JPS63281753A - Method for judging validity of mold powder for continuous casting - Google Patents

Method for judging validity of mold powder for continuous casting

Info

Publication number
JPS63281753A
JPS63281753A JP11728387A JP11728387A JPS63281753A JP S63281753 A JPS63281753 A JP S63281753A JP 11728387 A JP11728387 A JP 11728387A JP 11728387 A JP11728387 A JP 11728387A JP S63281753 A JPS63281753 A JP S63281753A
Authority
JP
Japan
Prior art keywords
mold
powder
amount
long side
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11728387A
Other languages
Japanese (ja)
Inventor
Tadashi Nakayama
中山 忠士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11728387A priority Critical patent/JPS63281753A/en
Publication of JPS63281753A publication Critical patent/JPS63281753A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To decide validity of mold powder so as to obtain a continuously cast slab without longitudinal crack by observing variation of conductive heat from mold wall in the specific range at both ends of long sides in the mold and comparing these variations. CONSTITUTION:Below molten steel surface in the mold at the time of continuously casting, the variations of conductive heats from mold walls at the long side ranges in the mold, at which are within 100mm below the meniscus and within one fifth of length of the long sides 12 from the short sides 10 in the mold respectively, are observed and compared. Then, measurement of the conductive heat is executed with plural thermocouples buried in the mold walls at the long side ranges in the mold and the variations of the conductive heats are compared at the total four ranges in both ends of the long sides 12 in the mold. Difference between the max. temp. and the min. temp. for each powder measured by using these thermocouples is found, and these differences are compared, to decide that the powder having the min. difference thereof is excellent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造用モールドパウダの優劣セ1定法、
特に特定領域の鋳型壁からの抜熱量を監視、比較するこ
とにより連続鋳造用モールドパウダの優劣を判定する方
法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for determining the superiority and inferiority of mold powder for continuous casting,
In particular, the present invention relates to a method for determining the superiority or inferiority of mold powder for continuous casting by monitoring and comparing the amount of heat removed from the mold wall in a specific region.

(従来の技術) 連続鋳造による鋳片(以下、「連鋳鋳片」という)の表
面疵には種々あるが、(C)が包晶域に入る鋼種では、
縦割れ、コーナー割れが生じ易く、生産性向上の大きな
阻害要因になっている。
(Prior art) There are various surface defects on slabs produced by continuous casting (hereinafter referred to as "continuously cast slabs"), but in steel types where (C) falls within the peritectic region,
Vertical cracks and corner cracks are likely to occur, which is a major impediment to improving productivity.

従来は、かかる表面疵に対しては操業条件の適正化ある
いはモールドパウダの適正化等の対策が採られてきた。
Conventionally, countermeasures have been taken against such surface flaws, such as optimizing operating conditions or optimizing mold powder.

しかし、連鋳鋳片の縦割れ、コーナー割れを予めあるい
はその発生初期に同時に検出する技術は全くなかった。
However, there was no technology that could detect vertical cracks and corner cracks in continuously cast slabs in advance or at the same time at the beginning of their occurrence.

つまり、実際鋳造してみて、その結果から目視判定して
いたに過ぎない。そのため、縦割れ発生対策も、例えば
、モールドパウダーの?8[厚および消費lの実測、ス
ラグヘアの生成状況の確認などを行う程度にすぎなかっ
た。また、個々のモールドパウダを考えた場合、それら
のモールドパウダの優劣についても、それを確認する明
確な基準があった訳ではなかった。
In other words, they were simply making a visual judgment based on the actual casting results. Therefore, measures against vertical cracking, such as mold powder? 8 [It was merely a matter of actually measuring the thickness and liter consumption, checking the state of slag hair formation, etc. Furthermore, when considering individual mold powders, there was no clear standard for confirming the superiority or inferiority of those mold powders.

縦割れの発生原因、機構については従来よりすでに多く
の研究が行われているが、未だ十分解明されたと云う段
階には至っていない。
Although much research has already been conducted into the causes and mechanisms of vertical cracking, it has not yet reached the stage where it can be said to be fully elucidated.

「鉄と鋼」第67年(1981年第8号121O〜12
19頁)には縦割れ発生機構の解明のため鋳型壁の温度
測定を行っている例が開示されている。これは、縦割れ
を多発させるパウダを使うと、メニスカス近傍の鋳型温
度変動が大きくなるという従前の知識を前提にしている
。 Vliかに、縦割れが発生するとその部分での鋳型
壁を通しての抜熱量が多くなることはすでに公知である
が、すでに縦割れが発生してしまっては、予知とは言え
ず、従来の目視判定とその実際上の技術的意義は大同小
異である。
“Tetsu to Hagane” No. 67 (1981 No. 8 121O-12
(page 19) discloses an example in which the temperature of the mold wall is measured in order to elucidate the mechanism of occurrence of vertical cracks. This is based on the prior knowledge that if a powder that causes many vertical cracks is used, mold temperature fluctuations near the meniscus will increase. It is already known that when a vertical crack occurs, the amount of heat removed through the mold wall increases in that area, but if a vertical crack has already occurred, it cannot be called a prediction, and conventional visual inspection The judgment and its practical technical significance are largely the same.

また、わずかな縦割れのときの抜熱量の変動は不明であ
る。いずれにしても、両者の相関については何一つ具体
的に開示していないと云える。
Furthermore, the variation in the amount of heat removed when there is a slight vertical crack is unknown. In any case, it can be said that nothing concrete has been disclosed regarding the correlation between the two.

なお、連続鋳造における鋳込み欠陥を改善するための方
法として鋳型壁温度を監視することは、例えば特開昭6
0−99467号(鋳型壁温度の監視によるシェル破断
検出方法)および特開昭61−226154号(鋳型壁
温度の監視によるブレークアウト予知方法)において公
知である。しかしながら、これらの方法にあっては、鋳
型壁のどの箇所の温度を測定、監視するかの開示がなさ
れていない。縦割れ防止、そして縦割れと抜熱量との相
関についても全く明らかにすることがない。
Note that monitoring the mold wall temperature as a method for improving casting defects in continuous casting is described in, for example, Japanese Patent Laid-Open No. 6
No. 0-99467 (method for detecting shell breakage by monitoring mold wall temperature) and JP-A-61-226154 (method for predicting breakout by monitoring mold wall temperature). However, these methods do not disclose where on the mold wall the temperature is to be measured and monitored. The prevention of vertical cracking and the correlation between vertical cracking and the amount of heat removed have not been clarified at all.

(発明が解決しようとする問題点) かくして、本発明の目的は、縦割れのない連鋳鋳片とす
べ(、モールドパウダの優劣比較に際して、実用的な判
断手段を提供することである。
(Problems to be Solved by the Invention) Thus, an object of the present invention is to provide a practical means of judgment when comparing the superiority of continuously cast slabs without vertical cracks and mold powder.

(問題点を解決するための手段) ここに、本発明者は、上述の目的を達成すべく、種々検
討を続け、連鋳鋳片の縦割れの1つの発生原因は、溶融
モールドパウダの鋳型内壁と鋳片との間隙への局部的不
均一流入であることに着目した。その際に、そのような
パウダ溶融膜の切れが生じた場合には、その断熱効果が
失われることから、抜熱量の大幅な変化が見られること
が予想され、しかも縦割れは鋳片中央部に多く見られる
ことから、鋳型長辺の中央部領域における抜熱量を測定
していたところ、全(予想外にも、むしろ鋳型コーナ部
において抜熱量の大幅な上昇が見られ。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventor has continued various studies and found that one of the causes of vertical cracking in continuously cast slabs is the mold of molten mold powder. We focused on the fact that this was a locally uneven inflow into the gap between the inner wall and the slab. At that time, if such a break occurs in the molten powder film, the heat insulation effect will be lost, so it is expected that there will be a significant change in the amount of heat removed. When we measured the amount of heat removed in the central region of the long sides of the mold, we found that, unexpectedly, there was a significant increase in the amount of heat removed at the corners of the mold.

しかも縦割れ発生前にあっても、パウダ溶融膜の厚薄に
応じ大きな変動幅がみられることが分った。
Moreover, it was found that even before the occurrence of vertical cracks, there is a large variation range depending on the thickness of the molten powder film.

そして、そのときの各モールドパウダ毎の抜熱量の変動
の幅は優秀なモールドパウダはど小さく、悪いモールド
パウダはど大きくなることを知り、幾つかのモールドパ
ウダを使って連続鋳造を行い、そのときのモールドパウ
ダの種類毎の抜熱量の変動量を比較することによりその
優劣の判定が容易にできることに気付き、本発明に到達
した。
At that time, we learned that the range of variation in the amount of heat removed by each mold powder is small for an excellent mold powder, and large for a bad mold powder, so we performed continuous casting using several mold powders, and The present invention was achieved based on the realization that it is easy to determine the superiority or inferiority of mold powder by comparing the amount of variation in the amount of heat removed for each type of mold powder.

第1図は、第1表の組成を有する二種類のモールドパウ
ダA、Bを使用し、鋳込み速度1.20〜1゜50m/
win 、スラブサイズ1240幅×270厚(am)
、鋼種C−0,10〜0.16%の条件下で連続鋳造を
行ったときの鋳型内の溶鋼面より下であって、メニスカ
スより100ia+m以内、かつ鋳型長辺の全長の11
5以内の距離にある鋳型短辺寄りの合計4ケ所の鋳型長
辺領域における鋳型壁からの抜熱量の変動量をグラフで
表したものである。なお、溶融パウダは常に溶鋼面上に
5〜10mmの厚さで存在するように調整した。
Figure 1 shows two types of mold powders A and B having the compositions shown in Table 1, and a casting speed of 1.20 to 1.50 m/min.
win, slab size 1240 width x 270 thickness (am)
, Steel type C-0, below the molten steel surface in the mold when continuous casting is performed under the conditions of 10 to 0.16%, within 100 ia + m from the meniscus, and 11 of the total length of the long side of the mold.
This is a graph representing the amount of variation in the amount of heat removed from the mold wall in a total of four long side regions of the mold located closer to the short side of the mold and located within a distance of 5. The molten powder was adjusted so that it always existed on the molten steel surface at a thickness of 5 to 10 mm.

第1図のグラフから、鋳型長辺のセンター領域よりも、
コーナ領域での抜熱量が大きくまたその変化も大きいこ
と、およびモールドパウダ毎のその変動幅が例えばモー
ルドパウダAの場合のように優秀なモールドパウダはど
小さいこと(はゾ半分)が分かるのである。センター領
域での温度測定ではそのような傾向、違いを捉えること
はできない。
From the graph in Figure 1, it can be seen that from the center area of the long side of the mold,
It can be seen that the amount of heat removed in the corner area is large and its variation is also large, and that the variation range for each mold powder is very small (half of that) for excellent mold powders, such as mold powder A. . Temperature measurements in the center region cannot capture such trends or differences.

ト [・ ここに、本発明の要旨とするところは、連続鋳造に際し
て、鋳型内の溶鋼面より下であって、メニスカスより下
方に100■以内、かつ鋳型短辺から鋳型長辺の全長の
175以内の距離の鋳型長辺領域における鋳型壁からの
抜熱量の変動量を比較することにより該変動量の少ない
モールドパウダを優秀とすることを特徴とするi!続鋳
造用モールドパウダの優劣判定法である。
[・Here, the gist of the present invention is that, during continuous casting, the molten steel surface in the mold is below, within 100 cm below the meniscus, and from the short side of the mold to 175 cm of the total length of the long side of the mold. The i! This is a method for determining the superiority or inferiority of mold powder for continuous casting.

本発明の好適態様によれば、前記鋳型長辺領域の鋳型壁
内には、熱電対を適宜数だけ埋設し、それによる鋳型壁
の温度変化の監視により鋳型壁からの抜熱量の変動を比
較するである。
According to a preferred embodiment of the present invention, an appropriate number of thermocouples are embedded in the mold wall in the long side region of the mold, and by monitoring temperature changes in the mold wall, changes in the amount of heat removed from the mold wall are compared. I will.

本発明における、温度測定地点、つまり領域は、まず、
鋳型内の溶鋼面より下でなければならないが、これは少
な(とも溶鋼と接触している領域という意味である。ま
た、メニスカスより100s+a+以内に限定するのは
、それを越えて下方向にいっても、すでにその領域にあ
っては、堅固なシェルが生成しているから抜熱量の大き
な変動が検出できないからである。さらに、かかる測定
領域を、鋳型長辺の全長の175以内の距離にある鋳型
短辺寄りの鋳型長辺領域に限定するのは、前述の第1図
に示す抜熱■の変動量がこの領域において最も大きくな
るからである。このいわゆるコーナ部は冷却も顕著に行
われ、しかも冷却の伴う熱応力などの外力を集中して受
ける領域であって、そのためモールドパウダの不均一溶
融被膜の影響が顕著に表れるのである。溶融被膜の厚1
化による断熱効果の変動によるのである。
In the present invention, the temperature measurement point, that is, the area, is firstly
It must be below the surface of the molten steel in the mold, but this is a small area (meaning that it is in contact with the molten steel. Also, it must be within 100s+a+ of the meniscus, so that it must be below the surface of the molten steel. However, in that region, a strong shell has already formed, so large fluctuations in the amount of heat removed cannot be detected.Furthermore, the measurement region is set to a distance within 175 mm of the total length of the long side of the mold. The reason why this is limited to the long side region of the mold near the short side of the mold is that the amount of variation in the heat removal (■) shown in Figure 1 above is greatest in this region.This so-called corner part is also cooled significantly. Moreover, it is a region that receives external forces such as thermal stress associated with cooling in a concentrated manner, and therefore the influence of the uneven molten film of the mold powder becomes noticeable.Thickness of the molten film 1
This is due to changes in the insulation effect due to changes in temperature.

すでに述べたように、縦割れが発生する、あるいは発生
しそうになるということは、モールドパウダの溶融膜の
切れが発生しているかあるいは発生しそうになっている
のである。そして、かかる場合には、溶融金属と鋳型内
壁とは直接接触することになり、鋳型壁面の温度上昇が
見られ、抜熱量の異常が経験される。このようにして抜
熱量に異常が発生すると、つまり抜熱量の急激な上昇が
起こると、それを受けて鋳型壁面の温度上昇となって表
れ、それを熱電対を使ってそのときの温度変化として検
知するのである。
As already mentioned, when vertical cracks occur or are about to occur, it means that breaks in the molten film of the mold powder have occurred or are about to occur. In such a case, the molten metal and the inner wall of the mold come into direct contact, and the temperature of the mold wall surface increases, causing an abnormal amount of heat to be removed. In this way, if an abnormality occurs in the amount of heat removed, that is, if there is a sudden increase in the amount of heat removed, it will appear as a temperature rise on the mold wall surface, and this will be detected as a temperature change using a thermocouple. It detects it.

そして、本発明によれば、すでに述べたように、予想外
にも、そのように温度変化は、特に縦割れ発生前にあっ
ては、鋳型コーナ部に顕著に表れ、しかも各モールドパ
ウダ毎の変動の幅は優秀なモールドパウダはど小さく、
劣ったモールドパウダはど太き(なるのである。つまり
、均一な溶融パウダ被膜が形成されないのである。
According to the present invention, as mentioned above, unexpectedly, such temperature changes are noticeable at the mold corner parts, especially before the occurrence of vertical cracks, and moreover, the temperature changes for each mold powder are The range of fluctuation is small for excellent mold powder,
Inferior molding powder will be thick (in other words, a uniform molten powder coating will not be formed).

かくして、本発明によれば、鋳込み期間中、はy゛均一
厚さの溶融パウダを鋳型内壁との隙間に供給し得るすぐ
れたパウダの判定が可能となるのである。
Thus, according to the present invention, it is possible to determine an excellent powder that can supply molten powder with a uniform thickness to the gap between the mold and the inner wall of the mold during the casting period.

(作用) 次に、本発明を添付図面を参照しながらさらに具体的に
説明する。
(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.

第2図は、本発明における鋳型壁の温度測定地点の概略
説明図である。
FIG. 2 is a schematic explanatory diagram of temperature measurement points on the mold wall in the present invention.

連続鋳造用鋳型は第2図に示すように、通常、短辺10
と長辺12とから構成され、長辺12は一方が固定側1
4に、他方が自由側16トなり、必要寸法に応じ移動さ
せる。本発明によれば、いずれの側の長辺にも温度測定
点を設けることができるが、図示例では自由側の長辺1
6に設けた測定点(図中「×j印で示す)のみが見える
0通常、これは熱電対を鋳型壁内に埋設して行う。
As shown in Figure 2, the continuous casting mold usually has a short side of 10 mm.
and a long side 12, one of which is the fixed side 1.
4, the other side becomes the free side 16, and is moved according to the required dimensions. According to the present invention, temperature measurement points can be provided on either long side, but in the illustrated example, the free side long side 1
Only the measurement point provided at 6 (indicated by the xj mark in the figure) is visible.Normally, this is done by embedding a thermocouple in the mold wall.

なお、これらの測定点はメニスカスより10hm以内、
短辺から全長辺の175以内、通常は200mm以内の
長辺領域内であればどこであってもよいが、可及的にコ
ーナ部に近いのが好ましい。測定点の数も特に制限ない
が、好ましくは1ケ所に2個以上設けるのがよい。
These measurement points are within 10 hm from the meniscus.
It may be located anywhere within the long side region within 175 mm of the total long side from the short side, usually within 200 mm, but it is preferably as close to the corner as possible. The number of measurement points is also not particularly limited, but preferably two or more measurement points are provided at one location.

このようにして測定点をセットしてから、慣用法に従っ
て連続鋳造を開始するのである。その場合、使用する2
以上の種類のモールドパウダがあるときには、順次それ
らを使用してゆき、それぞれのモールドパウダの使用期
間中に抜熱量を測定し、その最大値と最少値との差、つ
まり抜熱量の変動の幅を算出する。鋳込み期間中、抜熱
量は絶えず変化しているのである。このようにして各モ
ールドパウダについて変動幅を算出してからそれらを比
較し、それが最少のものを優秀と判断するのである。変
動幅が少ないということは、鋳込み期間中において溶融
パウダ被膜の厚さの変動が少ないということであり、そ
のときの断熱作用は均一であるということである。複数
の測定点のデータはそれぞれ記録して測定点全体につい
ての変動幅を求めるのが好ましい。
After setting the measuring points in this way, continuous casting is started according to conventional methods. In that case, use 2
When there are the above types of molding powder, use them one after another, measure the amount of heat removed during the period of use of each molding powder, and measure the difference between the maximum and minimum values, that is, the range of variation in the amount of heat removed. Calculate. During the casting period, the amount of heat removed is constantly changing. After calculating the variation range for each mold powder in this way, they are compared, and the one with the smallest variation range is judged to be excellent. A small variation range means that there is little variation in the thickness of the molten powder coating during the casting period, and the heat insulation effect at that time is uniform. It is preferable to record the data of a plurality of measurement points, respectively, and to determine the fluctuation range for all the measurement points.

本発明の具体的態様によれば、測定精度を上げるために
、熱電対の先端をいずれも鋳型内壁より一定の深さの地
点(例:10〜151)に設け、その起電力を5秒ピッ
チで連続して測定し、これを温度に変換し、次いでその
最高温度、最低温度の差をとり、記憶する。別種のパウ
ダについても同様の操作を繰り返し、それぞれの変動幅
を比較し、その最少のものを優秀と判定するのである。
According to a specific aspect of the present invention, in order to improve measurement accuracy, the tips of the thermocouples are all placed at a certain depth from the inner wall of the mold (e.g. 10 to 151), and the electromotive force is The temperature is measured continuously, converted to temperature, and then the difference between the highest and lowest temperatures is taken and stored. The same operation is repeated for different types of powder, the variation ranges of each are compared, and the one with the smallest variation is judged to be excellent.

(発明の効果) 以上詳述したように、本発明によれば、連続鋳造操業時
にあってもモールドパウダの判定は可能であり、その場
合にあって、縦割れ発生以前に優劣を判定できるのであ
る。特に、従来、明確な基準がなかったモールドパウダ
の判定基準を確立したという意味で本発明の意義は大き
い。特に最近のように高速鋳込みに適したモールドパウ
ダの開発が緊急の課題とされている現状からは本発明の
効果にはすぐれたものが認められるのである。
(Effects of the Invention) As detailed above, according to the present invention, mold powder can be determined even during continuous casting operation, and in that case, superiority or inferiority can be determined before vertical cracks occur. be. In particular, the present invention has great significance in the sense that it has established criteria for determining mold powder, for which there were no clear criteria in the past. Particularly in light of the recent situation where the development of mold powder suitable for high-speed casting has become an urgent issue, the effects of the present invention are recognized to be excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋳型長辺の温度測定地点と抜熱量との関係を
示すグラフ;および 第2図は、本発明における温度測定地点の概略説明図で
ある。
FIG. 1 is a graph showing the relationship between the temperature measurement points on the long side of the mold and the amount of heat removed; and FIG. 2 is a schematic explanatory diagram of the temperature measurement points in the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)連続鋳造に際して、鋳型内の溶鋼面より下であっ
て、メニスカスより下方に100mm以内、かつ鋳型短
辺から鋳型長辺の全長の1/5以内の距離の鋳型長辺領
域における鋳型壁からの抜熱量の変動量を比較すること
により該変動量の少ないモールドパウダを優秀とするこ
とを特徴とする連続鋳造用モールドパウダの優劣判定法
(1) During continuous casting, the mold wall is located below the molten steel surface in the mold, within 100 mm below the meniscus, and within a distance of 1/5 of the total length of the long side of the mold from the short side of the mold. A method for determining the superiority or inferiority of mold powders for continuous casting, characterized in that a mold powder with a small amount of variation is selected as superior by comparing the amount of variation in the amount of heat removed from the mold powder.
(2)前記鋳型長辺領域の鋳型壁内に埋設した複数の熱
電対による温度変化の監視により鋳型壁からの抜熱量の
変動を比較する、特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein fluctuations in the amount of heat removed from the mold wall are compared by monitoring temperature changes using a plurality of thermocouples embedded in the mold wall in the long side region of the mold.
(3)それぞれの鋳型長辺の両端の合計4ヶ所の鋳型長
辺領域において前記の抜熱量の変動量を比較する、特許
請求の範囲第1項または第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the amount of variation in the amount of heat removed is compared in a total of four mold long side regions at both ends of each mold long side.
JP11728387A 1987-05-14 1987-05-14 Method for judging validity of mold powder for continuous casting Pending JPS63281753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11728387A JPS63281753A (en) 1987-05-14 1987-05-14 Method for judging validity of mold powder for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11728387A JPS63281753A (en) 1987-05-14 1987-05-14 Method for judging validity of mold powder for continuous casting

Publications (1)

Publication Number Publication Date
JPS63281753A true JPS63281753A (en) 1988-11-18

Family

ID=14707912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11728387A Pending JPS63281753A (en) 1987-05-14 1987-05-14 Method for judging validity of mold powder for continuous casting

Country Status (1)

Country Link
JP (1) JPS63281753A (en)

Similar Documents

Publication Publication Date Title
JP2001234217A (en) Estimation and prediction method for blast furnace bottom condition
JPS6353903B2 (en)
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JPH1190599A (en) Method for judging abnormality in mold for continuous casting
JPS58148063A (en) Method for predicting cracking of ingot in continuous casting
JPS5946703B2 (en) Continuous casting method using a mold equipped with a mold temperature measuring element
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPS63281753A (en) Method for judging validity of mold powder for continuous casting
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
KR970033269A (en) How to measure cast iron defects in continuous casting of steel small section billet
JPS5946702B2 (en) Continuous casting mold
JPS58145344A (en) Method for controlling taper quantity on short side of casting mold in continuous casting
JPH0242409B2 (en)
JPH08159883A (en) Normality and abnormality judging method for thermocouple for mold in continuous casting facility and break-out detecting method utilizing the same thermocouple
JP2003010950A (en) Detecting method for surface flaw in continuous casting, and continuous casting method
JPH02151356A (en) Detection of surface fault on cast slab on-line
JPH01143748A (en) Continuous casting method
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JPH05104221A (en) Method for assuming surface defect in cast slab
KR100399233B1 (en) Casting Monitoring Method of Billet Continuous Casting Machine
JP3369926B2 (en) Auto start method for continuous casting
JP2661380B2 (en) Method for preventing short side vertical cracking and breakout of continuous cast slab
JPH08224648A (en) Method for restraining surface defect in continuous casting
JP7469623B2 (en) Detection method for defects in slab during continuous casting