JPS6328345B2 - - Google Patents

Info

Publication number
JPS6328345B2
JPS6328345B2 JP55109936A JP10993680A JPS6328345B2 JP S6328345 B2 JPS6328345 B2 JP S6328345B2 JP 55109936 A JP55109936 A JP 55109936A JP 10993680 A JP10993680 A JP 10993680A JP S6328345 B2 JPS6328345 B2 JP S6328345B2
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
sio
silicon film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109936A
Other languages
Japanese (ja)
Other versions
JPS5734374A (en
Inventor
Genshiro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10993680A priority Critical patent/JPS5734374A/en
Publication of JPS5734374A publication Critical patent/JPS5734374A/en
Publication of JPS6328345B2 publication Critical patent/JPS6328345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 この発明は、高耐圧化をはかつた半導体装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device with high breakdown voltage.

一般の半導体装置において、逆方向耐圧は1つ
の性能指数である。素子の高耐圧化を阻害する要
因として半導体表面の接合が曲面接合を持ち、か
つSiO2等の半導体表面安定化膜と半導体基板と
の表面に共有結合ボンドの切れた表面準位が介在
して、半導体表面での空乏層の伸びが抑制される
ことがあげられる。
In general semiconductor devices, reverse breakdown voltage is one figure of merit. One of the factors that hinders the ability of devices to achieve high breakdown voltages is that the semiconductor surface has a curved surface junction, and that there are surface states with broken covalent bonds on the surface of the semiconductor surface stabilizing film such as SiO 2 and the semiconductor substrate. , the growth of the depletion layer on the semiconductor surface is suppressed.

周知のように、シヨツトキバリヤタイプダイオ
ードは少数キヤリヤの蓄積効果がないために、高
速動作が可能であることが知られている。
As is well known, shot barrier type diodes are known to be capable of high speed operation because they do not have the effect of accumulating minority carriers.

第1図はシヨツトキバリヤダイオードの基本的
な構成を示す断面図で、1は半導体基板、2はシ
ヨツトキバリヤメタル、3は電極である。通常、
清浄な共有結合半導体の表面は、ボンドが切れた
状態、すなわちダングリングボンドが露出してお
り、このダングリングボンドによる表面準位は、
表面原子数と同程度であり、高密度である。この
表面準位のおよぼすシヨツトキバリヤダイオード
への影響は下記のとおりである。
FIG. 1 is a cross-sectional view showing the basic structure of a shot barrier diode, in which 1 is a semiconductor substrate, 2 is a shot barrier metal, and 3 is an electrode. usually,
On the surface of a clean covalently bonded semiconductor, the bonds are broken, that is, dangling bonds are exposed, and the surface states due to these dangling bonds are
The number of atoms is about the same as that of the surface, and the density is high. The influence of this surface level on the shot barrier diode is as follows.

n型半導体の場合、表面準位の数と、ドナー
の数を比較すると圧倒的に表面準位の数が多
く、従つてドナーの数が少々変化しても占有さ
れた表面準位の最高エネルギー位置(フエルミ
準位)はほとんど変化しない。いわゆるフエル
ミレベルピンニング効果が起きやすい。
In the case of n-type semiconductors, when comparing the number of surface states and the number of donors, the number of surface states is overwhelmingly large. Therefore, even if the number of donors changes slightly, the highest energy of the occupied surface states The position (Fermi level) hardly changes. The so-called Fermi level pinning effect is likely to occur.

この表面準位によつて逆バイアス時の接合周
辺部の空乏層の伸びがおさえられるために表面
での電界強度が大きくなり逆方向耐圧が低下す
る。
This surface level suppresses the expansion of the depletion layer around the junction during reverse bias, increasing the electric field strength at the surface and lowering the reverse breakdown voltage.

第2図a〜cは従来のシヨツトキバリヤタイプ
素子を高耐圧化するために行われている種々の構
成を示す断面図で、第2図aはシヨツトキバリヤ
接合周辺部に用いる半導体基板1と逆の伝導性を
持つ領域となるガードリング5を挿入することに
よつて、周辺部の電界集中を緩和するとともに、
このガードリング5の外部は、例えばSiO2膜4
等によつて覆うことにより、なにもない半導体結
晶表面は半導体の表面準位よりもさらに表面準位
を下げるようにしようという試みであるが、通常
このようなp−n接合を持つガードリング5を挿
入したときに、p−n接合とシヨツトキバリヤ接
合の並列動作となるため、p−n接合部での少数
キヤリヤの注入、蓄積効果により動作周波数が低
下するので、シヨツトキバリヤ素子の利点を生か
しきれない。第2図bは、SiO2膜4による表面
準位の低減と、図中のA部のフイルドプレートに
よつて空乏層の伸びを大きくしようという試みの
もの、また、第2図cは、半導体基板1をあらか
じめエツチングして接合面に、図中のB部のカー
バーチヤ(曲率)を持たして電界集中を緩和しよ
うという試みのものである。
Figures 2a to 2c are cross-sectional views showing various configurations used to increase the voltage resistance of conventional shot barrier type devices. By inserting the guard ring 5, which becomes a conductive region, electric field concentration in the peripheral area is alleviated, and
The outside of this guard ring 5 is covered with, for example, a SiO 2 film 4.
This is an attempt to lower the surface level of the bare semiconductor crystal surface further than the surface level of the semiconductor by covering it with a guard ring such as a p-n junction. When 5 is inserted, the p-n junction and the shot barrier junction operate in parallel, so the operating frequency decreases due to the injection and accumulation effect of minority carriers at the p-n junction, so the advantages of the shot barrier element cannot be fully utilized. do not have. Figure 2b shows an attempt to reduce the surface state by using the SiO 2 film 4 and increase the extension of the depletion layer by using the field plate shown in section A in the figure. This is an attempt to reduce the electric field concentration by etching the substrate 1 in advance to give the bonding surface a curvature (section B in the figure).

このように上記構造に共通していることとして
接合周辺部にSiO2膜4等を用いるプレーナ技術
を応用しようということであるが、Si表面を
SiO2化することによつて素子のパツシベーシヨ
ン効果とともにSiのダングリングボンドと酸素の
結合によつて若干の表面準位(界面準位)の低減
には有効であるが、本来の半導体材料の逆方向耐
圧(例えばメサ構造ダイオードのアバランシエブ
レークダウン電圧)までの向上は難かしい。
In this way, the common feature of the above structures is the application of planar technology that uses a SiO 2 film 4 etc. around the junction, but the Si surface is
By converting to SiO 2 , it is effective to reduce the surface level (interface level) slightly due to the passivation effect of the device and the bond between the dangling bonds of Si and oxygen, but it is the opposite of the original semiconductor material. It is difficult to improve the directional breakdown voltage (for example, the avalanche breakdown voltage of a mesa structure diode).

この発明は上記の点にかんがみなされたもの
で、表面安定化膜として水素、弗素等を含むアモ
ルフアスシリコンを用いて、特に曲面接合の影響
が大きいシヨツトキバリヤダイオードの高耐圧化
を図つたものである。以下、この発明について説
明する。
This invention was made in consideration of the above points, and aims to increase the withstand voltage of shot barrier diodes, which are particularly affected by curved surface junctions, by using amorphous silicon containing hydrogen, fluorine, etc. as a surface stabilizing film. It is. This invention will be explained below.

第3図はこの発明の一実施例を示す高耐圧シヨ
ツトキバリヤダイオードの断面図である。第3図
において、第1図、第2図と同一符号は同一また
は相当部分を示し、6は水素もしくは弗素を含む
アモルフアスシリコン膜である。
FIG. 3 is a sectional view of a high voltage shot barrier diode showing an embodiment of the present invention. In FIG. 3, the same reference numerals as in FIGS. 1 and 2 indicate the same or corresponding parts, and 6 is an amorphous silicon film containing hydrogen or fluorine.

このように、半導体基板1の上部にアモルフア
スシリコン膜6を生成し、その上部に直接シヨツ
トキバリヤメタル2および電極3を形成する方法
で、電極3の周辺部に空乏層の伸びを大きくする
ために、水素もしくは弗素を含むアモルフアスシ
リコン膜6を用いることを特徴とするものであ
る。水素を含む雰囲気中での反応性スパツタリン
グで成長したアモルフアスシリコン膜6あるいは
比較的低温100〜400℃でのSiH4ガスあるいは
SiF4ガスのグロー放電法で作成したアモルフアス
シリコン膜6では、この膜中に水素あるいは弗素
が含まれており、これらの水素、弗素がアモルフ
アスシリコン膜6(例えば蒸着等で作成した膜)
特有の膜中ダングリングボンド(共有結合の切れ
た部分)に結合して、このダングリングボンドを
消滅させ、バンド内局在準位密度が1016〜1017
cm3・eV程度まで減少可能になることが知られて
いる。すなわち水素、弗素を含むアモルフアスシ
リコン膜6を半導体表面のダングリングボンドを
消滅させることに利用するものである。
In this way, by forming the amorphous silicon film 6 on the top of the semiconductor substrate 1 and directly forming the shot barrier metal 2 and the electrode 3 on top of the amorphous silicon film 6, the extension of the depletion layer around the electrode 3 is increased. For this purpose, an amorphous silicon film 6 containing hydrogen or fluorine is used. Amorphous silicon film 6 grown by reactive sputtering in an atmosphere containing hydrogen or SiH 4 gas grown at a relatively low temperature of 100 to 400°C or
The amorphous silicon film 6 created by the SiF 4 gas glow discharge method contains hydrogen or fluorine, and these hydrogen and fluorine cause the amorphous silicon film 6 (for example, a film created by vapor deposition, etc.) to contain hydrogen or fluorine.
It binds to the unique dangling bonds (broken covalent bonds) in the film and annihilates these dangling bonds, increasing the localized level density within the band to 10 16 - 10 17 /
It is known that it can be reduced to about cm 3 eV. That is, the amorphous silicon film 6 containing hydrogen and fluorine is used to eliminate dangling bonds on the semiconductor surface.

水素を含むアモルフアス膜(a−Si:H)は、
この中のHがSi、GaAs等の半導体表面準位を低
減させる。多結晶シリコンとa−Si:Hの物性上
の相違点として、a−Si:Hは特に水素が含まれ
たことにより表面準位、あるいは未結合手による
局在準位の低減効果がある点で多結晶シリコンと
異なる。このように、水素を含むことにより、(1)
光吸収係数(バンドギヤツプエネルギー)の増
大、(2)抵抗値の増大、(3)誘電率の増加、(4)キヤリ
ヤライフタイムの増大、(5)ホトルミネセンス強度
増加等の物性的な特徴がある。これはa−Si:F
についても同様である。
Amorphous amorphous film (a-Si:H) containing hydrogen is
Among these, H reduces the surface level of semiconductors such as Si and GaAs. The difference in physical properties between polycrystalline silicon and a-Si:H is that a-Si:H has the effect of reducing surface levels or localized levels due to dangling bonds due to the inclusion of hydrogen. different from polycrystalline silicon. In this way, by including hydrogen, (1)
Physical properties such as increase in optical absorption coefficient (band gap energy), (2) increase in resistance value, (3) increase in dielectric constant, (4) increase in carrier lifetime, and (5) increase in photoluminescence intensity. There are characteristics. This is a-Si:F
The same applies to

第4図はこの発明の他の実施例を示す断面図
で、第1図〜第3図と同一符号は同一または相当
部分を示し、電極3とアモルフアスシリコン膜6
の界面にSiO2膜4等を挿入して電極3の形成に
よつて発生する物理的ストレスを緩和するように
した構造について示したものである。
FIG. 4 is a sectional view showing another embodiment of the present invention, in which the same reference numerals as in FIGS. 1 to 3 indicate the same or corresponding parts, and the electrode 3 and the amorphous silicon film 6
This figure shows a structure in which a SiO 2 film 4 or the like is inserted at the interface of the electrode 3 to alleviate the physical stress generated by the formation of the electrode 3.

以上説明したようにこの発明は、アモルフアス
シリコン膜を半導体表面の安定化膜として用いた
ので、従来方法で用いられているSiO2膜等によ
る安定化膜と比較して次のような利点を有する。
As explained above, this invention uses an amorphous silicon film as a stabilizing film on the semiconductor surface, so it has the following advantages compared to stabilizing films such as SiO 2 films used in conventional methods. have

SiとSiO2膜の界面においては、SiO2、酸素不
足のSiO2領域、酸素添何のSi領域(Siの多い層)、
Siといつた具合に組成の連続的変化が微視的に存
在し、酸素欠乏のSiO2膜、すなわち酸素空位ま
たはSi過剰の領域がある。これらが膜中荷電体と
なり少数キヤリヤの再結合中心とか新たに
SiO2/Si界面に表面準位を形成しやすく、
SiO2/Si界面での空乏層の伸びを抑制して局部
的電界集中の要因となる。一方、アモルフアスシ
リコン膜の場合、アモルフアスシリコン膜特有の
構造柔軟性と均一性およびアモルフアスシリコン
膜生成時に発生した過剰水素や弗素の影響により
半導体基板との界面に界面準位の生成がなく理想
的な表面安定膜として利用できる。
At the interface between Si and SiO 2 films, there are SiO 2 , an oxygen-deficient SiO 2 region, an oxygen-added Si region (Si-rich layer),
Microscopically, there is a continuous change in composition such as Si, and there is an oxygen-deficient SiO 2 film, that is, a region with oxygen vacancies or Si excess. These become charged bodies in the membrane and create a new recombination center for minority carriers.
It is easy to form surface states at the SiO 2 /Si interface,
This suppresses the elongation of the depletion layer at the SiO 2 /Si interface and causes local electric field concentration. On the other hand, in the case of an amorphous silicon film, there is no generation of interface states at the interface with the semiconductor substrate due to the structural flexibility and uniformity peculiar to the amorphous silicon film and the influence of excess hydrogen and fluorine generated during the formation of the amorphous silicon film. It can be used as an ideal surface stabilizing film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシヨツトキバリヤダイオードの基本的
な構成を示す断面図、第2図a〜cは従来行われ
ているシヨツトキバリヤタイプ素子を高耐圧化す
るための素子の構成を示す断面図、第3図はこの
発明の一実施例を示す高耐圧シヨツトキバリヤダ
イオードの断面図、第4図はこの発明の他の実施
例を示す断面図である。 図中、1は半導体基板、2はシヨツトキバリヤ
メタル、3は電極、4はSiO2膜、5はガードリ
ング、6はアモルフアスシリコン膜である。な
お、図中の同一符号は同一または相当部分を示
す。
FIG. 1 is a cross-sectional view showing the basic structure of a shot-lock barrier diode, and FIGS. 2 a to 2-c are cross-sectional views showing the structure of a conventional shot-lock barrier type device for increasing the withstand voltage. FIG. 3 is a sectional view of a high voltage shot barrier diode showing one embodiment of the invention, and FIG. 4 is a sectional view showing another embodiment of the invention. In the figure, 1 is a semiconductor substrate, 2 is a shot barrier metal, 3 is an electrode, 4 is an SiO 2 film, 5 is a guard ring, and 6 is an amorphous silicon film. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板表面に接合部を有する半導体装置
において、前記半導体基板の表面の接合部以外の
表面領域の安定化膜として水素あるいは弗素を含
むアモルフアスシリコン膜を用いたことを特徴と
する半導体装置。
1. A semiconductor device having a junction on the surface of a semiconductor substrate, characterized in that an amorphous silicon film containing hydrogen or fluorine is used as a stabilizing film in a surface region other than the junction on the surface of the semiconductor substrate.
JP10993680A 1980-08-08 1980-08-08 Semiconductor device Granted JPS5734374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10993680A JPS5734374A (en) 1980-08-08 1980-08-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10993680A JPS5734374A (en) 1980-08-08 1980-08-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5734374A JPS5734374A (en) 1982-02-24
JPS6328345B2 true JPS6328345B2 (en) 1988-06-08

Family

ID=14522857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10993680A Granted JPS5734374A (en) 1980-08-08 1980-08-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5734374A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636427B2 (en) * 1983-02-04 1994-05-11 株式会社東芝 Semiconductor pressure converter
JPS613470A (en) * 1984-06-18 1986-01-09 Nec Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068776A (en) * 1973-10-23 1975-06-09
JPS5645018A (en) * 1979-09-20 1981-04-24 Matsushita Electronics Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068776A (en) * 1973-10-23 1975-06-09
JPS5645018A (en) * 1979-09-20 1981-04-24 Matsushita Electronics Corp Semiconductor device

Also Published As

Publication number Publication date
JPS5734374A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
US4431858A (en) Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
US7696584B2 (en) Reduced leakage power devices by inversion layer surface passivation
US4028149A (en) Process for forming monocrystalline silicon carbide on silicon substrates
US6077760A (en) Structure and method of manufacturing single-crystal silicon carbide/single-crystal silicon heterojunctions with negative differential resistance characteristics
US4385200A (en) Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
JPH02264475A (en) Silicon carbode schottkey diode and its manufacture
Lindholm et al. Heavily doped polysilicon-contact solar cells
US4451838A (en) Semiconductor photoelectric conversion device
KR840001605B1 (en) Thin film transistor
US3798079A (en) Triple diffused high voltage transistor
CN103000697A (en) Silicon carbide (SiC) Schottky diode and method for manufacturing same
JPH10511812A (en) Semiconductor device having a passivation layer
KR100994924B1 (en) Solar cell and Method for manufacturing the same
GB2253943A (en) Diamond heterojunction diode
Yu et al. The junction characteristics of carbonaceous film/n‐type silicon (C/n‐Si) layer photovoltaic cell
JPS6328345B2 (en)
JP3313344B2 (en) SiC / Si heterostructure semiconductor switch and method of manufacturing the same
Selim High-voltage, large-area planar devices
US3831185A (en) Controlled inversion bistable switching diode
JPS5936836B2 (en) Amorphous thin film solar cell
Hastas et al. Structural, electrical, and low-frequency-noise properties of amorphous-carbon–silicon heterojunctions
JPH05275725A (en) Photovoltaic device and its manufacture
Rittner et al. Dependence of efficiency of shallow junction silicon solar cells on substrate doping
JP3197674B2 (en) Photovoltaic device