JPS63282153A - Production of superconducting ceramic - Google Patents

Production of superconducting ceramic

Info

Publication number
JPS63282153A
JPS63282153A JP62114644A JP11464487A JPS63282153A JP S63282153 A JPS63282153 A JP S63282153A JP 62114644 A JP62114644 A JP 62114644A JP 11464487 A JP11464487 A JP 11464487A JP S63282153 A JPS63282153 A JP S63282153A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
superconducting ceramic
ceramics
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114644A
Other languages
Japanese (ja)
Inventor
Michinori Iwata
岩田 倫典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62114644A priority Critical patent/JPS63282153A/en
Publication of JPS63282153A publication Critical patent/JPS63282153A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce a superconducting ceramic having improved current density by regulating arrangement and orientation of a superconductor crystal by applying a magnetic field in the stage of production of the superconducting ceramic. CONSTITUTION:In a stage of compression molding superconducting ceramic powder 3 consisting of Y, La, Ba, CuO, Sc, etc. mounted on a pressing bed 5 by compressing with pressing bars 2, 4, the arrangement and orientation of superconductor crystals are regulated by applying a magnetic field generated by lines of magnetic force 7 using a magnetic coil 1 from the outside of the press.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電機および電子機器に利用する導体および機能
素子の板材、基板材、線材。発電機、モータ、送電ケー
ブル、エネルギー貯蔵機、核融合装置、磁気浮上列車、
船舶推進、MRI、π中間子治療装置、ジlセフソン素
子、超伝導トランジスタ等に関係する超電導セラミック
スに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to plate materials, substrate materials, and wire materials for conductors and functional elements used in electrical and electronic equipment. Generators, motors, power transmission cables, energy storage devices, nuclear fusion devices, magnetic levitation trains,
The present invention relates to superconducting ceramics related to ship propulsion, MRI, pi-meson therapy equipment, Giraffeson devices, superconducting transistors, etc.

〔従来の技術〕[Conventional technology]

超伝導セラミックスは800〜1000°Cで成形した
ものを焼結する。この場合、大気中で行なう(日経新聞
3月19日)、加圧して行なう(日刊工業新聞4月3日
)、スパッタリングして行う(朝日新聞4月7日)など
がある。これら、いずれの手法を用いても100A/c
m”が限度であり、これ以上の電流密度を得るには別の
手法が要る0 〔発明が解決しようとする問題点〕 現在の超伝導セラミックスは組成比に重点が置かれて作
られている。緻密化には加圧が用いられるに過ぎない。
Superconducting ceramics are molded and sintered at 800 to 1000°C. In this case, it may be carried out in the atmosphere (Nikkei Shimbun, March 19), under pressure (Nikkan Kogyo Shimbun, April 3), or by sputtering (Asahi Shimbun, April 7). 100A/c using any of these methods
m" is the limit, and to obtain a current density higher than this, another method is required. [Problem to be solved by the invention] Current superconducting ceramics are made with emphasis on the composition ratio. Only pressurization is used for densification.

このため、作られた超伝導セラミックス内で超伝導を生
ずると見られる結晶の配列は必ずしも一様ではない。こ
れらの結晶は超伝導セラミックス内を曲りくねった紐状
をしており、セラミックスに占める割合は少ない。
For this reason, the arrangement of the crystals that appear to produce superconductivity within the produced superconducting ceramics is not necessarily uniform. These crystals form a winding string inside the superconducting ceramic, and their proportion in the ceramic is small.

現在、研究・開発中の超伝導セラミックスの電流密度が
予想外に小さいのはこのためで、Ba −Y −Cu 
セラミックスで100 A/ cm2に過ぎない。超伝
導セラミックスを実用化するには、少なくともこの値を
1桁上げるこさが問題となっている0 本発明の目的は、超伝導を生じさせる結晶を配列良く、
セラミックス内に成長させて、電流密度を現状の1桁以
上向上させることにある。
This is why the current density of superconducting ceramics currently under research and development is unexpectedly low.
Ceramics have only 100 A/cm2. In order to put superconducting ceramics into practical use, it is necessary to increase this value by at least one order of magnitude.
The goal is to grow it inside ceramics and increase the current density by more than an order of magnitude.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、超伝導セラミックスの製造
時の任意工程にセラミックス内原子または結晶の配向を
目的に外部から磁界を加える。磁界は均一なものか原子
レベルでの繰返しパターンを持ったものである。
In order to achieve the above object, an external magnetic field is applied to any step during the production of superconducting ceramics for the purpose of orienting atoms or crystals within the ceramics. The magnetic field can be uniform or have a repeating pattern at the atomic level.

この磁界により、超伝導セラミックスに使用する原料に
含まれる磁化容易元素あるいは結晶を形成するための微
細な種結晶の配列ならびに配向を制御する。磁界の加え
方は、材料によって異なるが、試料が溶けている場合の
初期、焼結時に焼結が進む状態に応じて断続的に加える
ほか、粉末混合の状態から焼結終了までの全時間のいず
れかであり、磁界は連続または断続のいずれでも良い。
This magnetic field controls the arrangement and orientation of easily magnetized elements contained in raw materials used in superconducting ceramics or minute seed crystals for forming crystals. The method of applying the magnetic field varies depending on the material, but it can be applied initially when the sample is molten, intermittently applied during sintering depending on the progress of sintering, and during the entire time from the powder mixing state to the end of sintering. The magnetic field may be either continuous or intermittent.

超伝導セラミックスの粉末混合状態、溶液状態から焼結
完了までのすべての工程丈だはいずれか一部に磁界を上
記目的にオリ用することが含まれる。
The entire process of superconducting ceramics, from the powder mixing state to the solution state to the completion of sintering, includes the use of a magnetic field for the above purpose.

また、スパッタ法を利用する場合とか、磁化容易な異種
結晶をまず磁界により配向させ、その上に超伝導セラミ
ックスを育成することも含む0磁界の加え方は、初期の
み、連続パルス的、パルス的、あるいは一定または変化
させる方法が含まれる。
In addition, when using the sputtering method, the method of applying a zero magnetic field, which includes first aligning easily magnetized heterogeneous crystals with a magnetic field and growing superconducting ceramics on top of that, is limited to the application of a zero magnetic field only in the initial stage, in continuous pulses, or in pulsed , or a method of keeping it constant or changing it.

〔作用〕[Effect]

例工ばバリウム・イツトリウム・銅の酸化物セラミック
スで、焼結前の粉末混合状態に金属メツシュにより周期
的な磁化パターンを作り、一部のバリウムなど常磁性物
質を一定の周期で配列させ、焼結時のセラミックスの原
子配列にある規制を与える。これにより、結晶生成の方
向配列を決めて高電流密度の物質を作る。この場合、超
伝導セラミックスを構成する原子以外の磁化容易原子を
混入して、上記と同様の結果を得ることができる。
For example, with barium, yttrium, and copper oxide ceramics, a periodic magnetization pattern is created using a metal mesh in the mixed powder state before sintering, and some paramagnetic substances such as barium are arranged at a certain period. Gives certain regulations to the atomic arrangement of ceramics during bonding. This determines the direction of crystal formation and creates a material with high current density. In this case, the same results as above can be obtained by mixing easily magnetizable atoms other than atoms constituting the superconducting ceramic.

同様、製造工程中に磁界を加えることにより結晶の方向
を定めることもできる。
Similarly, crystal orientation can be determined by applying a magnetic field during the manufacturing process.

薄膜超伝導セラミックスあるいは線材、板状でも同様、
製造工程のいずれかの個所あるいは繰返し磁界を加える
ことにより同様な結果が得られる。
The same applies to thin film superconducting ceramics, wire rods, and plate shapes.
Similar results can be obtained by applying a magnetic field elsewhere in the manufacturing process or repeatedly.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。超伝
導セラミックスの原料、イツトリウム、ランタン、バリ
ウム、酸化鋼、スカンジ為つムなどを混合して、圧縮成
形する場合に外部より磁場を繰返し、または一時に加え
て粉末の方向を整える。あるいは、プレスの台に第2図
のように結晶パターンに似た磁気パターンを用意すると
、この効果は増加する。
An embodiment of the present invention will be described below with reference to FIG. When the raw materials for superconducting ceramics, such as yttrium, lanthanum, barium, oxidized steel, and scandium oxide, are mixed and compression molded, an external magnetic field is applied repeatedly or at once to adjust the direction of the powder. Alternatively, if a magnetic pattern similar to a crystal pattern is provided on the press table as shown in FIG. 2, this effect will be increased.

これにより、磁化容易原子の配列はある程度規制される
ことになり、揃った超伝導結晶を用いた超伝導セラミッ
クスの焼結を可能にする0〔発明の効果〕 本発明により大きな電流密度が得られる0
As a result, the arrangement of easily magnetized atoms is regulated to some extent, making it possible to sinter superconducting ceramics using aligned superconducting crystals.0 [Effects of the Invention] The present invention allows a large current density to be obtained. 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明を説明するための図である0 1・・・磁気コイノベ 2・・・プレス棒、3・・・セ
ラミックス粉末、4・・・プレス、第7個
1 and 2 are diagrams for explaining the present invention.0 1... Magnetic Koinobe 2... Press rod, 3... Ceramic powder, 4... Press, 7th item

Claims (1)

【特許請求の範囲】[Claims] 1、超伝導セラミックスの製造時に、超伝導結晶体の配
列・配向を定めるために磁界を加えることを特徴とする
超伝導セラミックスの製法。
1. A method for producing superconducting ceramics characterized by applying a magnetic field to determine the arrangement and orientation of superconducting crystals during production of superconducting ceramics.
JP62114644A 1987-05-13 1987-05-13 Production of superconducting ceramic Pending JPS63282153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114644A JPS63282153A (en) 1987-05-13 1987-05-13 Production of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114644A JPS63282153A (en) 1987-05-13 1987-05-13 Production of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPS63282153A true JPS63282153A (en) 1988-11-18

Family

ID=14642961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114644A Pending JPS63282153A (en) 1987-05-13 1987-05-13 Production of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPS63282153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456357A (en) * 1987-08-26 1989-03-03 Semiconductor Energy Lab Production of superconductive material
JPS6459973A (en) * 1987-08-31 1989-03-07 Semiconductor Energy Lab Manufacture of superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456357A (en) * 1987-08-26 1989-03-03 Semiconductor Energy Lab Production of superconductive material
JPS6459973A (en) * 1987-08-31 1989-03-07 Semiconductor Energy Lab Manufacture of superconducting material

Similar Documents

Publication Publication Date Title
JPS63282153A (en) Production of superconducting ceramic
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
CN1025088C (en) Method of manufacturing superconducting ceramics under magnetic field
EP0300353B1 (en) Method of manufacturing superconductor
CA2024806C (en) Method of producing ceramics-type superconductor wire
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
JPH01234306A (en) Production of metal oxide superconducting material
US6399011B1 (en) Method of biaxially aligning crystalline material
JP2827452B2 (en) Ceramic superconductor and method of manufacturing the same
JPS63304528A (en) Manufacture of superconductive wire
JPH01242416A (en) Production of oxide-based superconducting material
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy
JPH03105808A (en) Manufacture of oxide superconductive wire material
RU1547241C (en) Method of production of high-temperature ceramic superconductors
JPS63291653A (en) Manufacture of superconducting material of oxide
JP3260410B2 (en) Oxide superconductor containing rare earth element and manufacturing method thereof
JPS6445769A (en) Production of oxide superconductor
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JP3257569B2 (en) Method for producing Tl-based oxide superconductor
Giess TMS Northeast Regional Meeting Considers Processing and Applications of High Tc Superconductors
JPH02217320A (en) Production of bi-based oxide superconductor
JPH09183619A (en) Production of oxide superconducting material
JPH01138131A (en) Production of oxide superconductor
TANAKA et al. Superconducting ceramics
JPH07277730A (en) High damping oxide superconducting material and its production