JPS6328148B2 - - Google Patents
Info
- Publication number
- JPS6328148B2 JPS6328148B2 JP55155579A JP15557980A JPS6328148B2 JP S6328148 B2 JPS6328148 B2 JP S6328148B2 JP 55155579 A JP55155579 A JP 55155579A JP 15557980 A JP15557980 A JP 15557980A JP S6328148 B2 JPS6328148 B2 JP S6328148B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- fibers
- web
- metal fibers
- card
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 59
- 239000002184 metal Substances 0.000 claims description 56
- 229910052751 metal Inorganic materials 0.000 claims description 56
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Nonwoven Fabrics (AREA)
Description
本発明は金属繊維よりなるシートの製造方法に
関するものである。金属繊維のシートは金属多孔
体の一種である。金属多孔体の中には、金属粉末
を成形、焼結したものや、注目を浴びている海綿
状金属多孔体等がある。本発明による金属繊維よ
りなるシートは金属粉末を焼結したものより空孔
率が高く、海綿状金属多孔体に比較すると安価な
ことが特徴である。
金属繊維の製造法としては、各種の方法があ
り、本発明によつて容易に金属繊維シートを得る
ことができる。この中でも特に旋削金属繊維は材
質に制限がなく、かつ一定長さの金属繊維を得る
ことができるため、本発明を有効に利用できる。
以下に旋削金属繊維シートの製造方法について説
明する。ここに言う旋削金属繊維とは、金属を旋
盤等で切削する場合一定の条件下でバイトの先端
に振動が起り排出される金属切粉が繊維状になつ
て排出される。これと同様にバイト刃先を強制的
に振動させても金属繊維を製造することができ
る。
旋削金属繊維の特徴は刃先と材料の接触長さや
送り速度と回転数およびバイト先端部の振動数を
変えることにより任意の断面積、断面形状をもつ
た金属繊維の製作が可能である。得られた金属繊
維は塑性変形により硬化しており、硬くて脆い繊
維であり、さらに破断面が不規則構造をしている
ため繊維の滑りが悪く3mm以上の繊維長では固ま
りになりやすい。即ち、繊維同志がからみ合うた
めに均一厚みに調整したり、分散させることが困
難である。発明者らは数度にわたり、各種繊維
径、材質をかえた旋削金属繊維をカードにかけて
ウエブ化を計つたが脱落が多くウエブ化が困難で
あつた。この理由は、旋削金属繊維はその製造工
程において加工硬化を起しており、カードにかけ
ると簡単に折れてしまつたり、また金属繊維同志
のからみ合いが少なく、ウエブにすらならないこ
とがわかつた。発明者等はこの欠点を取除くため
に旋削金属繊維を焼鈍し、カードにかけてみた。
この結果繊維長が10mm以上のもの、さらに詳細に
説明すると70重量%以上が10mm以上の長さを持つ
場合には、ウエブ化可能なことがわかつた。カー
ドでは繊維の方向を揃えるわけであるが、これを
ランダムにウエブ化するランダムウエバーにかけ
たが、この場合も同様にウエブ化できる。また
100mm以上の旋削金属繊維はその取扱い過程にお
いて破断しやすく、100mm以上の長さの維持が困
難なこと、およびバイト旋削装置が巨大となり経
済的ではない。このようにして得られた金属繊維
は約90゜曲げると簡単に折れてしまうために、一
般の焼鈍処理を行なつた。180゜曲げても折れない
性質の金属繊維を得ることができた。また繊維の
断面形状としては、10μm2〜105μm2の範囲が良好
である。即ち10μm2以下の場合には金属繊維の製
造上バイトの1回転当りの送り速度が3μm以下
であることが必要であり、割高でかつ弱い旋削金
属繊維となる。また105μm2以上の断面積を持つ場
合には、旋削金属繊維自体の強度が上がり、カー
ドの損傷が激しくなる。以上のような理由により
10μm2〜105μm2の断面積を持つ旋削金属繊維が特
に良好である。このようにして得られた旋削金属
繊維は、容易にウエブ化可能である。しかしウエ
ブのままでは引つ張り強度が弱く、一般的な使用
はできない。発明者等は、カードから出てきたウ
エブを巻き取り等の中間工程を入れることなく、
直接圧延機にかける方式を発明した。
これ以外には、直接焼結炉の中へ、金属ウエブ
を直接導入する方法があるが、最近ではエネルギ
ーコストが高く、焼結に要する電気代、ガス代等
が高くなる。本発明によれば高温にする必要もな
く、容易にかつ安価に金属繊維よりなるシートを
得ることができる。もち論用途によつては圧延後
さらに焼結することも可能である。本発明の別の
特徴は、圧延することによつて金属繊維シートを
曲げても金属繊維の脱落を防止できることであ
る。圧延工程がない場合には、おそらく繊維の端
部が自由端になつており、曲げているうちに焼結
部がはがれて脱落してしまう。しかし、圧延工程
を入れることによつて金属繊維の結合が強固にな
り、またさらに焼結することによつて一層強固な
結合を得ることができる。
材料によつても異なるが、圧延の条件として
は、初期断面積に対し圧延後が、その2〜20%の
断面積を持つ状態が好ましい。金属繊維のみの多
孔率は90〜98%であり、これを2〜20%の断面積
に圧延することが可能である。2%以下では、金
属量が多くなり、かつ変形量も多いため再度焼鈍
することが必要である。また20%以上では金属間
の強合が弱く、本発明の目的には合致しない。
なお、金属繊維を焼鈍する処理は旋削金属の材
質によつて第1表の条件を目安として行なうと良
好であることを確認した。
The present invention relates to a method of manufacturing a sheet made of metal fibers. A metal fiber sheet is a type of porous metal body. Among the metal porous bodies, there are those formed by molding and sintering metal powder, and the spongy metal porous bodies that are attracting attention. The sheet made of metal fibers according to the present invention has a higher porosity than a sheet made of sintered metal powder, and is characterized by being cheaper than a spongy metal porous body. There are various methods for producing metal fibers, and a metal fiber sheet can be easily obtained by the present invention. Among these, the present invention can be effectively applied to turned metal fibers since there are no restrictions on the material and metal fibers of a certain length can be obtained.
A method for producing a turned metal fiber sheet will be described below. The term "turned metal fibers" as used herein refers to metal chips that are ejected in the form of fibers when metal is cut using a lathe or the like when vibration occurs at the tip of a cutting tool under certain conditions. Similarly, metal fibers can also be produced by forcibly vibrating the tip of the cutting tool. A feature of turning metal fibers is that it is possible to produce metal fibers with any cross-sectional area and shape by changing the contact length between the cutting edge and the material, the feed rate and rotational speed, and the vibration frequency of the tip of the cutting tool. The obtained metal fibers are hardened by plastic deformation, and are hard and brittle fibers.Furthermore, the fractured surface has an irregular structure, so the fibers have poor slippage and tend to clump if the fiber length is 3 mm or more. That is, since the fibers are entangled with each other, it is difficult to adjust the thickness to a uniform thickness or to disperse the fibers. The inventors attempted several times to form a web by applying turned metal fibers of various fiber diameters and materials to a card, but many of the fibers fell off, making it difficult to form a web. The reason for this is that turned metal fibers undergo work hardening during the manufacturing process, so they easily break when placed on a card, and the metal fibers are less likely to intertwine with each other, making it difficult to form a web. . To eliminate this drawback, the inventors annealed turned metal fibers and carded them.
As a result, it was found that fibers with a length of 10 mm or more, and more specifically, when 70% by weight or more of the fibers had a length of 10 mm or more, could be made into a web. In cards, the fibers are oriented in the same direction, but we applied a random webber to randomly form a web, and in this case, the fibers can also be formed into a web in the same way. Also
Turned metal fibers with a length of 100 mm or more are easily broken during the handling process, it is difficult to maintain a length of 100 mm or more, and the cutting tool turning device becomes huge, making it uneconomical. Since the metal fiber thus obtained easily breaks when bent by about 90 degrees, it was subjected to a general annealing treatment. We were able to obtain metal fibers that do not break even when bent 180°. Further, the cross-sectional shape of the fibers is preferably in the range of 10 μm 2 to 10 5 μm 2 . That is, in the case of less than 10 μm 2 , it is necessary for the feed rate per revolution of the cutting tool to be less than 3 μm in production of the metal fiber, resulting in a relatively expensive and weak turning metal fiber. Furthermore, if the cross-sectional area is 10 5 μm 2 or more, the strength of the turned metal fiber itself increases, and the card will be seriously damaged. For the above reasons
Turned metal fibers with a cross-sectional area of 10 μm 2 to 10 5 μm 2 are particularly suitable. The thus obtained turned metal fibers can be easily made into a web. However, if it is kept as a web, its tensile strength is low and it cannot be used for general purposes. The inventors did not have to perform any intermediate processes such as winding up the web that came out of the card.
He invented a method of applying it directly to a rolling mill. Other than this, there is a method of directly introducing the metal web into a sintering furnace, but recently the energy cost is high, and the electricity cost, gas cost, etc. required for sintering are high. According to the present invention, there is no need to raise the temperature to high temperatures, and a sheet made of metal fibers can be obtained easily and inexpensively. Depending on the application, it is also possible to further sinter the material after rolling. Another feature of the present invention is that even if the metal fiber sheet is bent by rolling, the metal fibers can be prevented from falling off. If there is no rolling process, the ends of the fibers will probably be free ends, and the sintered parts will peel off and fall off during bending. However, by adding a rolling process, the bond between the metal fibers becomes stronger, and by further sintering, an even stronger bond can be obtained. Although it varies depending on the material, the rolling conditions are preferably such that the cross-sectional area after rolling is 2 to 20% of the initial cross-sectional area. The porosity of the metal fiber alone is 90-98%, and it is possible to roll it to a cross-sectional area of 2-20%. If it is less than 2%, the amount of metal increases and the amount of deformation is also large, so it is necessary to anneal again. Moreover, if it is more than 20%, the reinforcing bond between metals will be weak, and the object of the present invention will not be met. It has been confirmed that the annealing of the metal fibers is best carried out under the conditions shown in Table 1 depending on the material of the turning metal.
【表】
実施例
銅と亜鉛が7対3の比率である黄銅を送り速度
3μm/回転で旋盤の回転数500r.p.m.、切り込み
幅20mmで旋削し、長さ10〜20mm、断面積600μm2
の旋削金属繊維を得た。この金属繊維を水素中で
550℃の焼鈍を10分間行ない、これをカードにか
けた。得られた旋削金属繊維よりなるウエブは空
孔率99%で厚み5mmであつた。得られたウエブを
圧延機にかけ断面積比10%とした所、取扱いが容
易でかつ金属繊維の落ちないシートを得ることが
できた。[Table] Example: Feeding speed of brass with a ratio of 7:3 of copper and zinc
Turned at 3 μm/rotation, lathe speed of 500 r.pm, cutting width of 20 mm, length of 10 to 20 mm, cross-sectional area of 600 μm 2
A turning metal fiber was obtained. This metal fiber in hydrogen
Annealing was performed at 550°C for 10 minutes, and this was applied to the card. The resulting web made of turned metal fibers had a porosity of 99% and a thickness of 5 mm. When the obtained web was run through a rolling mill to reduce the cross-sectional area ratio to 10%, a sheet that was easy to handle and did not have metal fibers falling off could be obtained.
Claims (1)
かけ、得られたウエブを機械的に圧縮して金属繊
維シートを製造する方法において、前記金属繊維
が旋削によつて製作された金属繊維であり、該金
属繊維はランダムウエバーまたはカードにかけら
れる以前に焼鈍軟化処理が施されており、且つ繊
維全体の70重量%以上のものが10〜100mmの長さ
のものであつて、ランダムウエバー又はカードに
かけて得られたウエブをそのまゝ連続して圧延機
に導入して圧延することを特徴とする金属繊維シ
ートの製造方法。 2 金属繊維は断面積が10μm2〜105μm2であるこ
とを特徴とする特許請求の範囲1項記載の金属繊
維シートの製造方法。[Claims] 1. A method for manufacturing a metal fiber sheet by applying metal fibers to a random web or card and mechanically compressing the obtained web, wherein the metal fibers are metal fibers produced by turning. The metal fibers are annealed and softened before being applied to the random web or card, and more than 70% by weight of the total fibers have a length of 10 to 100 mm, and the metal fibers are annealed and softened before being applied to the random web or card. A method for producing a metal fiber sheet, characterized in that the web obtained by applying the above steps is continuously introduced into a rolling mill and rolled. 2. The method for manufacturing a metal fiber sheet according to claim 1, wherein the metal fiber has a cross-sectional area of 10 μm 2 to 10 5 μm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55155579A JPS5779004A (en) | 1980-11-05 | 1980-11-05 | Manufacture of metallic fiber sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55155579A JPS5779004A (en) | 1980-11-05 | 1980-11-05 | Manufacture of metallic fiber sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5779004A JPS5779004A (en) | 1982-05-18 |
JPS6328148B2 true JPS6328148B2 (en) | 1988-06-07 |
Family
ID=15609124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55155579A Granted JPS5779004A (en) | 1980-11-05 | 1980-11-05 | Manufacture of metallic fiber sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5779004A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6186494U (en) * | 1984-11-14 | 1986-06-06 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541832A (en) * | 1977-06-07 | 1979-01-09 | Matsushita Electric Ind Co Ltd | Method of making carbon coated electrode for cell |
-
1980
- 1980-11-05 JP JP55155579A patent/JPS5779004A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541832A (en) * | 1977-06-07 | 1979-01-09 | Matsushita Electric Ind Co Ltd | Method of making carbon coated electrode for cell |
Also Published As
Publication number | Publication date |
---|---|
JPS5779004A (en) | 1982-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4866888A (en) | Wire incrusted with abrasive grain | |
JP5758204B2 (en) | Titanium alloy member and manufacturing method thereof | |
US2953849A (en) | Reinforcement of metal | |
EP0764488A1 (en) | Heat resisting metal fiber sintered body | |
US4090874A (en) | Method for improving the sinterability of cryogenically-produced iron powder | |
EP1042091B1 (en) | Point contact densification of sintered metal powder | |
US3187422A (en) | Reinforcement of metal | |
JP5871490B2 (en) | Titanium alloy member and manufacturing method thereof | |
JPS6328148B2 (en) | ||
US3711341A (en) | Method of making sintered metal ultrasonic bonding tips | |
WO1993013235A1 (en) | High strength stainless steel foil for corrugation and method of making said foil | |
JPS6241284B2 (en) | ||
JP4348827B2 (en) | Manufacturing method of titanium plate with excellent formability | |
CN106567024A (en) | Spinning preparing method of molybdenum alloy crucible used for production of sapphire | |
JP2663190B2 (en) | Manufacturing method of decorative plastics mold | |
US3328166A (en) | Process for producing shaped thin articles from metal powder | |
RU2203968C2 (en) | Method of manufacture of bandages from hypereutectoid steels | |
CN100340678C (en) | A method for enduing high-vanadium high-cobalt high-speed steel with superplasticity property | |
JPH06172812A (en) | Production of metal powder sintered sheet having damping property | |
JPS60103103A (en) | Sintered web body consisting of short metallic fibers and its production | |
JPS62247007A (en) | Production of sintered aluminum alloy parts | |
JPS63246238A (en) | Vibration-damping metallic plate and manufacture thereof | |
JP3003257B2 (en) | Manufacturing method of alloy members | |
CN111778441A (en) | Preparation method of ultrahigh-strength and plastic 1045 steel | |
JPS6235441B2 (en) |