いて血清液を得て、この血清液を前記と
同様に真空低温乾燥機で乾燥すればよい。In addition, when obtaining dried serum instead of dried plasma, gently stir the capture element etc. in the blood to remove the entangled fibrin in the blood, and then separate it into serum liquid and blood cell liquid using a centrifuge. Alternatively, the plasma separated by a centrifuge is stored in a storage tank for a while, the fibrin is coagulated, and the coagulated fibrin is removed using a sieve, filtration, or strainer to obtain a serum solution. may be dried in a vacuum low temperature dryer in the same manner as above.
本発明を効果的に実施するためには、次工程である殺菌
工程以前の前記採血工程、分離工程、乾燥工程で蛋白質
を含む食品等の取り扱いに関する常識的な注意事項が重
要である。すなわち、採血の際に出来るだけ微生物が血
液に混入しないように注意を払うこと、採血後、冷却を
充分に行ない、好ましくは4℃以下きし、採血後の血液
中の微生物が増殖しないようにすることが大切である。In order to effectively carry out the present invention, it is important to take common-sense precautions regarding the handling of foods containing proteins in the blood collection step, separation step, and drying step before the next step, the sterilization step. In other words, when collecting blood, be careful to prevent microorganisms from getting into the blood, and after collecting blood, cool it sufficiently, preferably below 4°C, to prevent the growth of microorganisms in the blood after blood collection. It is important to do so.
また、分離工程では遠心分離機で血液の温度が上がるの
で、分離液を貯留する貯留槽(図示せず)では、再度4
℃以下に冷却するのが好ましい。乾燥工程では、水分を
蒸発させるため、血漿液、血清液ともに加熱の必要があ
るが、この際、品温を50℃以下、好ましくは40℃以
下に保ち、蛋白質が変性を起こすような温度に上がるこ
とは極力避ける必要がある。血漿液、血清液は、乾燥開
始前では固形分濃度として8重量%位の低濃度であるが
、濃度が低い程温度による蛋白質の変性が起こりやすい
ので、注意が必要であり、はぼ50重量%濃度まではで
きるだけ品温は低くした方がよい。In addition, in the separation process, the temperature of the blood increases in the centrifuge, so the storage tank (not shown) that stores the separated liquid is heated again
Preferably, it is cooled to below .degree. In the drying process, it is necessary to heat both plasma and serum fluids to evaporate water, but at this time, keep the product temperature below 50°C, preferably below 40°C, at a temperature that does not cause protein denaturation. It is necessary to avoid climbing as much as possible. Plasma fluid and serum fluid have a low solid concentration of about 8% by weight before drying begins, but care must be taken because the lower the concentration, the more likely protein denaturation will occur due to temperature. % concentration, it is better to keep the product temperature as low as possible.
以上の説明のようにして製造した乾燥血漿、乾燥血清は
、乾燥全血を含めて本発明の未変性乾燥血液成分(以下
、単に乾燥血液成分という)に当たるものであり、とも
に溶解度として90%以上であり、血漿粉ゲル強度は、
牛の場合500g/cd以上、豚の場合で300g /
cd以上と、屠畜の種類により若干異なるが、高い値
を有し、物性の上では非常に優れた中間製品である。し
かし、微生物数の面で見ると、おおよそ血粉1g当り1
03〜101ケ位の多量の微生物が含まれているケース
が多い。Dried plasma and dried serum produced as described above, including dried whole blood, correspond to undenatured dried blood components (hereinafter simply referred to as dried blood components) of the present invention, and both have a solubility of 90% or more. and the plasma powder gel strength is
500g/cd or more for cows, 300g/cd for pigs
cd or higher, which varies slightly depending on the type of slaughter, but has a high value and is an intermediate product with very excellent physical properties. However, in terms of the number of microorganisms, approximately 1 per gram of blood meal.
In many cases, a large number of microorganisms, ranging from 0.3 to 101, are contained.
つづいて、上記乾燥血漿および乾燥血清は、過熱蒸気と
直接接触される加熱殺菌機9に入れられる。ここでいう
加熱殺菌とは、食品に素材として使用して支障のない程
度に微生物を滅菌する商業滅菌(Commercial
5terilization)を含むものである。す
なわち、乾燥血漿、乾燥血清の商品価値として極めて重
要な物性であるゲル強度等の諸物性をあまり低下させる
ことなく、−殺生菌数、耐熱芽胞菌数、大腸菌群数を減
じる商業滅菌を行ない、衛生的で、がつゲル強度等の諸
物性が優れた血粉の製造を行うことも含むものである。Subsequently, the dried plasma and dried serum are placed in a heat sterilizer 9 where they are brought into direct contact with superheated steam. Heat sterilization here refers to commercial sterilization, which sterilizes microorganisms to the extent that it does not cause any problems when used as an ingredient in food.
5terilization). In other words, commercial sterilization is performed to reduce the number of viable bacteria, heat-resistant spore bacteria, and coliform bacteria without significantly reducing physical properties such as gel strength, which are extremely important physical properties for the commercial value of dried plasma and dried serum. It also includes producing blood powder that is hygienic and has excellent physical properties such as gel strength.
商業滅菌の程度は、食品衛生法で定められた食品の微生
物学的成分規格等が参考となるが、食品等の種類や組成
ならびに製造工程の各段階等により許容される菌数に差
異がある。本実施例では一般生菌数、耐熱芽胞菌数およ
び大腸菌群数を減じ、好ましくは昭和59年12月19
日付厚生省令第58号および厚生省告示第221号によ
る食品、食品添加物等の規格基準の改正に伴う昭和60
年1月18日付通達の別紙3の“第3血液加工施設にお
ける取り扱い”における殺菌工程のあるものの自主検査
規格として挙げられた一般生菌数104ケ/g以下、耐
熱芽胞菌数3000ケ/g以下、大腸菌群数;陰性のレ
ベル以下にすることを目標とし、望ましくは一般生菌数
300ケ/g以下、耐熱芽胞菌数20ケ/g以下、大腸
菌群数を最確数法(M、 P、N法)で30ケ/100
g以下にすることを目標にするものである。なお、上記
に示した一般生菌数300ケアg以下、耐熱芽胞菌数2
0ケ/g以下、大腸菌群数で30ケ/100g以下(M
、P。The degree of commercial sterilization is based on the food microbiological composition standards stipulated by the Food Sanitation Act, but the number of bacteria allowed varies depending on the type and composition of the food, as well as each stage of the manufacturing process. . In this example, the number of general viable bacteria, the number of heat-resistant spore bacteria, and the number of coliform bacteria are reduced, preferably as of December 19, 1982.
Date: 1985 due to revisions to specifications and standards for foods, food additives, etc. pursuant to Ministry of Health and Welfare Ordinance No. 58 and Ministry of Health and Welfare Notification No. 221
The general viable bacteria count is 104 cases/g or less, and the heat-resistant spore count is 3000 cases/g, as listed as the voluntary inspection standard for products with sterilization process in Attachment 3 of the notification dated January 18, 2019, “Handling at the 3rd blood processing facility”. Below, the number of coliform bacteria is aimed to be below the negative level, preferably the number of general viable bacteria is 300 cases/g or less, the number of heat-resistant spore bacteria is 20 cases/g or less, and the number of coliform bacteria is determined by the most probable number method (M, P, N method) 30 pieces/100
The goal is to make it less than g. In addition, the number of general viable bacteria shown above is 300 careg or less, and the number of heat-resistant spore bacteria is 2.
0/g or less, coliform count 30/100g or less (M
,P.
N法)は、食品中の菌数測定上の慣習として陰性として
表現されるものである。N method) is a method that is conventionally expressed as negative when measuring the number of bacteria in food.
次に、上記ゲル強度の測定法の概要を下記に示す。Next, an outline of the method for measuring the gel strength described above is shown below.
まず、血粉を蒸留水に溶解して固形分10%の溶液に調
整する。これを直径30aonの塩化ビニリデンチュー
ブに充填し、このチ二−ブの上部から真空ポンプで脱気
を行なう。次にこのチューブを密閉し、温度90度の湯
浴中で30分間加熱凝固させる。First, blood powder is dissolved in distilled water to prepare a solution with a solid content of 10%. This was filled into a vinylidene chloride tube with a diameter of 30 aon, and the tube was degassed from the top using a vacuum pump. Next, this tube is sealed and heated and solidified in a water bath at a temperature of 90 degrees for 30 minutes.
加熱凝固した後に、15℃に冷却し、塩化ビニリデンチ
ューブを剥ぎ、30+++oの長さに切った円筒型の試
料をレオメータ−を用いて破壊点を測定する。After heating and solidifying, the sample was cooled to 15° C., the vinylidene chloride tube was peeled off, and the cylindrical sample was cut into a length of 30+++o and the breaking point was measured using a rheometer.
なお、後述の実験例では、不動産工業■製NRM−20
02J 、アダプタとして直径1.5 amの円板タイ
プ(粘弾性用)のプランジャーを使用した。−試料につ
き、5回測定を行ない、最高値と最低値を除き、3つの
測定値の平均値を算出し、下記の計算式でゲル強度を算
出する。In addition, in the experiment example described later, NRM-20 manufactured by Real Estate Industry Co., Ltd.
02J, a disk type plunger (for viscoelasticity) with a diameter of 1.5 am was used as an adapter. - Measure the sample 5 times, exclude the highest and lowest values, calculate the average value of the three measured values, and calculate the gel strength using the following formula.
ゲル強度(g / c+t )冨
試料の破壊点の荷重(g)
プランジャーの押表面積(cut)
可能となっている。従って、上式は次のようにも表示さ
れる。Gel strength (g/c+t) Load at breaking point of sample (g) Pushing surface area of plunger (cut) Possible. Therefore, the above equation can also be expressed as:
ゲル強度(g/cj)=
レオメータ−測定平均値(%>xtoo%指度の荷重本
殺菌工程の技術構成の主な事項としては、加熱殺菌時の
適切な品温、時間の維持および被殺菌物である乾燥血液
成分の初期水分の調整がある。Gel strength (g/cj) = Rheometer-measured average value (%>xtoo% index load) The main points in the technical configuration of this sterilization process are maintaining an appropriate product temperature and time during heat sterilization, and maintaining the sterilization target. There is an adjustment of the initial moisture content of the dried blood components.
以下、これらの各事項について詳しく説明する。Each of these items will be explained in detail below.
(1)過熱蒸気の温度
殺菌時に用いる過熱蒸気の温度は、120〜180℃、
好ましくは140〜160℃を用いるのが適当である。(1) Temperature of superheated steam The temperature of superheated steam used during sterilization is 120 to 180°C,
Preferably, it is appropriate to use a temperature of 140 to 160°C.
乾燥血液成分に含まれる一般生菌数、耐熱芽胞菌、大腸
菌群等の微生物は季節、採血方法、採血の菌が芽胞を形
成するため、その数は増加する。The number of microorganisms such as general viable bacteria, heat-resistant spore-forming bacteria, and coliform bacteria contained in dried blood components increases due to the season, the blood collection method, and the formation of spores by the bacteria in the blood collection.
また、−船主菌数や大腸菌群は、採血の際の屠体の洗浄
が不充分であったり、血漿液、血清液の貯留時の品温か
高かったりすると、血球液に比べて低濃度であるため貯
留中の増殖が著しく増大する。In addition, - the shipowner's bacterial count and coliform bacteria concentration may be lower than that of blood cells if the carcass is not washed sufficiently during blood collection or the quality of plasma and serum fluid is high when stored. Therefore, proliferation during storage increases significantly.
乾燥血液成分の殺菌の難易性は、微生物の数にもよるが
、菌の種類の差異による方が大きい。一般に微生物の数
が増える程、所定の菌数レベルまでの殺菌は難しく、ま
た耐熱芽胞菌は加熱殺菌による殺菌が困難である。これ
ら乾燥血液成分中の微生物数が少なく、かつ殺菌しやす
い微生物である場合は、120℃程度の過熱蒸気でも充
分に目的が達せられる場合もあるが、微生物数が多く、
かつ殺菌しがたい微生物の場合は、180℃程度の過熱
蒸気が必要な場合がある。過熱蒸気の温度が高の難易性
にもよるが、ゲル強度の低下を考慮に入れて、好ましく
は140〜160℃である。過熱蒸気の温度設定に際し
ては、できるだけ品質の低下を少なくして商業滅菌の目
的に合致させることが大切である。The difficulty of sterilizing dried blood components depends on the number of microorganisms, but it is more due to differences in the types of bacteria. Generally, as the number of microorganisms increases, it becomes more difficult to sterilize the microorganisms to a predetermined bacterial count level, and it is also difficult to sterilize heat-resistant spore-forming bacteria by heat sterilization. If the number of microorganisms in these dried blood components is small and the microorganisms are easy to sterilize, superheated steam at about 120°C may be sufficient to achieve the purpose, but if the number of microorganisms is large,
In the case of microorganisms that are difficult to sterilize, superheated steam at about 180°C may be necessary. The temperature of the superheated steam is preferably 140 to 160°C, depending on how difficult it is to use, but taking into account the reduction in gel strength. When setting the temperature of superheated steam, it is important to minimize deterioration in quality and meet the purpose of commercial sterilization.
過飽和蒸気の圧力は前記の装置では140〜160℃の
過熱蒸気を用いた場合で、ゲージ圧で0.3〜0.4に
g / cdとしている。過熱蒸気の圧力の範囲は特に
限定はないが、殺菌機本体内で若干の温度低下があるの
で、過熱蒸気の持つエンタルピを考慮に入れて過熱蒸気
が飽和化しないように留意した圧力の設定が必要であり
、できるだけ過熱度(乾き度)の高い過熱蒸気を使用す
るのが好ましい。飽和化しないための方法としては圧力
設定の他に殺菌機内に充填する血粉の量を調整する必要
もある。The pressure of supersaturated steam is 0.3 to 0.4 g/cd in gauge pressure when using superheated steam of 140 to 160 °C in the above device. There is no particular limit to the pressure range of the superheated steam, but since there is a slight temperature drop inside the sterilizer body, the pressure must be set taking into account the enthalpy of the superheated steam so that the superheated steam does not become saturated. It is preferable to use superheated steam with as high a degree of superheating (dryness) as possible. In order to prevent saturation, in addition to pressure settings, it is also necessary to adjust the amount of blood powder filled into the sterilizer.
過熱蒸気の飽和化による支障としては乾燥血液成分の水
分の変動によるゲル強度への影響の他に結露による殺菌
済み乾燥血液成分(血粉)の圧送配管への付着などがあ
り、せっかく殺菌した血粉が付着個所で再度微生物の増
殖汚染を起こす懸念がある。Problems caused by saturation of superheated steam include the influence on the gel strength due to fluctuations in the moisture content of the dried blood components, as well as the adhesion of sterilized dried blood components (blood powder) to the pressure delivery piping due to condensation. There is a concern that microbial growth and contamination may occur again at the adhesion site.
(ii) 乾燥血液成分の初期水分
乾燥血液成分の初期水分は、殺菌効果、ゲル強まい物性
上好ましくない。(ii) Initial Moisture of Dried Blood Components The initial moisture content of dried blood components is unfavorable in terms of sterilizing effect and strong gel properties.
過熱蒸気を短時間直接的に接触させる本発明の場合、間
接過熱で長時間殺菌する場合より物性上の影響は少ない
が、初期水分によるゲル強度および殺菌効果への影響が
あるため、所定の初期水分範囲を維持しないと、物性上
高品質を保つと同時に、殺菌効果をも挙げることはでき
ない。ゲル強度の低下を起こすことなく、効果的な殺菌
が実施できる初期水分の範囲は、3〜12重量%、好ま
しくは4〜10重量%、さらに好ましくは7重量%前後
である。In the case of the present invention, in which direct contact with superheated steam is made for a short period of time, the effect on physical properties is less than that in the case of indirect heating for a long period of sterilization, but since the gel strength and sterilization effect are affected by initial moisture, If the moisture content is not maintained within this range, it will not be possible to maintain high quality in terms of physical properties and at the same time exhibit a bactericidal effect. The initial moisture range at which effective sterilization can be carried out without reducing gel strength is 3 to 12% by weight, preferably 4 to 10% by weight, and more preferably around 7% by weight.
乾燥血液成分の水分が3重量%以下になるような場合は
、噴霧加湿を行ない、良く撹拌混合をして、所定の水分
まで増湿した後に、過熱殺菌を実施することが望ましい
。When the moisture content of the dried blood component is 3% by weight or less, it is desirable to carry out spray humidification, stir and mix well, increase the humidity to a predetermined moisture level, and then perform superheat sterilization.
なお、本明細書において、水分は次式で示した殺菌に適
切な初期水分の上限値の調節については乾燥機内で制御
し、血粉の水分が目標値に達した段階で乾燥を停止する
方法が好ましい。このような乾燥水分の調整の難易性の
点からみると噴霧乾燥(スプレードライヤー)よりも低
温真空乾燥機の方が調整は容易である。本発明を効果的
に実施する上では、このように前処理工程についての配
慮も大切である。In addition, in this specification, the upper limit of the initial moisture content suitable for sterilization, which is expressed by the following formula, is controlled in the dryer, and the drying is stopped when the moisture content of the blood meal reaches the target value. preferable. In view of the difficulty in adjusting dry moisture, it is easier to adjust the dry moisture using a low-temperature vacuum dryer than using a spray dryer. In order to effectively carry out the present invention, it is important to consider the pretreatment process as described above.
血漿液、血清液は、動物の種類や季節等により若干の差
異はあるが、はぼ固形分濃度8重量%(水分92重景%
)程度である。血漿液、血清液の乾燥に際しては、低濃
度段階(水分50重量%以上)での品温を低温に保ち、
乾燥段階でのゲル強度の低下を防ぐとともに、次の殺菌
工程にかけるための適切な水分で乾燥を止めることが大
切である。Plasma fluid and serum fluid have a solid content concentration of 8% by weight (water content of 92%), although there are slight differences depending on the type of animal and season.
). When drying plasma and serum solutions, keep the product temperature at a low temperature at the low concentration stage (more than 50% water by weight).
It is important to prevent the gel strength from decreasing during the drying stage and to stop the drying process with an appropriate amount of moisture for the next sterilization process.
(iii) 血粉の粒度
ゲル強度を有する血液成分である血漿液や血清液を乾燥
する方法としては、スプレードライヤーまたは撹拌式の
真空乾燥機等が用いられるが、これらを乾燥した状態の
血粉(乾燥血液成分)は粒径が不揃いであり、また、殺
菌効果からも乾燥血液成分は、予め粉砕し、60メツシ
ユアンダーに粉砕より汚染される場合もあり、また、あ
まり血粉の粒径が大きいと内部への伝熱量が少なくなっ
て殺菌の効果がよくない場合が起こる。乾燥機の種類に
よる乾燥血粉の粒径の調整の難易性があり、スプレード
ライヤーの場1合は、回転ディスクの回転数やノズル粒
径を調整することによりかなり微細な粒径に調整するこ
とが可能であるが、一般に真空低温乾燥機の場合は乾燥
血粉の粒径は不揃いである。乾燥血粉の粒径が大きくな
ると、次の内部への伝熱が悪くなり、充分な殺菌を行な
うためには過熱蒸気の温度を上げるか、直接接触の時間
を長くする必要が生じ、それだけゲル強度の低下が大き
くなる。このような欠点をなくす上でも60メツ殺菌機
の本体内に供給された後、120〜180℃、通常15
0℃前後の過熱蒸気と直接に接触させることにより殺菌
が行なわれるため、伝熱効果は極めて良好であり、乾燥
血液成分の品温はほぼ過熱蒸気の温度に近い点まで到達
する。過熱蒸気との完全接触による殺菌は5〜20秒間
の非常に短時間で終了するので、以後、このような高温
下に乾燥血液成分を保つことはゲル強度の低下の原因に
なる。(iii) Particle size of blood powder A spray dryer or an agitating vacuum dryer is used to dry plasma and serum fluid, which are blood components with gel strength. (blood components) have irregular particle sizes, and due to the sterilization effect, dried blood components may be contaminated if they are ground in advance to 60 mesh or less, and if the particle size of the blood powder is too large, There are cases where the amount of heat transferred to the inside is reduced and the sterilization effect is not good. It is difficult to adjust the particle size of dried blood powder depending on the type of dryer, and in the case of a spray dryer, it is possible to adjust the particle size to a fairly fine particle size by adjusting the rotation speed of the rotating disk and the nozzle particle size. Although it is possible, in general, in the case of a vacuum low temperature dryer, the particle size of dried blood powder is irregular. As the particle size of the dried blood powder increases, heat transfer to the next part becomes worse, and in order to achieve sufficient sterilization, it is necessary to raise the temperature of the superheated steam or increase the time of direct contact, which will reduce the gel strength. decrease becomes greater. In order to eliminate such drawbacks, after being fed into the main body of the sterilizer, the temperature is 120~180℃, usually 15℃.
Since sterilization is performed by direct contact with superheated steam at around 0° C., the heat transfer effect is extremely good, and the temperature of the dried blood component reaches a point close to the temperature of superheated steam. Since sterilization by complete contact with superheated steam is completed in a very short time of 5 to 20 seconds, keeping the dried blood components at such high temperatures thereafter causes a decrease in gel strength.
使用する過熱蒸気の温度のような高温下では殺菌が非常
に迅速に行われるけれど、ゲル強度の低下の急速に進む
ので、殺菌終了後はただちにゲル強度の低下が起こらな
い所定の温度以下に冷却する必要がある。Although sterilization occurs very quickly at high temperatures such as the temperature of the superheated steam used, gel strength decreases rapidly, so immediately after sterilization is completed, the gel must be cooled to a predetermined temperature below which no decrease in gel strength will occur. There is a need to.
本発明者らは、ゲル強度の低下の起こらない温度につい
て種々の検討を行なった結果、110℃以下に直ちに冷
却して大きな容器等に移せば、以後、放置により徐冷し
てもゲル強度の低下はほとんど認められないことを知見
するに至った。ただし、殺菌終了後、乾燥血液成分が小
さな容器内に保たべきである。110℃以下という放置
冷却の条件としては、開放下または通気等により発生す
る水蒸気を逃がす手段を考慮した上での冷却温度の目安
である。殺菌後の乾燥血液成分の処理としては、直ちに
常温近くまで冷却するのが理想である。後述する第1図
の装置を用い、その冷却後のジャケットに水道水を通し
て冷却を行ない、殺菌終了後1〜2分間でほぼ40〜5
0℃の品温に冷却することにより良好な結果を得ている
。As a result of various studies conducted by the present inventors regarding the temperature at which no decrease in gel strength occurs, we found that if the temperature is immediately cooled to 110°C or lower and transferred to a large container, the gel strength will be maintained even if left to cool slowly thereafter. We have come to the conclusion that almost no decrease is observed. However, after sterilization, the dried blood components should be kept in a small container. The cooling condition of 110° C. or less is a guideline for the cooling temperature, taking into consideration means for releasing water vapor generated in an open environment or through ventilation. The ideal treatment for dried blood components after sterilization is to immediately cool them to near room temperature. Using the apparatus shown in Fig. 1, which will be described later, tap water is passed through the cooled jacket to cool it, and approximately 40 to 50% of
Good results have been obtained by cooling the product to a temperature of 0°C.
以上のような技術要素に従って乾燥血液成分を殺菌する
ことにより、商業滅菌の目的を達することが可能である
とともに、ゲル強度の低下を極力抑制し、優れた食品な
いし食品等の加工原料として付加価値の高い血粉の製造
が可能である。By sterilizing dried blood components in accordance with the technical elements described above, it is possible to achieve the purpose of commercial sterilization, and at the same time, it is possible to suppress the decline in gel strength as much as possible, and to add value as an excellent food product or raw material for processing foods, etc. It is possible to produce blood meal with a high
の低下の程度が間接加熱殺菌よりも少ない点で優れた方
法である。This method is superior in that the degree of decrease in sterilization is smaller than that of indirect heat sterilization.
ここで、上記に概略を示した本発明に係るゲル強度を有
する殺菌された血粉の製造方法に用いて好適な過熱殺菌
蒸気を使用する直接加熱殺菌機およびそれに付帯する各
種装置の具体例の構成を図面を参照して説明する。Here, the structure of a specific example of a direct heating sterilizer using superheated sterilizing steam suitable for use in the method for producing sterilized blood meal having gel strength according to the present invention as outlined above, and various devices attached thereto. will be explained with reference to the drawings.
第1図に示すように、直接加熱殺菌機9は殺菌機本体9
a外周に加熱用ジャケットが設けられ、さらに殺菌機本
体9a内に撹拌羽根9bを有する中空シャフト9Cが回
転自在に貫通設置されるとともに、この中空シャフト9
Cの一端がモータ9dにより回転されるように構成され
てなるものである。前記殺菌機本体9aの一端上部(第
1図では右上部)には前記乾燥血漿または乾燥血清を供
給するための定量フィーダ10が連結されている。また
、前記中空シャフト9cの外周には空気または過熱蒸気
噴出用の小孔が多数穿設されており、同シャフ)9cの
他端にはロータリージヨイントを介して過熱蒸気供給管
11か連結されている。この過熱蒸気供給管11には蒸
気温度の低下を防止するヒータllaが巻着されており
、同供給管11はバルブ12を介してスーパーヒれてい
る。なお、この蒸気供給管33にはバルブ17の前後に
かかるバイパス管34が設けられているとともに、この
バイパス管34には小流量バルブ35が取り付けられて
いる。また、前記蒸気供給管33のバルブ17とスーパ
ーヒータ13との間には、除菌用エアーフィルタ14、
エアーヒータ15およびバルブ16を介装した空気供給
管36が連結されている。As shown in FIG. 1, the direct heat sterilizer 9 has a sterilizer body 9.
A heating jacket is provided on the outer periphery of the sterilizer body 9a, and a hollow shaft 9C having stirring blades 9b is installed rotatably through the sterilizer main body 9a.
One end of C is configured to be rotated by a motor 9d. A quantitative feeder 10 for supplying the dried plasma or dried serum is connected to the upper end of the sterilizer main body 9a (upper right in FIG. 1). Further, a large number of small holes for blowing out air or superheated steam are bored on the outer periphery of the hollow shaft 9c, and a superheated steam supply pipe 11 is connected to the other end of the shaft 9c via a rotary joint. ing. A heater lla for preventing a drop in steam temperature is wound around this superheated steam supply pipe 11, and the supply pipe 11 is superheated via a valve 12. The steam supply pipe 33 is provided with a bypass pipe 34 before and after the valve 17, and a small flow valve 35 is attached to the bypass pipe 34. Furthermore, between the valve 17 of the steam supply pipe 33 and the super heater 13, a sterilization air filter 14,
An air supply pipe 36 with an air heater 15 and a valve 16 interposed therebetween is connected.
また、前記殺菌機本体8aの他端下部(IJ1図では左
方下部)にはエアーシリンダ18によって開閉される排
出バルブ19が取り付けられており、この排出バルブ1
9の排出口はエアー搬送管20に連結されている。この
エアー搬送管20の上流端は二手に分かれ、一方はバル
ブ21を介して前記スーパーヒータ13とバルブ12の
間の過熱蒸気供給管11に連結され、他方はバルブ22
を介して前記エアーフィル流端はサイクロン23に連結
されている。さのサイクロン23の下方にはクッション
タンク24を介して冷却機25が連結されており、上方
には配管を介してベントサイクロン26が連結されてい
る。Further, a discharge valve 19 that is opened and closed by an air cylinder 18 is attached to the lower part of the other end of the sterilizer main body 8a (lower left in the IJ1 diagram).
A discharge port 9 is connected to an air conveying pipe 20. The upstream end of this air conveying pipe 20 is divided into two parts, one of which is connected to the superheated steam supply pipe 11 between the super heater 13 and the valve 12 via a valve 21, and the other part is connected to the superheated steam supply pipe 11 between the super heater 13 and the valve 12.
The air fill flow end is connected to a cyclone 23 via. A cooler 25 is connected to the lower part of the cyclone 23 via a cushion tank 24, and a vent cyclone 26 is connected to the upper part via piping.
また、前記殺菌機本体9aの他端上部(第1図では左上
部)には、蒸気間接加熱用のジャケット付の沈降槽27
が取り付けられている。この沈降槽27の上部にはバル
ブ28を有するヒータ付き配管29が連結されており、
この配管29の他端はベントサイクロン30に連結され
ている。なお、前記ヒータ付き配管29にはバルブ28
の前後にかかるバイパス管31が設けられており、この
バイパス管31には小流量バルブ32が取り付けられて
いる。Further, at the upper part of the other end of the sterilizer main body 9a (upper left in FIG. 1), a settling tank 27 with a jacket for indirect steam heating is provided.
is installed. A heater-equipped pipe 29 having a valve 28 is connected to the upper part of the sedimentation tank 27.
The other end of this pipe 29 is connected to a vent cyclone 30. Note that a valve 28 is installed in the pipe 29 with the heater.
A bypass pipe 31 is provided before and after the bypass pipe 31, and a small flow valve 32 is attached to this bypass pipe 31.
なお、符号37はスーパ−ヒータ13出口側に設けられ
たスーパーヒータの温度制御装置TCのセンサーとエア
ー搬送管20の一方の連結点との間の過熱蒸気供給管1
1から分岐されたドレン配管で、ドレンバルブが介装さ
れている。符号38は、エアーヒータ15とバルブ16
との間の空気供給管36から分岐された空気排出配管で
排気バルブが介装されている。The reference numeral 37 indicates the superheated steam supply pipe 1 between the sensor of the superheater temperature control device TC provided on the exit side of the superheater 13 and one connection point of the air conveyance pipe 20.
A drain pipe is branched from 1 and is equipped with a drain valve. Reference numeral 38 indicates the air heater 15 and the valve 16.
An exhaust valve is interposed in the air exhaust piping branched from the air supply pipe 36 between the two.
上記構成において、まず、乾燥血液成分であるの定量フ
ィーダー10の供給バルブを開き、時間セットにより一
定量(約1 kg程度)が直接加熱殺菌機に供給される
。この時、配管29のバルブ28が開となっており、殺
菌機本体9a内が大気圧となっている。In the above configuration, first, the supply valve of the quantitative feeder 10 for dried blood components is opened, and a fixed amount (approximately 1 kg) is directly supplied to the heat sterilizer according to a set time. At this time, the valve 28 of the pipe 29 is open, and the inside of the sterilizer main body 9a is at atmospheric pressure.
また、この−配管29は、そのヒータにより加熱されて
いるとともに、スーパーヒータ13には空気供給管36
を介してエアーフィルタ14で除菌され、エアーヒータ
15で予熱された空気のみが供給され、また、このスー
パーヒータ13からの高温空気は、バルブ21、エアー
搬送管20を通り、サイクロン23、ベントサイクロン
26を介して排出されており、前記各管路を加熱洗浄し
ている。Further, this - pipe 29 is heated by the heater, and the super heater 13 is connected to the air supply pipe 36.
Only air that has been sterilized by an air filter 14 and preheated by an air heater 15 is supplied through the super heater 13, and high-temperature air from the super heater 13 passes through a valve 21, an air conveying pipe 20, a cyclone 23, and a vent. The water is discharged through a cyclone 26, and the pipes are heated and cleaned.
原料供給終了後、直接加熱殺菌機9のシャフト9Cを回
転し、撹拌羽根9bを低速で回転させて殺菌回転数によ
り、乾燥血液成分は分散させられながら殺菌機の内壁に
沿って移動するので、伝熱効果が良好な状態で予熱され
る。加熱ジャケットの蒸気は伝熱係数の関係で通常飽和
蒸気(約100〜120℃)が用いられ、乾燥血液成分
は約40〜110℃に予熱される。このようにして、乾
燥血液成分の拡散および予熱が5秒程度行なわれる。こ
の時、スーパーヒータ13には、バイパス管34の小流
量バルブ35を介して蒸気供給管33から小量の蒸気の
みが供給されるように切り換えられるとともに、スーパ
ーヒータ13で過熱された過熱蒸気がドレン配管37の
みを介して放出されるように準備されでいる。After the raw material supply is completed, the shaft 9C of the direct heating sterilizer 9 is rotated, and the stirring blade 9b is rotated at a low speed, so that the dried blood components are dispersed and move along the inner wall of the sterilizer at the sterilization rotation speed. Preheated with good heat transfer effect. The steam in the heating jacket is usually saturated steam (approximately 100 to 120°C) due to its heat transfer coefficient, and the dried blood component is preheated to approximately 40 to 110°C. In this way, the dry blood components are diffused and preheated for about 5 seconds. At this time, the super heater 13 is switched so that only a small amount of steam is supplied from the steam supply pipe 33 via the small flow valve 35 of the bypass pipe 34, and the superheated steam superheated by the super heater 13 is It is arranged to be discharged only through the drain pipe 37.
蒸気拡散および予熱が終了した時点で、撹拌羽根9bの
回転が停止させられ、次いで過熱蒸気供給管11のバル
ブ12が開となり、スーパーヒータ13からの過熱蒸気
がシャツ)9cの小孔を通して過熱蒸気が一定時間(5
〜10秒)殺菌開本体9aの内部に送入されるとともに
、殺菌機本体9a内の乾燥空気が沈降槽27、バルブ2
8およびベントサイクロン30を介して配管29から放
出され、殺菌機本体9a内は乾燥空気から過熱蒸気に置
換される。この場合、ドレン配管37のドレンバイブが
まだ開状態なので、殺菌機本体9a内に流入する過熱蒸
気の流速はそれほど高速とはならず、かつまた沈降槽2
7によって殺菌機本体9a内の乾燥血液成分は配管29
に流出することがない。When the vapor diffusion and preheating are completed, the rotation of the stirring blade 9b is stopped, and then the valve 12 of the superheated steam supply pipe 11 is opened, and the superheated steam from the superheater 13 passes through the small hole of the shirt 9c and becomes superheated steam. is a certain period of time (5
~10 seconds) At the same time, the dry air inside the sterilizer main body 9a is sent to the inside of the sterilizer main body 9a, and the dry air is passed through the sedimentation tank 27 and the valve 2.
The dry air is discharged from the pipe 29 via the vent cyclone 8 and the vent cyclone 30, and the inside of the sterilizer main body 9a is replaced with superheated steam from dry air. In this case, since the drain pipe 37's drain vibe is still open, the flow rate of the superheated steam flowing into the sterilizer main body 9a is not so high, and the sedimentation tank 2
7, the dried blood components in the sterilizer main body 9a are transferred to the pipe 29.
There will be no leakage.
殺菌機本体9a内の気体置換終了後、配管29のバルブ
28、バイパス管34の小流量バルブ35およびドレン
配管のドレンバルブを閉とする。次いで、直接加熱機9
のシャツ)9cを回転し、撹拌羽根9bを高速で回転さ
せるとともに、蒸気供給管33のバルブ17が開とし、
スーパーヒータ13から過熱蒸気を殺菌機本体9a内に
供給し、殺菌を行なう。乾燥血液成分は、撹拌羽根9b
の回転作用により120〜180℃の過熱蒸気とよく接
触し、瞬間殺菌が行なわれる。この時の殺菌機本体9a
内の圧力は0.2〜0.4kg/ cdがよく、また、
殺菌所要時間は5〜20秒、好ましくは10〜15秒で
ある。この殺菌所要時間が本発明の過熱蒸気と乾燥血液
成分との完全接触状態の時間に当たる。After the gas replacement in the sterilizer main body 9a is completed, the valve 28 of the pipe 29, the small flow valve 35 of the bypass pipe 34, and the drain valve of the drain pipe are closed. Next, direct heating machine 9
) 9c, the stirring blade 9b is rotated at high speed, and the valve 17 of the steam supply pipe 33 is opened.
Superheated steam is supplied from the super heater 13 into the sterilizer main body 9a to perform sterilization. The dried blood components are mixed with the stirring blade 9b.
Due to the rotational action of , it comes into good contact with superheated steam at 120 to 180°C, and instant sterilization is performed. Sterilizer main body 9a at this time
The internal pressure is preferably 0.2 to 0.4 kg/cd, and
The time required for sterilization is 5 to 20 seconds, preferably 10 to 15 seconds. The time required for sterilization corresponds to the time for complete contact between superheated steam and dried blood components according to the present invention.
この直接加熱殺菌終了後、長時間そのままの温度で放置
すると、血粉は熱変性を起こし、ゲル強度を失う。従っ
て、次のような操作により直ちに冷却する。すなわち、
直接加熱殺菌終了後、乾燥血液成分の散失を防止するた
めに、蒸気供給管33のバルブ17および過熱蒸気供給
管11のバルブ12を閉とし、殺菌機本体9a内への過
熱蒸気の供給および撹拌羽根9cの回転を停止するとと
もに、沈降槽27上部の小流量バルブ32により機内圧
を抜く操作を行なう(約10秒)。なお、この間にエア
ーフィルタ14およびエアーヒータ15を介して予熱さ
れた空気がスーパーヒータ13に供給され、このスーパ
ーヒータ13からの高温空気がバルブ21を介してエア
ー搬送管20に送られており、このエアー搬送管20を
加熱洗浄するとともに、即座に殺菌機本体9aに供給さ
るるように準備されている。If the blood meal is left at that temperature for a long time after the direct heating sterilization is completed, the blood meal will undergo thermal denaturation and lose its gel strength. Therefore, it is immediately cooled by the following operation. That is,
After direct heat sterilization, in order to prevent the dried blood components from dissipating, the valve 17 of the steam supply pipe 33 and the valve 12 of the superheated steam supply pipe 11 are closed, and superheated steam is supplied and stirred into the sterilizer main body 9a. While stopping the rotation of the blades 9c, an operation is performed to release the internal pressure using the small flow valve 32 at the upper part of the sedimentation tank 27 (about 10 seconds). During this time, preheated air is supplied to the super heater 13 via the air filter 14 and the air heater 15, and high temperature air from the super heater 13 is sent to the air conveying pipe 20 via the valve 21. This air conveying pipe 20 is heated and cleaned and prepared to be immediately supplied to the sterilizer main body 9a.
続いて、殺菌機本体9aの圧抜き終了後、エアー搬送管
20のバルブ21およびバイパス管31の小流量バルブ
32を閉じ、過熱蒸気供給管11のバルブ12、空気排
出管38の排気バルブおよび配管29のバルブ28を開
とし、スーパーヒータ13からの高温空気を約lO秒程
殺菌機本体9a内に送入し、沈降槽27、配管29、ベ
ントサイクロン30を介して排出する。これによって殺
菌機本体9a内の過熱蒸気を乾燥空気に置換する。殺菌
機本体9aに流入する高温空気(乾燥空気)の流速は空
気排出管38の排気バルブが開となっているため低速あ
り、かつまた沈降槽27によって殺菌機本体9a内の乾
燥血液成分は配管29に流入することがない。Subsequently, after the depressurization of the sterilizer main body 9a is completed, the valve 21 of the air conveying pipe 20 and the small flow valve 32 of the bypass pipe 31 are closed, and the valve 12 of the superheated steam supply pipe 11, the exhaust valve of the air exhaust pipe 38, and the piping are closed. The valve 28 of 29 is opened, and high-temperature air from the super heater 13 is introduced into the sterilizer main body 9a for about 10 seconds, and is discharged through the settling tank 27, piping 29, and vent cyclone 30. This replaces the superheated steam within the sterilizer main body 9a with dry air. The flow rate of the high temperature air (dry air) flowing into the sterilizer main body 9a is low because the exhaust valve of the air exhaust pipe 38 is open, and the dried blood components in the sterilizer main body 9a are removed from the pipe by the sedimentation tank 27. There is no flow into 29.
その後、空気排出管38の排気バルブおよび配管29の
バルブ28を閉とするとともに、直接加熱殺菌機9の排
出バルブ19を開き、除菌用エアーフィルタ14、エア
ーヒータ15、スーパーヒータ13を経由して高温の乾
燥した無菌エアーを殺菌機本体9a内に送入し、かつ撹
拌羽根を低速(100rpm程度)で回転差せながら内
部の殺菌済みの乾燥血液成分をサイクロン23、クッシ
ョンタンク24を介して冷却機25に圧送する。サイク
ロン32で気固分離が行なわれ、血粉から高温空気やわ
ずかに同伴する過熱蒸気が取り除かれる。冷却機25に
は直接加熱殺菌機同様な撹拌機が設けられており、20
0rl)m程度の回転数で撹拌羽根のブレードにより乾
燥血液成分を冷却水ジャケット付きの内壁に薄い層状で
押し付けながら入口側から出口側に移動させる。殺菌冷
却済みの乾燥血液成分は、冷却機25の排出バルブによ
り製品ホッパー(図示せず)に送られる。Thereafter, the exhaust valve of the air exhaust pipe 38 and the valve 28 of the piping 29 are closed, and the exhaust valve 19 of the direct heat sterilizer 9 is opened, and the air is passed through the sterilization air filter 14, air heater 15, and super heater 13. high temperature dry sterile air is sent into the sterilizer main body 9a, and the sterilized dried blood components inside are cooled down via the cyclone 23 and cushion tank 24 while rotating the stirring blade at low speed (about 100 rpm). Pressure feed to machine 25. Gas-solid separation is performed in the cyclone 32, and hot air and slightly entrained superheated steam are removed from the blood meal. The cooler 25 is equipped with a stirrer similar to the direct heating sterilizer,
The dried blood components are moved from the inlet side to the outlet side while being pressed in a thin layer against the inner wall with a cooling water jacket by the blade of the stirring blade at a rotation speed of about 0 rl)m. The sterilized and cooled dried blood component is sent to a product hopper (not shown) by the discharge valve of the cooler 25.
乾燥血漿、乾燥血清のゲル強度は、加熱時間や加熱温度
により非常にデリケートで低下を起こし易く、通常、こ
れらの操作は自動制御で行なわれる。The gel strength of dried plasma and dried serum is very delicate and easily deteriorates depending on heating time and heating temperature, and these operations are usually performed under automatic control.
第2図は前記直接加熱殺菌機に替えて使用できる他の構
成例である。図において、殺菌管40の末端には、蒸気
発生機(ボイラ)41からの蒸気を過熱蒸気にするスー
パーヒータ42が設けられており、このスーパーヒータ
42の近傍の殺菌管40には、乾燥血液成分を殺菌管4
0に投入するための投入バルブ43aを有するホラポー
43が設けられている。また、この殺菌管40の他端に
は、過熱蒸気と殺菌された乾燥血液成分を分離するため
の分離装置(サイクロン)44が設けられている。投入
バルブ43aと分離装置44との間の距離は、過熱蒸気
の気流中に乾燥血液成分が投入されて、この気流中を浮
遊し、過熱蒸気と分離される殺菌時間に合わせて決定さ
れている。前記分離装置44の下方には排出バルブ44
aが設けられている。前記投入バルブ43aおよび排出
バルブ44aは、過熱蒸気の漏れを防止する機構を有し
、一般にロータリーバルブが使用される。FIG. 2 shows another configuration example that can be used in place of the direct heating sterilizer. In the figure, a super heater 42 is provided at the end of the sterilizing tube 40 to convert steam from a steam generator (boiler) 41 into superheated steam, and the sterilizing tube 40 near the super heater 42 is provided with dried blood. Sterilize ingredients in tube 4
A hollow port 43 having an input valve 43a for inputting to the 0 is provided. A separation device (cyclone) 44 is provided at the other end of the sterilization tube 40 to separate superheated steam and sterilized dried blood components. The distance between the input valve 43a and the separation device 44 is determined in accordance with the sterilization time during which the dried blood components are introduced into the airflow of superheated steam, floated in this airflow, and separated from the superheated steam. . A discharge valve 44 is located below the separation device 44.
A is provided. The input valve 43a and the discharge valve 44a have a mechanism for preventing leakage of superheated steam, and generally rotary valves are used.
また、殺菌管40は、過熱蒸気の凝縮を防ぐ上から外周
は保温されている。分離装置44の排出側には、使用済
みの過熱蒸気を再利用する循環ブロワ−45がエネルギ
ー節減の必要に応じて設けられ、この循環ブロワ−45
は前記スーパーヒータ、42に接続されている。前記排
出バルブ44aは輸送管46のほぼ中央に連結されてお
り、この輸送管46の上流端には順次エアーヒータ47
、ブロワ−48、エアーフィルタ49が接続され、下流
端は分離装置(サイクロン)50に連結されている。こ
の分離装置50の上部には排出管51を介して他の分離
装置52が連結されており、同分離装置1f50の下部
の排出バルブ(ロータリーバルブ)50aは冷却管53
の上流に連結されている。冷却管53の上流端には順次
ブロワ−54、エアーフィルタ55が接続されており、
下流端には製品排出バルブ56aを存する分離装置(サ
イクロン)56が連結されている。Furthermore, the sterilizing tube 40 is kept warm at its outer periphery to prevent condensation of superheated steam. A circulation blower 45 for reusing used superheated steam is provided on the discharge side of the separation device 44 as required for energy saving.
is connected to the super heater 42. The discharge valve 44a is connected to approximately the center of the transport pipe 46, and an air heater 47 is sequentially connected to the upstream end of the transport pipe 46.
, a blower 48, and an air filter 49 are connected, and the downstream end is connected to a separation device (cyclone) 50. The upper part of this separator 50 is connected to another separator 52 via a discharge pipe 51, and the lower discharge valve (rotary valve) 50a of the separator 1f50 is connected to a cooling pipe 53.
is connected upstream of A blower 54 and an air filter 55 are sequentially connected to the upstream end of the cooling pipe 53.
Connected to the downstream end is a separator (cyclone) 56 having a product discharge valve 56a.
前記構成において、蒸気発生機41で発生させた蒸気を
スーパーヒータ42で加熱して過熱蒸気とし、殺菌管4
0に気流として送入する。一方、予め予熱された乾燥血
液成分は投入バルブ43aを介して殺菌管40内に投入
する。投入された乾燥血液成分は気流中を浮遊しながら
加熱殺菌され、分離装置44に移送されて過熱蒸気と分
離される。この殺菌管40内の過熱蒸気の流速はスーパ
ーヒータ42前後に設けられた調整弁(図示せず)や、
必要によって設けられた循環ブロワ−45によって分離
装置44まで乾燥血液成分が浮遊する間に必要な殺菌時
間が得られるように調整される。一般には乾燥血液成分
の供給量によっても異なるが、lQm/sec〜30m
/secが好ましい。排出バルブ44aから排出された
殺菌済みの乾燥血液成分はブロワ−48により送り込ま
れる無菌の熱風により輸送管46を通して分離装置50
に送られる。この分離装置50で分離された乾燥血液成
分は、ブロワ−54によって送られてくる無菌空気によ
って冷却され、分離装置56により分離され、製品排出
バルブ56aから排出されて製品血粉となる。In the above configuration, the steam generated by the steam generator 41 is heated by the super heater 42 to become superheated steam, and the sterilization tube 4 is heated.
0 as an air stream. On the other hand, preheated dried blood components are introduced into the sterilizing tube 40 via the input valve 43a. The input dried blood components are heated and sterilized while floating in the air current, and then transferred to a separation device 44 where they are separated from superheated steam. The flow rate of the superheated steam in this sterilization pipe 40 is controlled by a regulating valve (not shown) provided before and after the super heater 42,
A circulation blower 45 provided as necessary is adjusted so that the necessary sterilization time is obtained while the dried blood components float to the separation device 44. In general, it varies depending on the supply amount of dried blood components, but it is 1Qm/sec ~ 30m
/sec is preferred. The sterilized dried blood components discharged from the discharge valve 44a are passed through the transport pipe 46 by sterile hot air sent by the blower 48 to the separation device 50.
sent to. The dried blood components separated by this separation device 50 are cooled by sterile air sent by a blower 54, separated by a separation device 56, and discharged from a product discharge valve 56a to become product blood powder.
前記の過熱蒸気→熱風(空気)→冷風(空気)の段階を
経ることによって輸送管46に同伴してきた過熱蒸気の
凝縮を防止するとともに、過熱蒸気の冷風への同伴を防
止する。The superheated steam entrained in the transport pipe 46 is prevented from condensing through the above-mentioned stages of superheated steam → hot air (air) → cold air (air), and the entrainment of superheated steam into the cold air is also prevented.
なお、前記冷却管53、分離装置56を前記の第1図の
冷却装置25に替えてもよい。Note that the cooling pipe 53 and the separation device 56 may be replaced with the cooling device 25 shown in FIG. 1 described above.
また、前記殺菌管40、冷却管53において過熱蒸気や
冷風と乾燥血液成分との相対速度を大きくして伝熱効率
を上げるために、例えば、第3図(a)に示すように過
熱蒸気や冷風の入口部60aをこの人口860aの中心
軸を管60の中心軸に対して偏倚させ、入口部60aに
おける流れが管60の断面に対し、接線方向となるよう
にするとともに、ジャケット61を設けて熱媒体を流し
、間接的に加熱または冷却するようにしたり、第3図(
b)に示すように管62内の流路に傾斜した翼を備えた
固定翼63を一定間隔で取り付け、加熱蒸気に旋回流を
与えたりすることもある。In addition, in order to increase the relative velocity of superheated steam or cold air and dried blood components in the sterilization pipe 40 and cooling pipe 53 to increase the heat transfer efficiency, for example, as shown in FIG. 3(a), superheated steam or cold air The central axis of this population 860a is offset with respect to the central axis of the tube 60, so that the flow at the inlet portion 60a is tangential to the cross section of the tube 60, and a jacket 61 is provided. Indirect heating or cooling may be achieved by flowing a heat medium, or as shown in Figure 3 (
As shown in b), fixed blades 63 having inclined blades may be attached at regular intervals to the flow path within the pipe 62 to give a swirling flow to the heated steam.
さらに、前記殺菌管40、冷却管53に替えて、第4図
に示す落下式の装置や、第5図の示す流動床式の装置を
用いることができる。Furthermore, instead of the sterilizing tube 40 and the cooling tube 53, a drop type device shown in FIG. 4 or a fluidized bed type device shown in FIG. 5 can be used.
これらの装置を殺菌機として使用する場合を説明すると
、第4図に示す装置は、加熱臼70の内部上方に回転翼
式撹拌機71が設けられ、上部には原料投入ロア2が設
けられるとともに、下部には製品排出ロア3が設けられ
、スーパーヒータ74からの過熱蒸気がブロワ−75に
より前記加熱缶70の下部から送入され、上部から排出
されるように構成されている。第5図に示す装置は、ス
ーパーヒータ80の過熱蒸気をブロワ−81により特殊
構造の流動加熱装置82中に送入し、この流動加熱装置
82から排出された過熱蒸気流中に原料ホッパー83か
ら原料を投入し、この予熱された原料をサイクロン84
にて過熱蒸気と分離して前記流動加熱装置82中に投入
する構成のものである。前記流動加熱装置82は、上部
に原料投入口82aと過熱蒸気出口82bとを有すると
ともに、下部に過熱蒸気入口82Cと製品出口82dと
を有し、内部中央に多孔部を有する水平仕切り壁82e
が設けられ、この仕切り壁82eに摺接する複数の回転
羽根82Fが取り付けられており、原料投入口82aか
ら投入された原料が回転羽根82fによって移動し、水
平仕切り壁82eの欠落部に設けられた排出ホッパ82
gに至った時、この排出ホッパ82gから製品出口82
dを介して取り出されるように構成されている装置であ
る。To explain the case where these devices are used as a sterilizer, the device shown in FIG. A product discharge lower 3 is provided at the lower part of the heating can 70, and superheated steam from a super heater 74 is introduced from the lower part of the heating can 70 by a blower 75, and is discharged from the upper part. In the apparatus shown in FIG. 5, superheated steam from a super heater 80 is fed into a specially constructed fluidized heating device 82 by a blower 81, and a raw material hopper 83 is added to the superheated steam stream discharged from this fluidized heating device 82. Input the raw materials and transfer the preheated raw materials to the cyclone 84.
The superheated steam is separated from the superheated steam and then introduced into the fluidized heating device 82. The fluid heating device 82 has a raw material input port 82a and a superheated steam outlet 82b at the top, a superheated steam inlet 82C and a product outlet 82d at the bottom, and a horizontal partition wall 82e having a porous portion at the center of the interior.
is provided, and a plurality of rotating blades 82F are attached to slide on the partition wall 82e, and the raw material inputted from the raw material input port 82a is moved by the rotating blades 82f, and a plurality of rotating blades 82F are installed in the missing portion of the horizontal partition wall 82e. Discharge hopper 82
g, from this discharge hopper 82g to the product outlet 82
d.
なお、上記装置を冷却機として使用する場合は、上記ス
ーパーヒータ74.80を省略し、過熱蒸気に替えてブ
ロワ−によって冷風が装置内に流入するようにすればよ
い。In addition, when the above-mentioned apparatus is used as a cooler, the above-mentioned super heaters 74 and 80 may be omitted, and cool air may be introduced into the apparatus by a blower instead of superheated steam.
以上のようにして殺菌された血粉は、必要により第6図
に示す袋詰機91で袋詰めされる。なお、第6図中、符
号92.93.94.95.96は、それぞれ血球液を
対象とした真空低温乾燥機、粉砕機、殺菌機、冷却機、
袋詰機を示すものであり、前記血漿液について説明した
諸条件と同じ条件で乾燥血球の製造および加熱殺菌等が
行なわれる。The blood powder sterilized as described above is packed into bags by a bagging machine 91 shown in FIG. 6, if necessary. In addition, in FIG. 6, the symbols 92, 93, 94, 95, and 96 are vacuum low temperature dryers, crushers, sterilizers, coolers, and pulverizers, sterilizers, and coolers for blood cell fluid, respectively.
This shows a bagging machine, in which dried blood cells are manufactured and heat sterilized under the same conditions as described for the plasma fluid.
次に、前記実施例の効果を確認するために行なった実験
例を説明する。Next, an experimental example conducted to confirm the effects of the above embodiment will be described.
(実験例1)
実験用の試料として、第6図に示した製造工程で得た殺
菌前の粒径60メツシユアンダー、水溶性的99%、ゲ
ル強度的650g/car以上の乾燥血漿、生乾燥血清
を用い、第1図に示した直接加熱殺菌機を用いて殺菌試
験を行なった。(Experiment Example 1) As experimental samples, dried plasma with a particle size of 60 mesh under the particle size before sterilization obtained in the manufacturing process shown in Figure 6, water solubility of 99%, gel strength of 650 g/car or more, and raw plasma were used. A sterilization test was conducted using the dried serum using the direct heating sterilizer shown in FIG.
定量フィーダー10から乾燥血漿または乾燥血清を殺菌
機本体9a内に1 kg供給した。本体9aの内容積は
300φX2000mHのサイズで約1401の容積を
有している。本装置の運転操作の手順は原料供給、本体
9a内での試料の拡散、過熱蒸気による気体の置換、過
熱蒸気の完全接触による殺菌、圧抜き、高温無菌空気に
よる気体の置換、試料の排出・冷却の順序で行なわれ、
lサイクルが約2分間の工程であり、過熱蒸気の完全接
触状態による殺菌は10秒間とし、過熱蒸気の圧力を0
.3kg/cd−Gとし、過熱蒸気の温度を変えて殺菌
後の乾燥血漿、乾燥血清のゲル強度、微生物数を調べた
。試験結果を次の表1(乾燥血漿)、表2(乾燥血清)
に示す。1 kg of dried plasma or dried serum was supplied from the quantitative feeder 10 into the sterilizer main body 9a. The internal volume of the main body 9a is 300φ×2000mH and has a volume of about 1401. The operating procedures for this device include supplying raw materials, diffusing the sample within the main body 9a, replacing gas with superheated steam, sterilizing by complete contact with superheated steam, releasing pressure, replacing gas with high-temperature sterile air, and discharging the sample. carried out in the order of cooling,
1 cycle is a process of about 2 minutes, and sterilization by complete contact with superheated steam is for 10 seconds, and the pressure of superheated steam is reduced to 0.
.. The gel strength and number of microorganisms of dried plasma and dried serum after sterilization were examined by changing the temperature of superheated steam at 3 kg/cd-G. The test results are shown in Table 1 (dried plasma) and Table 2 (dried serum).
Shown below.
(以下、余白)
〔表1〕
大腸菌群 30ケ/100g以下→(−)耐熱芽胞菌
20ケ/g 以下=(−)(以下、余白)
〔表2〕
大腸菌群 30ケ/100g以下→(−)耐熱芽胞菌
20ケ/g 以下→(−)表1および表2から明らかな
ように、過熱蒸気の温度が高くなるにつれて殺菌効果は
向上するが、ゲル強度は低下する傾向にある。殺菌温度
の上限値は、ゲル強度を維持する点から判断すると、1
80℃程度であり、下限値は、微生物成分規格を満足さ
せる上から判断すると、120 ℃程度である。(Left below) [Table 1] Coliform bacteria 30 pieces/100g or less → (-) Heat-resistant spore bacteria
20 pieces/g or less = (-) (below, margin) [Table 2] Coliform bacteria 30 pieces/100 g or less → (-) Heat-resistant spore bacteria
20 pieces/g or less → (-) As is clear from Tables 1 and 2, as the temperature of superheated steam increases, the sterilizing effect improves, but the gel strength tends to decrease. The upper limit of sterilization temperature is 1, judging from the point of maintaining gel strength.
The temperature is about 80°C, and the lower limit is about 120°C, judging from satisfying the standards for microbial components.
さらに、−船虫菌数を300ケ/g以下とし、ゲル強度
に若干の余裕をみて判断すると、好ましい温度範囲は、
はぼ140〜160 ℃程度が適切である。Furthermore, - Judging by keeping the number of shipworm bacteria at 300 cases/g or less and taking into account a slight margin for gel strength, the preferred temperature range is:
A temperature of about 140 to 160°C is appropriate.
以上の理由から、過熱蒸気の温度範囲は、120〜18
0℃で、好ましくは140〜160℃とした。For the above reasons, the temperature range of superheated steam is 120 to 18
The temperature was 0°C, preferably 140-160°C.
(実験例2)
乾燥血漿、乾燥血清の初期水分が殺菌後の製品の品質に
与える影響の試験結果を以下に示す。試料は、実験例1
で示したのと同様にして得た豚の乾燥血漿、乾燥血清を
用いた。この試料は60メツシユアンダーにし、水分は
2〜14重量%間の数点のものを用意し、第1図に示し
た直接加熱式殺菌装置を用い殺菌試験を行なった。(Experimental Example 2) The test results of the influence of the initial moisture content of dried plasma and dried serum on the quality of the product after sterilization are shown below. The sample is Experimental Example 1
Dried pig plasma and dried serum obtained in the same manner as described above were used. Several samples were prepared with a mesh under 60 and a moisture content of 2 to 14% by weight, and a sterilization test was conducted using the direct heat sterilizer shown in FIG.
「直接過熱殺菌装置の運転条件」
・試料充填量 ・ ・−1kg
・過熱蒸気温度、 ・・ 150℃
・過熱蒸気圧力 −0,3kg/crl−G・本体加熱
飽和蒸気圧 1.0kg/cut−G(加熱ジャケッ
ト) (約120℃)・過熱蒸気との完全接触によ
る殺菌時間10秒
・1サイクル時間 −約2分間
・殺菌後の試料冷却温度 40〜50℃・初期水分
−2,3,4,6,8,10,12,14(重量%)
実験結果をそれぞれ次の表3(乾燥血漿)および表4
(乾燥血清)に示した。"Operating conditions of direct superheating sterilizer" ・Sample filling amount ・・-1kg ・Superheated steam temperature, ・・150℃ ・Superheated steam pressure -0.3kg/crl-G ・Main heating saturated steam pressure 1.0kg/cut- G (heating jacket) (approximately 120℃)・Sterilization time by complete contact with superheated steam: 10 seconds・1 cycle time: -about 2 minutes・Sample cooling temperature after sterilization: 40-50℃・Initial moisture: -2, 3, 4 , 6, 8, 10, 12, 14 (wt%) The experimental results are shown in the following Tables 3 (dried plasma) and Table 4, respectively.
(Dried serum).
(以下、余白)
〔表3〕
大腸菌群 30ケ/100g以下=(−)耐熱芽胞菌
20ケ/g 以下→(−)(以下、余白)
〔表4〕
大腸菌群 30ケ/100g以下−(−)耐熱芽胞菌
20ケアg 以下→(−)表3および表4から明らかな
ように、初期水分が高くなるにつれて殺菌効果は向上す
るが、ゲル強度は低下する傾向にある。(Left below) [Table 3] Coliform bacteria 30 pieces/100g or less = (-) Heat-resistant spore bacteria
20 pieces/g or less → (-) (hereinafter, margin) [Table 4] Coliform bacteria 30 pieces/100 g or less - (-) Heat-resistant spore bacteria
20 care g or less → (-) As is clear from Tables 3 and 4, as the initial moisture content increases, the bactericidal effect improves, but the gel strength tends to decrease.
初期水分の上限値は、ゲル強度を維持する点から判断す
ると、12%程度であり、下限値は、微生物成分規格を
満足させる上から判断すると、3%程度であり、2%は
好ましくない。さらに、−役牛菌数を300ケ/g以下
とし、ゲル強度に若干の余裕をみて判断すると、好まし
い初期水分範囲は、はぼ6〜8%程度が適切である。The upper limit of the initial moisture content is about 12%, judging from the viewpoint of maintaining gel strength, and the lower limit is about 3%, judging from the viewpoint of satisfying the microbial component specifications, and 2% is not preferable. Further, if the number of draft bacteria is 300 bacteria/g or less and the gel strength is judged with some margin, the preferable initial moisture range is about 6 to 8%.
前記実験例1および2から明らかなように、乾燥血漿、
乾燥血清ともにほぼ同一の条件で殺菌することが可能で
ある。微生物の種類別の殺菌の難易性の点では、−船主
菌や大腸菌群より耐熱芽胞菌の方が難しく、本発明の方
法によれば、耐熱芽胞菌の殺菌も可能であるが、耐熱芽
胞菌殺菌の条件下では僅かながら品質の低下もあるので
、できるだけ芽胞を形成させないように製造工程での血
漿液、血清液の貯留時間を短くする等の配慮が必要であ
る。As is clear from Experimental Examples 1 and 2, dried plasma,
Both dried serum can be sterilized under almost the same conditions. In terms of the difficulty of sterilizing different types of microorganisms, it is more difficult to sterilize heat-resistant spore-forming bacteria than shipowner's bacteria or coliform bacteria. Under sterilization conditions, there is a slight deterioration in quality, so consideration must be given to shortening the storage time of plasma and serum fluids during the manufacturing process to prevent spore formation as much as possible.
(実験例3)
過熱蒸気との接触時間と、ゲル強度および微生物数との
関係を調べた試験例を以下に示した。(Experiment Example 3) A test example in which the relationship between the contact time with superheated steam, gel strength, and the number of microorganisms was investigated is shown below.
細菌の効果に影響する大きな因子としては、過熱蒸気の
温度と接触時間とがある。この実験例では過熱蒸気との
完全接触時間(=殺菌時間)について検討した。この実
験例では実験例1で示したのと同様にして得た豚の乾燥
血漿、乾燥血清を用いて殺菌実験を行なった。実験に用
いた殺菌装置は、実験例1で用いたのと同じ装置である
。The major factors that influence the effectiveness of bacteria are the temperature of the superheated steam and the contact time. In this experimental example, the complete contact time (=sterilization time) with superheated steam was investigated. In this experimental example, a sterilization experiment was conducted using dried pig plasma and dried serum obtained in the same manner as in Experimental Example 1. The sterilizer used in the experiment was the same as that used in Experimental Example 1.
実験条件を下記に示した。The experimental conditions are shown below.
「殺菌装置の運転条件」
・試料充填量・・・・・ 1 kg
・試料粒度 ・・・・・・・60メツシユアンダー・過
熱蒸気温度 ・・・・・・・・・150℃・過熱蒸気圧
力 ・・・・・・・・・0.3kg/ cd −G・本
体加熱飽和蒸気圧・・1.0kg/cd−G(加熱ジャ
ケット) (約120℃)・過熱蒸気との完全接触
による殺菌時間・・・・ 3.5.10.15.20.
25(秒)・1サイクル時間 ・−・約2分間程度・殺
菌後の試料冷却温度 −・40〜50℃・初期水分 −
7重量%
実験結果を次の表5(乾燥血漿)、表6(乾燥血清)に
示す。"Operating conditions of the sterilizer" ・Sample filling amount: 1 kg ・Sample particle size: 60 mesh under Superheated steam temperature: 150℃ Superheated steam Pressure: 0.3kg/cd-G・Body heating saturated steam pressure: 1.0kg/cd-G (heating jacket) (approximately 120℃)・Sterilization by complete contact with superheated steam Time... 3.5.10.15.20.
25 (seconds)・1 cycle time ・−・About 2 minutes・Sample cooling temperature after sterilization −・40~50℃・Initial moisture −
7% by weight The experimental results are shown in the following Tables 5 (dried plasma) and 6 (dried serum).
〔表5〕
大腸菌群 30ケ/100g以下→(−)耐熱芽胞m
20ケ/g 以下→(−)(以下、余白)
〔表6〕
大腸菌群 30ケ/100g以下→(−)耐熱芽胞菌
20ケ/g 以下→(−)表5および表6から明らかな
ように、殺菌時間を延長すれば殺菌効果は向上するが、
ゲル強度は低下する傾向にある。[Table 5] Coliform bacteria 30 pieces/100g or less → (-) heat-resistant spores m
20 pieces/g or less → (-) (below, margin) [Table 6] Coliform bacteria 30 pieces/100 g or less → (-) heat-resistant spore bacteria
20 cells/g or less → (-) As is clear from Tables 5 and 6, the sterilization effect improves if the sterilization time is extended, but
Gel strength tends to decrease.
殺菌時間の上限値は、ゲル強度を維持する点から判断す
ると、20秒程度であり、この時点においてもゲル強度
を300 g / cvlに保持するのがやっとであり
、25秒になるとゲル強度は300g/cut以下とな
ってしまう。一方、微生物成分規格を満足させる上から
殺菌時間を見てみると、3秒では一般生菌、大腸菌群数
ともに殺菌が不充分である。この時、耐熱芽胞菌は30
00ケ/gの範囲にはあるが、これは未殺菌状態での菌
数が少ないためで、殺菌効果としてはよくない。5秒で
は微生物成分規格の数値は満足する。10秒以上であれ
ば、−船主菌、大腸菌群、耐熱芽胞菌のいずれに対して
も良好な殺菌効果が得られている。Judging from the point of maintaining gel strength, the upper limit of sterilization time is about 20 seconds, and even at this point, the gel strength can barely be maintained at 300 g/cvl, and at 25 seconds, the gel strength will decrease. It ends up being less than 300g/cut. On the other hand, when looking at the sterilization time from the perspective of satisfying the microbial component standards, 3 seconds is insufficient for sterilization of both general viable bacteria and the number of coliform bacteria. At this time, the number of heat-resistant spore bacteria was 30.
Although it is in the range of 0.00 cells/g, this is because the number of bacteria is small in an unsterilized state, and the bactericidal effect is not good. At 5 seconds, the microbial component standard values are satisfied. If the time is 10 seconds or more, a good sterilizing effect is obtained against all of shipowner bacteria, coliform bacteria, and heat-resistant spore bacteria.
従って、殺菌時間の範囲は、5〜20秒、好ましくは1
0〜15秒である。Therefore, the range of sterilization time is 5 to 20 seconds, preferably 1
It is 0 to 15 seconds.
(実験例4)
乾燥血漿、乾燥血清の粒度と、殺菌後のゲル強度および
微生物数との関係を調べた実験例を以下に示した。実験
試料および殺菌装置は実験例1でのものと同擾である。(Experimental Example 4) An experimental example in which the relationship between the particle size of dried plasma and dried serum, the gel strength after sterilization, and the number of microorganisms was investigated is shown below. The experimental sample and sterilization equipment were the same as those in Experimental Example 1.
「殺菌装置の運転条件」
・試料充填量 ・・−・ 1 kg
・過熱蒸気温度 −150℃
・過熱蒸気圧力 −0,3kg/cd−G・本体加
熱飽和蒸気圧 1.0kg/cd−G(加熱ジャケ
ット) (約120 t)・過熱蒸気との完全
接触による殺菌時間−10秒
・1サイクル時間 約2分間
・殺菌後の試料冷却温度 40〜50℃・初期水分
7重量%
・ 試料粒度 20〜32 (20メックl
アンダー32メツシユオン、以下同様)、32〜42.
42〜48.48〜60.60〜80.80〜100.
100〜(100メツシユアンダー) CTyler
目盛コ
実験結果を次の表7(乾燥血漿)、表8 (乾燥面a)
に示す。"Operating conditions of the sterilizer" ・Sample filling amount: 1 kg ・Superheated steam temperature -150℃ ・Superheated steam pressure -0.3 kg/cd-G ・Main body heating saturated steam pressure 1.0 kg/cd-G ( heating jacket) (approximately 120 tons)・Sterilization time by complete contact with superheated steam - 10 seconds・1 cycle time approximately 2 minutes・Sample cooling temperature after sterilization 40-50℃・Initial moisture
7% by weight ・Sample particle size 20-32 (20 MECl
Under 32 mesh on, the same applies hereafter), 32-42.
42-48.48-60.60-80.80-100.
100 ~ (100 mesh under) CTyler
The scale test results are shown in Table 7 (dried plasma) and Table 8 (dry side a).
Shown below.
(以下、余白)
〔表7〕
大腸菌群 30ケ/100g以下→<−)耐熱芽胞菌
20ケ/g 以下→(−)(以下、余白)
〔表8〕
大腸菌群 30ケ/100g以下→(−)耐熱芽胞菌
20ケ/g 以下→(−)表7および8から明らかなよ
うに、粒径が小さくなれば、殺菌の効果はよくなるが、
ゲル強度は低下する傾向がある。(Hereafter, blank space) [Table 7] Coliform bacteria 30 pieces/100g or less → <-) Heat-resistant spore bacteria
20 pieces/g or less → (-) (below, margin) [Table 8] Coliform bacteria 30 pieces/100 g or less → (-) heat-resistant spore bacteria
20 particles/g or less → (-) As is clear from Tables 7 and 8, the smaller the particle size, the better the sterilization effect, but
Gel strength tends to decrease.
殺菌時の粒径は、微生物成分規格で考えれば20メツシ
ユアンダーでも支障はないが、食品微生物検査の慣習に
よる陰性で考えた場合は60メツシユアンダーにする必
要がある。特に耐熱芽胞菌は殺菌しがたいので、60メ
ツシユアンダーに限定した方が好ましいと考えられる。Regarding the particle size during sterilization, there is no problem with a particle size of 20 mesh or less considering the standards for microbial components, but it is necessary to set the particle size to 60 mesh or less when considering negative results according to customary food microbial testing. In particular, it is difficult to sterilize heat-resistant spore-forming bacteria, so it is considered preferable to limit the amount to under 60 mesh.
従って、60メツシユより大きい血粉は、製品化する場
合に粉砕し、60メツシユアンダーにするのが仔ましい
。殺菌した後に粉砕すると、粉砕の際に雑菌汚染の懸念
があるので、粉砕後、殺菌して直ぐに包装した方が安全
である。この理由からも予め60メツシユアンダーにし
ておいてから殺菌した方が好ましい。Therefore, it is advisable to crush blood meal larger than 60 mesh to make it into a product with a size under 60 mesh. If the product is crushed after sterilization, there is a risk of bacterial contamination during the crushing, so it is safer to sterilize and package immediately after crushing. For this reason as well, it is preferable to make the material under 60 mesh in advance and then sterilize it.
(実験例5)
前記したように、本発明では、試料は直接高温の過熱蒸
気に接触するので、過熱蒸気とほぼ同じ高い温度に達す
る。そのため、そのまま放置したのでは、冷却までかな
り時間がかかり、その間高温に維持され、それによって
ゲル強度の低下が生じる。従って、殺菌終了後は、装置
の構造上杵される範囲内で直ちに蛋白質の変性しない温
度にまで冷却すべきである。(Experimental Example 5) As described above, in the present invention, since the sample directly contacts high-temperature superheated steam, it reaches a temperature almost as high as that of the superheated steam. Therefore, if left as is, it will take a considerable amount of time to cool down, during which time the gel will remain at a high temperature, resulting in a decrease in gel strength. Therefore, after sterilization, it should be immediately cooled to a temperature that does not denature the protein within the range allowed by the structure of the apparatus.
これらを定量的に知るために、殺菌後の冷却と、ゲル強
度との関係を調べる実験を行なった。その結果を以下に
示す。試料および殺菌装置は実験例1でのものと同様で
あった。In order to understand these quantitatively, an experiment was conducted to investigate the relationship between cooling after sterilization and gel strength. The results are shown below. The sample and sterilization equipment were the same as those in Experimental Example 1.
「殺菌装置の運転条件」
・試料充填量 1 kg
・試料粒度60メツシ二アンダー
・過熱蒸気温度 −150℃
・過熱蒸気圧力 ・ 0.3 kg/ cd−G・
本体加熱飽和蒸気圧 1.0kg/cIl−G(加熱
ジャケット) (約120℃)・過熱蒸気との完
全接触による殺菌時間゛ ・10秒
・lサイクル時間 ・・約2分間
・初期水分 ・7重量%
・殺菌後の試料冷却温度・15.40.60.80.1
00110.120.130.140.
150 (t)
なお、冷却の方法は、冷却機25を用いず試料を排出口
から取り出し、伝熱性のよいステンレス製容器に入れ、
この容器を冷却水に浸漬し、容器中の試料を撹拌しなが
ら冷却し、所定の冷却温度に到達したところで試料を取
り出し、これを2β容ガラスビーカーに移し、以後大気
中で放冷する方法をとった。"Operating conditions of the sterilizer" ・Sample filling amount 1 kg ・Sample particle size 60 m2 under ・Superheated steam temperature -150℃ ・Superheated steam pressure ・0.3 kg/cd-G・
Main unit heating saturated steam pressure 1.0 kg/cIl-G (heating jacket) (approximately 120°C) Sterilization time by complete contact with superheated steam 10 seconds Cycle time approximately 2 minutes Initial moisture 7 weight % ・Sample cooling temperature after sterilization ・15.40.60.80.1
00110.120.130.140. 150 (t) The cooling method is to take out the sample from the outlet without using the cooler 25, put it in a stainless steel container with good heat conductivity,
This container is immersed in cooling water, the sample in the container is cooled while stirring, and when a predetermined cooling temperature is reached, the sample is taken out, transferred to a 2β volume glass beaker, and then left to cool in the atmosphere. I took it.
実験結果は次の表9に示す。The experimental results are shown in Table 9 below.
(以下、余白)
〔表9〕
表9から明らかなように、殺菌直後に冷却を充分行なえ
ば、ゲル強度の低下を抑えることができる。(Hereinafter, blank spaces) [Table 9] As is clear from Table 9, if cooling is performed sufficiently immediately after sterilization, a decrease in gel strength can be suppressed.
冷却の温度が110℃を越えると、ゲル強度の低下の比
率が大きくなる。従って、冷却温度は110℃以下にす
ることが必要である。When the cooling temperature exceeds 110° C., the rate of decrease in gel strength increases. Therefore, it is necessary to set the cooling temperature to 110° C. or lower.
なお、本実験では、10ツト当たりの量を1 kgとし
て試験をしたが、実生産では多量のバルクが集積される
ことになるので、放熱が悪(、自然放冷の際の品質低下
の速度が低下するので、さらにゲル強度の低下は大きく
なる。この場合のゲル強度の低下の原因としては、バル
クの状態で放冷する時に内部の温度が上昇し、高温高湿
の状態で長時間放置されるためと考えられる。In addition, in this experiment, the amount per 10 pieces was 1 kg, but in actual production, a large amount of bulk will be accumulated, so the heat dissipation will be poor (and the rate of quality deterioration during natural cooling). As the gel strength decreases, the decrease in gel strength becomes even greater.In this case, the reason for the decrease in gel strength is that the internal temperature rises when the bulk is left to cool, and if it is left in a high temperature and high humidity condition for a long time. This is thought to be because the
以上の知見から殺菌後の試料は、好ましくは直ちに常温
近くまで冷却することが好ましく、装置の構造上充分な
冷却ができない場合でも110℃以下に冷却すべきであ
る。From the above findings, it is preferable to immediately cool the sample after sterilization to near room temperature, and even if sufficient cooling is not possible due to the structure of the apparatus, it should be cooled to 110° C. or lower.
なお、本実験では、開放状態で撹拌冷却を行なったので
、微生物数の測定は行なわなかったが、前記実施例1〜
4の結果より直ちに冷却した場合でも殺菌効果は充分で
あることが確実なので、問題はない。In this experiment, the number of microorganisms was not measured because stirring and cooling was performed in an open state.
From the result of 4, it is certain that the sterilizing effect is sufficient even if it is immediately cooled, so there is no problem.
「発明の効果」
以上説明したように、この発明に係る血粉の製造方法は
、血液から、得られた初期水分が3〜12重量%の未変
性乾燥血液成分に120〜180℃の過熱蒸気(Sup
erheated Steam) を接触させ、コノ
過熱蒸気と乾燥血液成分との完全接触状態を5〜20秒
間持続させた後、過熱蒸気と乾燥血液成分とを分離し、
分離後、直ちに乾燥血液成分を110℃以下に冷却する
ことを特徴とする方法である。"Effects of the Invention" As explained above, the method for producing blood powder according to the present invention comprises converting blood into undenatured dried blood components having an initial water content of 3 to 12% by weight using superheated steam at 120 to 180°C. Sup
After maintaining complete contact between the superheated steam and the dried blood components for 5 to 20 seconds, the superheated steam and the dried blood components are separated,
This method is characterized by cooling the dried blood components to 110° C. or lower immediately after separation.
従って、本発明によれば、低温乾燥で得られた乾燥全血
、乾燥血球ばかりでなく、乾燥血漿、乾燥血清をも含め
たすべての種類の乾燥血液成分を、その水溶性や熱凝固
性を損なわないばかりでなく、そのゲル強度をほとんど
低下させずに効率よく充分殺菌することが可能となる。Therefore, according to the present invention, all kinds of dried blood components, including not only dried whole blood and dried blood cells obtained by low-temperature drying, but also dried plasma and dried serum, can be processed by controlling their water solubility and heat coagulability. Not only does it not cause any damage, but it also becomes possible to efficiently and sufficiently sterilize the gel without reducing its gel strength.
第1図および第2図はそれぞれ本発明に係る血粉の殺菌
方法に用いて好適な直接加熱殺菌装置の構成図、第3図
(a)および(b)はそれぞれ直接加熱殺菌装置の要部
の変形例を示す構成図、第4図は本発明方法に使用する
直接加熱殺菌装置に適用可能な落下式殺菌機の構成図、
第5図は本発明方法に使用する直接加熱殺菌装置に適用
可能な流動床式殺菌機の構成図、第6図は血粉の製造工
程図である。
9 直接加熱殺菌機、9a −殺菌機本体9C中空
ショット、9d −モータ、10 定量フィーダ
、11 ・過熱蒸気供給管、13 スーパーヒー
タ、19 排水バルブ、20 エアー搬送管、2
3 サイクロン、25 冷却機、40・ 殺菌
管、41 蒸気発生機、42 スーパーヒータ
、44 ・分離装置、46 輸送管、48
ブロワ−150分離装置、53 冷却管、54・
ブロワ−156分離装置。
出願人 株式会社 新潟鉄工所
第2図
篤4図 鞘
番
曇
製品1 and 2 are block diagrams of a direct heat sterilizer suitable for use in the method of sterilizing blood powder according to the present invention, and FIGS. 3(a) and 3(b) are diagrams of main parts of the direct heat sterilizer, respectively. A configuration diagram showing a modified example; FIG. 4 is a configuration diagram of a drop-type sterilizer applicable to the direct heat sterilization device used in the method of the present invention;
FIG. 5 is a block diagram of a fluidized bed sterilizer applicable to the direct heating sterilizer used in the method of the present invention, and FIG. 6 is a diagram of the blood meal manufacturing process. 9 Direct heat sterilizer, 9a - Sterilizer main body 9C hollow shot, 9d - Motor, 10 Quantitative feeder, 11 - Superheated steam supply pipe, 13 Super heater, 19 Drain valve, 20 Air conveyance pipe, 2
3 Cyclone, 25 Cooler, 40 Sterilization pipe, 41 Steam generator, 42 Super heater, 44 Separation device, 46 Transport pipe, 48
Blower 150 Separation device, 53 Cooling pipe, 54.
Blower - 156 separation device. Applicant Niigata Iron Works Co., Ltd. Figure 2 Atsushi Figure 4 Sayabangumo products
Claims (4)
変性乾燥血液成分に120〜180℃の過熱蒸気を接触
させ、この過熱蒸気と乾燥血液成分との完全接触状態を
5〜20秒間持続させた後、過熱蒸気と乾燥血液成分と
を分離し、分離後、直ちに乾燥血液成分を110℃以下
に冷却することを特徴とする殺菌された血粉の製造方法
。(1) Superheated steam at 120 to 180°C is brought into contact with undenatured dried blood components obtained from blood with an initial water content of 3 to 12% by weight, and the state of complete contact between the superheated steam and the dried blood components is maintained for 5 to 20 minutes. 1. A method for producing sterilized blood powder, which comprises separating superheated steam and dried blood components after maintaining the temperature for 2 seconds, and immediately cooling the dried blood components to 110° C. or lower after separation.
液または血液成分を乾燥したものであることを特徴とす
る特許請求の範囲第1項記載の殺菌された血粉の製造方
法。(2) The method for producing sterilized blood powder according to claim 1, wherein the dried blood component is obtained by drying blood or blood components while keeping the temperature of the dried blood component at 50° C. or lower.
のであることを特徴とする特許請求の範囲第1項記載の
殺菌された血粉の製造方法。(3) The method for producing sterilized blood powder according to claim 1, wherein the dried blood component is pulverized to 60 mesh or less.
たは乾燥全血であることを特徴とする特許請求の範囲第
1項記載の殺菌された血粉の製造方法。(4) The method for producing sterilized blood powder according to claim 1, wherein the dried blood component is dried plasma, dried serum, dried blood cells, or dried whole blood.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62116781A JPS63283553A (en) | 1987-05-15 | 1987-05-15 | Production of sterilized blood powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62116781A JPS63283553A (en) | 1987-05-15 | 1987-05-15 | Production of sterilized blood powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63283553A true JPS63283553A (en) | 1988-11-21 |
Family
ID=14695553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62116781A Pending JPS63283553A (en) | 1987-05-15 | 1987-05-15 | Production of sterilized blood powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63283553A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006080624A1 (en) * | 2004-09-21 | 2006-08-03 | A.B.I Co., Ltd | Preparation of amino acids/oligopeptides from animal whole blood or clotted blood |
KR100908742B1 (en) | 2007-05-22 | 2009-07-22 | 김신익 | Manufacturing method of functional supplement containing organic germanium |
-
1987
- 1987-05-15 JP JP62116781A patent/JPS63283553A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006080624A1 (en) * | 2004-09-21 | 2006-08-03 | A.B.I Co., Ltd | Preparation of amino acids/oligopeptides from animal whole blood or clotted blood |
KR100908742B1 (en) | 2007-05-22 | 2009-07-22 | 김신익 | Manufacturing method of functional supplement containing organic germanium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101530129B (en) | Production method of freeze-dried milk powder | |
RU2496391C2 (en) | Method for power or grain sterilisation and sterilising device for method implementation | |
CN1027344C (en) | Method for sterilizing raw plant products | |
EP2410870B1 (en) | Apparatus and method for pasteurizing milk for feeding to calves | |
US4347259A (en) | Method for reducing the bacterial population of blood powder | |
EP1351587B2 (en) | Pasteurizing or sterilizing | |
AU2002226807A2 (en) | Pasteurizing or sterilizing | |
JP3941903B2 (en) | Continuous stirring and sterilizing equipment for powder | |
JPS63283553A (en) | Production of sterilized blood powder | |
JPS63167763A (en) | Production of sterilized blood powder having gel strength | |
JP2001103947A (en) | Device for sterilizing, drying and cooling livestock feed | |
BR112016027865B1 (en) | METHOD FOR PREPARING HUMAN MILK TO BE STORED AND APPARATUS FOR PREPARING HUMAN MILK TO BE STORED | |
JPS63167762A (en) | Sterilization of blood powder | |
CN111248466A (en) | Low-energy-consumption powdery feed raw material sterilization, disinfection and coupling cooling integrated machine | |
JP2508641B2 (en) | Method for producing blood meal having gel strength | |
JP2002320663A (en) | Germicidal apparatus | |
RU2766359C1 (en) | System for processing blood produced during slaughtering for production of blood meal and method for processing blood produced during slaughtering process for production of blood meal | |
JPS63167761A (en) | Sterilization of blood powder | |
JPH0579299B2 (en) | ||
JP2002330717A (en) | Method and apparatus for producing dried bean-curd refuse | |
JP3348016B2 (en) | Feed sterilization method and sterilizer | |
JP2001286537A (en) | Double tube type sterilizer for fodder | |
JPH0611225B2 (en) | Method and apparatus for producing blood product from animal blood | |
JP2001269153A (en) | Method and apparatus for low-pressure disinfection of feed for livestock | |
WO2023218473A1 (en) | Semi continuous steam sterilizer and pasteurizer apparatus with dehumidifier |