JPH0579299B2 - - Google Patents

Info

Publication number
JPH0579299B2
JPH0579299B2 JP61266090A JP26609086A JPH0579299B2 JP H0579299 B2 JPH0579299 B2 JP H0579299B2 JP 61266090 A JP61266090 A JP 61266090A JP 26609086 A JP26609086 A JP 26609086A JP H0579299 B2 JPH0579299 B2 JP H0579299B2
Authority
JP
Japan
Prior art keywords
blood
dried
temperature
water
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61266090A
Other languages
Japanese (ja)
Other versions
JPS63119663A (en
Inventor
Hiroshi Suzuki
Munetaka Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP61266090A priority Critical patent/JPS63119663A/en
Publication of JPS63119663A publication Critical patent/JPS63119663A/en
Publication of JPH0579299B2 publication Critical patent/JPH0579299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fodder In General (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 この発明は、動物の血液またはその血液成分か
ら得られた水溶性を有する乾燥全血、乾燥血漿、
乾燥血清、乾燥血球等の乾燥血液をその水溶性
(溶解度)を損うことなく殺菌する方法に関する
ものである。 「従来の技術および問題点」 周知のように、牛、豚等の屠殺の血液は、高蛋
白質、低脂肪であり、しかも、蛋白質中に含まれ
るアミノ酸構成も栄養的に優れたものである。 しかし、このような屠殺動物の血液の利用状況
を見ると、ごく一部が煮沸凝固等の簡単な処理法
で低品質のものが製造され、肥料用または飼料用
として利用されているに過ぎず、大部分は未利用
のまま排水処理され、排水処理上の大きな負担に
なつているのが現状である。 そこで、近年、畜産動物の副生物質の有効利用
と、屠殺場の近代化の立場から血液成分の優れた
栄養価値の他に血液成分の持つ優れた食品加工上
の諸物性を生かす血液処理方法として、血液を遠
心分離機にかけて血液を血球と血漿に分離する
か、あるいは血液からフイブリンを取り除き、そ
の血液を遠心分離機にかけて血球と血清とに分離
して、分離したそれぞれの成分や、またはこのよ
うな分離を行なわない全血をスプレー乾燥、凍結
乾燥、真空乾燥等の低温乾燥によつて蛋白を変性
させずに乾燥製品である血粉(乾燥血液)を得る
方法が提供されている。 しかし、前記従来の方法では、濃縮乾燥温度が
低いために、温度による殺菌は考えられず、得ら
れる血漿または血清製品には、おおよそ1g当た
り105〜107ケ位の多量の一般生菌数があるケース
が多く、食品としての安全性に問題があつた。 血粉を食品または食品加工材料とする場合、最
も大切なことは、食品としての安全性であり、特
に注意を要するのは、微生物による汚染である。
そのためには、血粉の原料を得る採血工程で衛生
的な採血方法を採用する必要があり、また、それ
以後の分離乾燥工程においても、外部からの微生
物の混入や工程内での微生物の増殖を極力抑える
ことが大切である。しかし、製造工程上で、これ
らの微生物を完全に抑えることが困難である。 そこで、得られた血粉の殺菌が重要となるが、
従来、血粉の殺菌の方法としては、一つにはエチ
レンオキサイド、プロピレンオキサイド等による
ガス殺菌が知られている。この殺菌法は、蛋白質
の変性も少なく、血粉の溶解度の低下を起こすこ
となく、殺菌が可能であるが、使用ガスの残留毒
性の問題が未解決である。この他の殺菌法として
は、加熱殺菌法がある。この殺菌法は、衛生的に
は優れた殺菌法であるが、蛋白質の熱変性が起こ
り、溶解度が低下し、血粉の商品価値の著しい低
下の原因となる。 本発明は、上記知見に基づいてなされたもの
で、その目的は、血粉(乾燥血液)の一般生菌、
大腸菌等の滅菌(商業滅菌)を行なうことがで
き、かつ水溶性の低下がほとんどない血粉の殺菌
方法を提供することにある。 「問題点を解決するための手段」 この発明に係る水溶性を有する乾燥血液の殺菌
方法は、上記問題点を解決するために鋭意実験を
重ねた結果、特定の圧力、温度範囲の二酸化炭素
に接触させることにより血粉の水溶性を損わずに
充分殺菌することが可能なるとの知見を得てなさ
れたもので、 第1に、血液または血液成分から得た水溶性を
有する乾燥血液を初期水分が10〜35重量%の状態
で圧力70〜400atm、温度30〜45℃の二酸化炭素
に接触させることを特徴とする方法である。 第2に、血液または血液成分から得た水溶性を
有する乾燥血液を初期水分が10〜35重量%の状態
で圧力70〜400atm、温度30〜45℃の二酸化炭素
と酢酸との混合物に接触させることを特徴とする
方法である。 「作用」 上記方法によれば、低温乾燥等で得られた乾燥
全血、乾燥血球ばかりでなく、乾燥血漿、乾燥血
清をも含めたすべての種類の水溶性を有する乾燥
血液を、その水溶性(溶解度)を損わずに充分殺
菌することが可能となる。 以下、この発明を実施例によりさらに詳しく説
明する。 「実施例」 第2図に示すように、套管状ナイフ等で家畜動
物1から衛生的に採血を行なうと同時に抗凝固剤
タンク2のクエン酸ソーダ水溶液等の抗凝固剤を
直ちに血液に対してクエン酸ソーダとして0.5重
量%程度混合して血液の凝固を防止する。採血さ
れた血液は、ストレーナー3を通して混入した肉
片、脂肪片、毛などの夾雑物を除去した後に、一
旦検査タンク4に貯留する。検査タンク4に貯留
している間に屠体の検査等で病気の屠畜等の有無
を調べた後に、衛生的であると確認された血液の
みを次の熱交換器5を通し、冷却する。血漿や血
球の乾燥血液を得る場合には、上記血液を遠心分
離機6に送る。この高速連続式の遠心分離機6で
分離を行ない、軽液部分を血漿液、重液部分を血
球液として回収する。得られた血漿液と血球液を
それぞれ次の血漿真空低温乾燥機7及び血球真空
低温乾燥機11に送り、ここで血液の濃度が薄い
段階では品温を好ましくは40℃以下に、濃度が50
%以上と高くなつた段階でも品温を50℃以下に保
ちながら低温で乾燥を行ない、血液中の蛋白質が
熱変性しないように留意する。真空低温乾燥機
7,11での乾燥の程度は、次の工程の殺菌段階
を考慮に入れた乾燥の度合を調整し、適切な水分
の段階で乾燥を止める。乾燥した血粉は、粉砕機
8,12で通常60メツシユアンダー位に粉砕を行
なう。 なお、乾燥血漿に代えて乾燥血清を得る場合
は、血液から捕捉素子等を血液中で緩やかにかき
まぜて血液中のフイブリンをまつわりつけて取り
除いた後、遠心分離機で血清液と血球液に分離す
るか、遠心分離機で分離された血漿液をしばらく
貯留槽に蓄え、フイブリンを凝固させ、凝固した
フイブリンを篩別、濾別またはストレーナ等を用
いて取り除いて血清液を得て、この血清液を前記
と同様に真空低温乾燥機で乾燥すればよい。また
乾燥全血を得る場合には、上記冷却した血液を遠
心分離機にかけずにそのまま低温乾燥機で乾燥す
ればよい。 上記乾燥血球、乾燥血漿、乾燥血清および乾燥
全血は、本願発明の乾燥血液に当たるものであ
る。 本発明を効果的に実施するためには、次工程で
ある殺菌工程以前の前記採血工程、分離工程、乾
燥工程で蛋白質を含む食品の取り扱いに関する常
識的な注意事項が重要である。すなわち、採血の
際に出来るだけ微生物が血液に混入しないように
注意を払うこと、採血後、冷却を充分に行ない、
好ましくは4℃以下とし、採血後の血液中の微生
物が増殖しないようにすることが大切である。ま
た、分離工程では遠心分離機で血液の温度が上が
るので、分離液を貯留する貯留槽(図示せず)で
は、再度4℃以下に冷却する必要がある。乾燥工
程では、水分を蒸発させるため、加熱の必要があ
るが、この際、品温を50℃以下、好ましくは40℃
以下に保ち、蛋白質が変性を起こすような温度に
上がることは極力避ける必要がある。 以上の説明のように、充分注意して製造した乾
燥血液は、溶解度として95%以上であり、物性の
上では非常に優れた中間製品である。しかし、微
生物数の面で見ると、おおよそ血粉1g当たり
105〜107ケ位の多量の微生物が含まれているケー
スが多い。 つづいて、本願発明では、上記乾燥血液(初期
水分10〜35重量%、好ましくは10〜30重量%)
は、例えば、第1図に概略のフローシートを示し
たような殺菌装置9,13に導かれ、殺菌され
る。 第1図中、符号20は圧力容器であり、この中
に未殺菌の乾燥血液(全血も含む)が充填されて
いる。ポンプ21により所定の圧力(70〜
400atm)まで加圧された二酸化炭素は、前記圧
力容器20に入る。圧力容器20には温度制御装
置が付いており、導入された二酸化炭素は所定の
温度(30〜45℃、好ましくは30〜40℃)まで加温
され、内部に充填されている乾燥血液と接触し、
乾燥血液中に含有されている水分を抽出すると同
時に、乾燥血液中に存在する微生物に殺菌作用を
及ぼす。殺菌作用を終了した二酸化炭素は、バル
ブ22で減圧された後、放出される。なお、放出
された二酸化炭素は、抽出した水分等を分離除去
された後、再び循環使用することも可能である。 また、さらに酢酸を添加する場合は、第1図中
点線のように、その酢酸含有量が6重量%未満に
なるようにポンプ23により供給する。 なお、図中符号24は抽出前の二酸化炭素を、
25は抽出後の二酸化炭素を示すものである。 このようにして殺菌された血粉は、必要により
袋詰機10で袋詰めされる。なお、第2図中、符
号14は、血球液を対象とした袋詰機を示すもの
である。 次に、前記実施例の効果を確認するために行な
つた実験例を説明する。なお、以下の実験例に示
す水分量、生菌数、溶解度の測定方法は、次のよ
うな方法によつた。 (水分量測定方法) (i) 乾燥血液を乳鉢で良く粉砕する。 (ii) 秤量皿に上記粉砕試料1〜2g採取し、これ
を105℃で2時間乾燥する。 (iii) 乾燥後、デシケータ中で冷却し、秤量する。 (iv) 水分量を次式により求める。 水分量(重量%)=乾燥減量(g)/採取した試料の量
(g)×100 (溶解度測定方法) (i) 50ml容の遠心管を予め乾燥秤量しておく。 (ii) 60メツシユ以下に粉砕した血液粉末1gを精
密化学天秤で採取する。 (iii) (ii)で採取した試料を(i)で秤量した遠心管中に
入れ、約40mlの蒸留水を加え、良く撹拌して溶
解する。 (iv) (iii)で溶解したものを遠心分離機で3000rpm×
10分の条件で遠心分離を行ない、上澄液を流し
去る。 (v) 遠心管に再度約40mlの蒸留水を加え、良く撹
拌して沈澱物中の未溶解物を良く溶かす。 (vi) 遠心分離機で3000rpm×10分の条件で遠心分
離を行ない、上澄液を流し去る。 (vii) (v)(vi)を再度実施する。 (viii) 遠心管を105℃の乾燥機内に入れ、沈澱の上
部の水がなくなつた状態から2時間乾燥し、デ
シケータ中で冷却後秤量する。 (ix) 溶解度は次の式により求める。 溶解度(重量%)=採取量(mg)−不溶解
物(mg)/採取量(mg)×100 (生菌数測定法) (i) 乾燥血液を1g採取する。 (ii) 無菌生理食塩水(0.9重量%NaCl)10mlを加
え、良く振とうする。 (iii) 振とう後の1mlを採取し、無菌生理食塩水9
mlを加え、良く振とうする。これを所定の5〜
6回繰り返す。 (iv) 各希釈段階の液1mlを採取し、シヤーレ上で
生菌数測定用寒天培地(15g、50℃保温)と混
合、固化させる。 (v) 37℃の条件で2日間培養する。 (vi) 培養後、平板上の集落数を計測する(N個)。 (vii) 計算式; 生菌数(個/g)=N×10(希釈倍数)/採取量(g
) (viii) なお、この測定法は、“金原出版(株)刊、日本
薬学会編、昭和54年2月20日発行、「衛生試験
法注解」中に示される一般試験法、M細菌試験
法中、4.生菌数”に準じた方法である。 実験例 1 前記第1図の殺菌装置により種々の水分を含有
する乾燥血液(乾燥血漿を使用、以下同じ)を35
℃、200Kg/cm2Gの二酸化炭素によつて殺菌処理
した。その結果を表1に示す。この結果は比較の
ため処理前後のものを示す。また、処理条件を表
2に示す。 殺菌後の乾燥血液は、その溶解度(重量%)が
80重量%以上であり、特に乾燥血液の初期水分が
10〜30重量%であれば、その変性は問題とならな
い。 本発明の主目的は、乾燥血液を変性させずに、
この乾燥血液中の細菌を殺すことにある。 上記実験No.6より明らかなように、乾燥血液中
の水分量が少ない場合、二酸化炭素には殺菌の効
力はない。しかしながら、実験No.5〜1に示すよ
うに水分量を増やして行くことにより、血液中に
存在していた細菌数(生菌数)が減少していくこ
とがわかる。そして、それとは逆に、乾燥血液の
溶解度は、初期水分が多い程低下して行くが、水
分量30.7重量%でも91重量%とほとんど変性しな
かつた。 要するに、乾燥血液の物性を変えることなく殺
菌できることが明らかとなつた。
"Industrial Application Field" This invention relates to water-soluble dried whole blood, dried plasma, and dried plasma obtained from animal blood or its blood components.
The present invention relates to a method for sterilizing dried blood such as dried serum and dried blood cells without impairing its water solubility (solubility). "Prior Art and Problems" As is well known, blood from slaughtered cows, pigs, etc. is high in protein and low in fat, and the amino acid composition contained in the protein is nutritionally superior. However, when we look at the usage of blood from slaughtered animals, we find that only a small portion of it is manufactured using simple processing methods such as boiling and coagulation to produce low-quality blood and is used as fertilizer or feed. Currently, most of the wastewater is treated unused, creating a huge burden on wastewater treatment. Therefore, in recent years, from the viewpoint of effective use of by-products of livestock animals and modernization of slaughterhouses, blood processing methods have been developed that take advantage of the excellent nutritional value of blood components and the various physical properties of blood components for food processing. As a method, blood is separated into blood cells and plasma using a centrifuge, or fibrin is removed from the blood, and the blood is separated into blood cells and serum using a centrifuge. A method has been proposed in which whole blood without such separation is subjected to low-temperature drying such as spray drying, freeze drying, vacuum drying, etc. to obtain a dried product, blood meal (dried blood), without denaturing proteins. However, in the conventional method, sterilization by temperature cannot be considered because the concentration and drying temperature is low, and the obtained plasma or serum product contains a large number of general viable bacteria, approximately 10 5 to 10 7 per gram. In many cases, there was a problem with food safety. When using blood meal as a food or food processing material, the most important thing is safety as a food, and what requires particular attention is contamination by microorganisms.
To this end, it is necessary to adopt a hygienic blood collection method in the blood collection process to obtain the raw material for blood powder, and also to prevent the contamination of external microorganisms and the growth of microorganisms within the process in the subsequent separation and drying process. It is important to suppress it as much as possible. However, it is difficult to completely suppress these microorganisms during the manufacturing process. Therefore, it is important to sterilize the blood powder obtained.
Conventionally, gas sterilization using ethylene oxide, propylene oxide, etc. is known as a method for sterilizing blood meal. This sterilization method causes little protein denaturation and enables sterilization without reducing the solubility of blood powder, but the problem of residual toxicity of the gas used remains unsolved. Other sterilization methods include heat sterilization. Although this sterilization method is excellent from a sanitary standpoint, thermal denaturation of proteins occurs, resulting in a decrease in solubility and a significant decrease in the commercial value of blood meal. The present invention was made based on the above findings, and its purpose is to remove common viable bacteria from blood meal (dried blood).
It is an object of the present invention to provide a method for sterilizing blood powder, which can sterilize Escherichia coli (commercial sterilization) and causes almost no decrease in water solubility. "Means for Solving the Problems" As a result of intensive experiments to solve the above problems, the method of sterilizing water-soluble dried blood according to the present invention was developed using carbon dioxide at a specific pressure and temperature range. This method was developed based on the knowledge that it is possible to sufficiently sterilize blood powder by contacting it with water without impairing its water solubility. First, water-soluble dried blood obtained from blood or blood components is heated to an initial moisture This method is characterized by contacting carbon dioxide at a pressure of 70 to 400 atm and a temperature of 30 to 45°C in a state of 10 to 35% by weight. Second, water-soluble dried blood obtained from blood or blood components is brought into contact with a mixture of carbon dioxide and acetic acid at a pressure of 70 to 400 atm and a temperature of 30 to 45°C at an initial moisture content of 10 to 35% by weight. This method is characterized by the following. ``Effect'' According to the above method, all kinds of water-soluble dried blood, including not only dried whole blood and dried blood cells obtained by low-temperature drying, but also dried plasma and dried serum, can be processed by It becomes possible to sufficiently sterilize without impairing (solubility). Hereinafter, this invention will be explained in more detail with reference to Examples. "Example" As shown in Figure 2, blood is hygienically collected from a domestic animal 1 using a cannula-like knife, and at the same time an anticoagulant such as a sodium citrate aqueous solution in an anticoagulant tank 2 is immediately applied to the blood. Mix about 0.5% by weight of sodium citrate to prevent blood coagulation. The collected blood is passed through a strainer 3 to remove contaminants such as meat pieces, fat pieces, and hair, and then temporarily stored in a test tank 4. While the blood is stored in the inspection tank 4, the carcass is inspected for the presence of diseased animals, etc., and only the blood that is confirmed to be hygienic is passed through the next heat exchanger 5 to be cooled. . When obtaining dried blood such as plasma or blood cells, the blood is sent to a centrifuge 6. Separation is performed using this high-speed continuous centrifuge 6, and the light liquid portion is recovered as plasma liquid and the heavy liquid portion is recovered as blood cell liquid. The obtained plasma fluid and blood cell fluid are sent to the following plasma vacuum low-temperature dryer 7 and blood cell vacuum low-temperature dryer 11, respectively, where the temperature is preferably lowered to 40°C or lower when the blood concentration is low, and the concentration is lowered to 50°C.
Even when the temperature exceeds 50%, dry at a low temperature while keeping the temperature below 50°C, and be careful not to heat denature the proteins in the blood. The degree of drying in the vacuum low-temperature dryers 7 and 11 is adjusted taking into account the sterilization step of the next process, and the drying is stopped at an appropriate moisture level. The dried blood powder is usually ground to about 60 meshes using grinders 8 and 12. In addition, when obtaining dried serum instead of dried plasma, gently stir the capture element etc. in the blood to remove the fibrin in the blood, and then separate it into serum liquid and blood cell liquid using a centrifuge. Alternatively, the plasma separated by a centrifuge is stored in a storage tank for a while, the fibrin is coagulated, and the coagulated fibrin is removed using a sieve, filtration, or a strainer to obtain a serum solution. may be dried in a vacuum low temperature dryer in the same manner as above. In addition, when obtaining dried whole blood, the cooled blood may be directly dried in a low-temperature dryer without being subjected to a centrifuge. The above dried blood cells, dried plasma, dried serum, and dried whole blood correspond to the dried blood of the present invention. In order to effectively carry out the present invention, it is important to take common-sense precautions regarding the handling of foods containing protein in the blood collection step, separation step, and drying step before the next step, the sterilization step. In other words, when collecting blood, be careful to prevent microorganisms from getting into the blood, and after collecting blood, cool it thoroughly.
It is important to keep the temperature preferably below 4°C to prevent the growth of microorganisms in the blood after blood collection. Furthermore, in the separation process, the temperature of the blood increases in the centrifuge, so the storage tank (not shown) that stores the separated liquid needs to be cooled down to 4° C. or lower again. In the drying process, heating is required to evaporate water, but at this time, the product temperature should be kept below 50℃, preferably 40℃.
It is necessary to maintain the temperature below and avoid as much as possible the temperature that would cause protein denaturation. As explained above, dried blood produced with sufficient care has a solubility of 95% or more, and is an intermediate product with excellent physical properties. However, in terms of the number of microorganisms, approximately per gram of blood meal
In many cases, it contains a large amount of microorganisms on the order of 10 5 to 10 7 . Continuing, in the present invention, the dried blood (initial moisture content: 10 to 35% by weight, preferably 10 to 30% by weight)
For example, the materials are introduced into sterilizers 9 and 13 as shown in the schematic flow sheet of FIG. 1, and are sterilized. In FIG. 1, reference numeral 20 is a pressure vessel, which is filled with unsterilized dried blood (including whole blood). A predetermined pressure (70~
Carbon dioxide pressurized to 400 atm) enters the pressure vessel 20. The pressure vessel 20 is equipped with a temperature control device, and the introduced carbon dioxide is heated to a predetermined temperature (30 to 45 degrees Celsius, preferably 30 to 40 degrees Celsius) and brought into contact with the dried blood filled inside. death,
It extracts the water contained in dried blood and at the same time exerts a bactericidal effect on microorganisms present in dried blood. The carbon dioxide that has completed its sterilizing action is depressurized by the valve 22 and then released. Note that the released carbon dioxide can be recycled and used again after the extracted moisture and the like are separated and removed. Further, when acetic acid is further added, it is supplied by the pump 23 so that the acetic acid content is less than 6% by weight, as shown by the dotted line in FIG. In addition, the reference numeral 24 in the figure indicates carbon dioxide before extraction.
25 indicates carbon dioxide after extraction. The blood powder thus sterilized is packed into bags by a bagging machine 10, if necessary. In addition, in FIG. 2, the reference numeral 14 indicates a bagging machine for blood cell fluid. Next, an experimental example conducted to confirm the effects of the above embodiment will be explained. The water content, number of viable bacteria, and solubility shown in the following experimental examples were measured using the following methods. (Method for measuring water content) (i) Grind the dried blood well in a mortar. (ii) Take 1 to 2 g of the above pulverized sample to a weighing dish and dry it at 105°C for 2 hours. (iii) After drying, cool in a desiccator and weigh. (iv) Calculate the moisture content using the following formula. Moisture content (weight %) = Loss on drying (g) / Amount of sample collected (g) x 100 (Solubility measurement method) (i) Dry and weigh a 50 ml centrifuge tube in advance. (ii) Collect 1 g of blood powder crushed to 60 mesh or less using a precision chemical balance. (iii) Place the sample collected in (ii) into the centrifuge tube weighed in (i), add about 40 ml of distilled water, and stir well to dissolve. (iv) The solution dissolved in (iii) is centrifuged at 3000 rpm
Centrifuge for 10 minutes and pour off the supernatant. (v) Add about 40 ml of distilled water to the centrifuge tube again and stir well to dissolve undissolved substances in the precipitate. (vi) Centrifuge at 3000 rpm for 10 minutes using a centrifuge, and pour off the supernatant. (vii) Perform (v)(vi) again. (viii) Place the centrifuge tube in a dryer at 105°C, dry for 2 hours until the water at the top of the precipitate disappears, cool in a desiccator, and then weigh. (ix) Calculate solubility using the following formula. Solubility (weight %) = Collected amount (mg) - Undissolved matter (mg) / Collected amount (mg) x 100 (Viable bacteria count measurement method) (i) Collect 1 g of dried blood. (ii) Add 10 ml of sterile physiological saline (0.9% by weight NaCl) and shake well. (iii) After shaking, collect 1 ml and add sterile physiological saline9.
ml and shake well. This is the predetermined 5~
Repeat 6 times. (iv) Collect 1 ml of the solution at each dilution stage, mix it with an agar medium for viable cell count measurement (15 g, kept at 50°C) on a shear plate, and solidify. (v) Culture at 37℃ for 2 days. (vi) After culturing, count the number of colonies on the plate (N). (vii) Calculation formula: Number of viable bacteria (count/g) = N x 10 (dilution factor)/amount collected (g
) (viii) This measurement method is based on the general test method, M Bacteria Test, published by Kanehara Publishing Co., Ltd., edited by the Pharmaceutical Society of Japan, published on February 20, 1976, "Commentary on Sanitary Test Methods". This method is based on 4. "Viable Bacteria Count" in the method. Experimental Example 1 35 times dried blood (dried plasma is used, the same applies hereinafter) containing various water contents is used in the sterilizer shown in Figure 1 above.
It was sterilized with carbon dioxide at 200 kg/cm 2 G at ℃. The results are shown in Table 1. The results are shown before and after treatment for comparison. Further, the processing conditions are shown in Table 2. The solubility (wt%) of dried blood after sterilization is
80% by weight or more, especially the initial moisture content of dried blood.
If the amount is 10 to 30% by weight, the modification will not be a problem. The main purpose of the present invention is to dry blood without denaturing it.
The purpose is to kill the bacteria in this dried blood. As is clear from Experiment No. 6 above, when the amount of water in dried blood is small, carbon dioxide has no sterilizing effect. However, as shown in Experiment Nos. 5 to 1, it can be seen that by increasing the amount of water, the number of bacteria (viable bacteria) existing in the blood decreases. On the contrary, the solubility of dried blood decreases as the initial water content increases, but even with a water content of 30.7% by weight, the solubility of dried blood was 91% by weight, showing almost no denaturation. In short, it has become clear that dried blood can be sterilized without changing its physical properties.

【表】【table】

【表】 実験例 2 表3に示す割合で二酸化炭素中に酢酸を添加し
て、乾燥血液を処理した。その結果を同表3に示
す。また、処理条件を表4に示す。 表から明らかなように、いずれも溶解度80重量
%以上に保持されており、変性されていないこと
がわかる。実験No.7は溶解度が90重量%もあり、
特に好ましいものである。 この実験例は、水分量を減らして殺菌効果を上
げるために酢酸を添加したものである。水分量が
多いと、その水分の除去に多量の二酸化炭素が必
要となり、また、時間も長くかかる欠点がある。
実験No.7に明らかなように、水分量16.7重量%の
条件で二酸化炭素単独の水分量30.7重量%以上の
効果が上がつたことが認められる。
[Table] Experimental Example 2 Dried blood was treated by adding acetic acid to carbon dioxide in the proportions shown in Table 3. The results are shown in Table 3. Further, the processing conditions are shown in Table 4. As is clear from the table, the solubility in all cases was maintained at 80% by weight or higher, indicating that they were not modified. Experiment No. 7 had a solubility of 90% by weight,
This is particularly preferred. In this experimental example, acetic acid was added to reduce the moisture content and increase the bactericidal effect. If there is a large amount of water, a large amount of carbon dioxide is required to remove the water, and it also takes a long time.
As is clear from Experiment No. 7, it is recognized that the effect of carbon dioxide alone was greater than the water content of 30.7% by weight under the condition of a water content of 16.7% by weight.

【表】【table】

【表】 「発明の効果」 以上説明したように、本発明によれば、乾燥血
液の殺菌を水溶性を損なうことなく、効率的に行
なうことができる。
[Table] "Effects of the Invention" As explained above, according to the present invention, dried blood can be sterilized efficiently without impairing water solubility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いて好適な殺菌装置に概略
フローシート、第2図は乾燥血液の製造工程図で
ある。 20……圧力容器、21,23……ポンプ、2
2……バルブ、24……二酸化炭素(抽出前)、
25……二酸化炭素(抽出後)。
FIG. 1 is a schematic flow sheet of a sterilization apparatus suitable for use in the present invention, and FIG. 2 is a process diagram for manufacturing dried blood. 20...Pressure vessel, 21, 23...Pump, 2
2... Valve, 24... Carbon dioxide (before extraction),
25...Carbon dioxide (after extraction).

Claims (1)

【特許請求の範囲】 1 血液または血液成分から得た水溶性を有する
乾燥血液を初期水分が10〜35重量%の状態で圧力
70〜400atm、温度30〜45℃の二酸化炭素に接触
させることを特徴とする水溶性を有する乾燥血液
の殺菌方法。 2 血液または血液成分から得た水溶性を有する
乾燥血液を初期水分が10〜35重量%の状態で圧力
70〜400atm、温度30〜45℃の二酸化炭素と酢酸
との混合物に接触させることを特徴とする水溶性
を有する乾燥血液の殺菌方法。
[Scope of Claims] 1. Water-soluble dried blood obtained from blood or blood components is subjected to pressure at an initial water content of 10 to 35% by weight.
A method for sterilizing water-soluble dried blood, which comprises contacting with carbon dioxide at a temperature of 70 to 400 atm and a temperature of 30 to 45°C. 2 Pressurize water-soluble dried blood obtained from blood or blood components with an initial water content of 10 to 35% by weight.
A method for sterilizing water-soluble dried blood, which comprises bringing it into contact with a mixture of carbon dioxide and acetic acid at a temperature of 70 to 400 atm and a temperature of 30 to 45°C.
JP61266090A 1986-11-08 1986-11-08 Sterilization of dried blood Granted JPS63119663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266090A JPS63119663A (en) 1986-11-08 1986-11-08 Sterilization of dried blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266090A JPS63119663A (en) 1986-11-08 1986-11-08 Sterilization of dried blood

Publications (2)

Publication Number Publication Date
JPS63119663A JPS63119663A (en) 1988-05-24
JPH0579299B2 true JPH0579299B2 (en) 1993-11-02

Family

ID=17426190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266090A Granted JPS63119663A (en) 1986-11-08 1986-11-08 Sterilization of dried blood

Country Status (1)

Country Link
JP (1) JPS63119663A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674033A1 (en) * 2012-06-11 2013-12-18 Deutsches Institut für Lebensmitteltechnik e.V. Process for producing a composition containing active follistatin

Also Published As

Publication number Publication date
JPS63119663A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
CN106359631B (en) A kind of pure collagen milk powder and preparation method thereof
US4019958A (en) Continuous process of producing pancreatin and product thereof
US4347259A (en) Method for reducing the bacterial population of blood powder
WO2004035096A1 (en) Composition exhibiting stabilised oxidation-reduction properties and method for the stabilisation thereof
CN108796017A (en) Ox bone peptide and its enzymatic extraction method
KR20020008824A (en) Acidic solution of sparingly-soluble group IIA complexes
CN110959665A (en) Compound sterilization method for smelly mandarin fish and equipment used by same
US3281332A (en) Method for the manufacture of rennin
CN107751348A (en) A kind of preparation method of Sautéed Crab in Hot Spicy Sauce
JPH0579299B2 (en)
US3468674A (en) Method of processing fresh meat and fish
WO2023149794A1 (en) Method for producing an active compound from lymantria dispar larvae
BRPI0115343B1 (en) METHOD FOR MANUFACTURING A DECONTAMINATED ANIMAL FEEDING OF TRANSMISSIBLE DEGENERATIVE ENCEPHALOPATHIES
JP5696917B2 (en) Method for producing earthworm body fluid and method for producing earthworm dry powder
JP2006096673A (en) Method for producing earthworm product
JP2508641B2 (en) Method for producing blood meal having gel strength
DK166504B (en) PROCEDURE FOR THE PREPARATION OF A HEPA-CONTAINING MATERIAL FROM HEPAR-CONTAINED ANIMAL BODIES
JPS63283553A (en) Production of sterilized blood powder
JPS63167762A (en) Sterilization of blood powder
US20230270138A1 (en) Method of manufacture and pasteurization of products containing undenatured collagen
CN110101030B (en) Preparation method of liquid egg product
JPS63167763A (en) Production of sterilized blood powder having gel strength
CN107873756A (en) A kind of rat poison
Lincoln et al. The extraction of nitrogenous materials from pear tissues
RU2125811C1 (en) Method of preparing cooked feeds