JPS632803A - Silicon carbide composition - Google Patents

Silicon carbide composition

Info

Publication number
JPS632803A
JPS632803A JP61145653A JP14565386A JPS632803A JP S632803 A JPS632803 A JP S632803A JP 61145653 A JP61145653 A JP 61145653A JP 14565386 A JP14565386 A JP 14565386A JP S632803 A JPS632803 A JP S632803A
Authority
JP
Japan
Prior art keywords
silicon carbide
injection
weight
particle diameter
carbide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61145653A
Other languages
Japanese (ja)
Inventor
Toshihiko Tani
俊彦 谷
Mitsuru Araya
荒谷 充
Takahiko Honma
隆彦 本間
Hideyuki Masaki
英之 正木
Shigetaka Wada
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP61145653A priority Critical patent/JPS632803A/en
Publication of JPS632803A publication Critical patent/JPS632803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the title silicon carbide composition having excellent moldability and capable of easily injection-molding parts of complicated shapes wherein high strength at high temp. is required by mixing two kinds of silicon carbide powder each having specified mean particle diameter. CONSTITUTION:From 20-80wt% silicon carbide powder having <=0.5mum mean particle diameter and silicon carbide powder having 0.6-5mum mean particle diameter are mixed so that the total amt. is controlled to 100wt%, and the desired silicon carbide composition is obtained. An appropriate sintering assistant is added to the silicon carbide composition, an org. binder is further added, and the mixture is kneaded and injection-molded. Since two kinds of silicon carbide having different particle diameters are mixed and used, an excessive increase in the kneading torque value due to shearing force during kneading can be controlled. The fluidity during injection molding can also be improved, the injection of the kneaded material into a mold is facilitated, and densification during baking can be easily effected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温機械部品、特にガスタービン部品のラジ
アルロータやアキシャルロータなどの複雑な形状を有し
、かつ高温で高い強度を要求される部品の、炭化ケイ素
から成る原料粉末に関するものであり、特に上記部品を
射出成形法により製造するのに適する組成物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to high-temperature mechanical parts, particularly gas turbine parts such as radial rotors and axial rotors, which have complex shapes and require high strength at high temperatures. The present invention relates to a raw material powder made of silicon carbide for parts, and in particular to a composition suitable for manufacturing the above-mentioned parts by injection molding.

〔従来技術とその問題点〕[Prior art and its problems]

炭化ケイ素を常圧にて焼結するためには2通常、平均粒
径(lL5μm以下の微粒子に焼結助剤を添加し、成形
体を不活性雰囲気中で焼成する。この場合、金型成形、
静水圧成形1等の成形法を採用すれば緻密(五1v−以
上)で高強度の焼結体が得られる。しかしながら、ガス
タービン部品のラジアルロータやアキシャルロータのよ
うだ複雑な形状を有する部品を製造することはできない
In order to sinter silicon carbide at normal pressure, 2. Usually, a sintering aid is added to fine particles with an average particle size (lL5 μm or less), and the molded body is fired in an inert atmosphere.In this case, molding ,
If a forming method such as hydrostatic pressing 1 is employed, a dense (51V or more) and high-strength sintered body can be obtained. However, it is not possible to manufacture parts with complicated shapes such as radial rotors and axial rotors of gas turbine parts.

このような複雑形状の部品の成形には射出成形が最も適
するが、平均粒径が15μm以下の炭化ケイ素微粒子を
原料とした場合は原料の比表面積が大きくなるため、有
機結合剤との混練時に、混線トルク値が高くなり、均一
な混合が困難となる。
Injection molding is most suitable for molding parts with such complex shapes, but when silicon carbide fine particles with an average particle size of 15 μm or less are used as a raw material, the specific surface area of the raw material becomes large, so it is difficult to mold when kneading with an organic binder. , the crosstalk torque value becomes high and uniform mixing becomes difficult.

また成形時にも混線物の流動性が悪いため、射出成形体
に密度むらやつまり不良による欠陥が生じやすく、脱脂
、焼成後に割れとなって現われる。
Also, during molding, the fluidity of the mixed material is poor, so defects due to uneven density or clogging are likely to occur in the injection molded product, which appear as cracks after degreasing and firing.

すなわち、射出成形性が劣る。That is, injection moldability is poor.

一方、射出成形性に優れた平均粒径が(16μm以上の
粗粒子を用いること圧より成形体に欠陥は生じないが、
焼結体の密度は低下しく五〇5f/d以下)9強度もこ
れだ伴なって低下してしまい。
On the other hand, using coarse particles with an average particle size of 16 μm or more, which has excellent injection moldability, does not cause defects in the molded product due to pressure, but
The density of the sintered body decreases (less than 505 f/d), and the strength also decreases accordingly.

焼結性および焼結体特性の低下という新たな問題が生じ
てしまう。
A new problem arises: deterioration of sinterability and properties of the sintered body.

このように、射出成形性と焼結体特性の両方に優れた炭
化ケイ素粉末が要望されているが、これまでに得られて
いなかった。
As described above, there is a demand for a silicon carbide powder that is excellent in both injection moldability and sintered body properties, but so far none has been available.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術の問題点に鑑みなされたもので
あり、成形性と焼結体特性が共に良好な炭化ケイ素組成
物を提供することを目的とするものである。
The present invention was made in view of the problems of the prior art described above, and it is an object of the present invention to provide a silicon carbide composition that has good moldability and sintered body properties.

〔発明の構成〕[Structure of the invention]

本発明の炭化ケイ素組成物は、平均粒径(L5μm以下
の炭化ケイ素粉末20〜80重量%と。
The silicon carbide composition of the present invention contains 20 to 80% by weight of silicon carbide powder having an average particle size (L5 μm or less).

残部が平均粒径CL6〜5μmの炭化ケイ素粉末とから
収ることを特徴とするものでろる。
The remainder is characterized by being comprised of silicon carbide powder with an average particle size CL of 6 to 5 μm.

本発明において、平均粒径が15μm以下の微粒の炭化
ケイ素(8iC)粉末は、8i0.還元法等で@−成す
ることができる。該微粒の炭化ケイ素粉末の平均粒径を
CL5μm以下としたのは、平均粒径が15μmを超え
る粒子では緻密な焼結体が得られないからである。
In the present invention, fine silicon carbide (8iC) powder with an average particle size of 15 μm or less is 8i0. It can be achieved by reduction method etc. The reason why the average particle size of the fine silicon carbide powder is set to CL5 μm or less is that a dense sintered body cannot be obtained with particles having an average particle size exceeding 15 μm.

また、平均粒径が[L6〜5μmの粗粒の炭化ケイ素粉
末は、アチェソン法等で合成することができる。該粗粒
の炭化ケイ素粉末の平均粒径を06〜5μmとしたのは
、平均粒径[lL6μm未満の粉末を用いたのでは粗粒
としての効果がなく欠陥のない成形体が得られないから
であり、また、平均粒径5μmを超える粗大粒を用いた
のでは微粒子と混合しても、緻密な焼結体が得られない
からである。
Further, coarse silicon carbide powder having an average particle size of [L6 to 5 μm] can be synthesized by the Acheson method or the like. The reason why the average particle size of the coarse silicon carbide powder is set to 06 to 5 μm is because if a powder with an average particle size of less than 6 μm is used, it will not be effective as a coarse particle and a defect-free molded body will not be obtained. Moreover, if coarse particles with an average particle size exceeding 5 μm are used, a dense sintered body cannot be obtained even if mixed with fine particles.

また、上記炭化ケイ素の形態としては、微粒のもの、粗
粒のものともアルファー(a)、ベータ<p)等いずれ
のものでもよい。
Further, the form of the silicon carbide may be fine particles, coarse particles, alpha (a), beta<p), or the like.

微粒の炭化ケイ素粉末(これを人とする。)と粗粒の炭
化ケイ素粉末(これをBとする)との配合割合は1重量
比でA/B−2/8〜8/2の割合とする必要がある。
The blending ratio of fine silicon carbide powder (this is referred to as human) and coarse silicon carbide powder (this is referred to as B) is a ratio of A/B-2/8 to 8/2 by weight. There is a need to.

A/B(2/8の場合には、焼結体の密度が低下しく五
〇 5 f//d以下)となり。
A/B (in the case of 2/8, the density of the sintered body decreases to 50 5 f//d or less).

緻密な部品は得られない。またA/B)8/2の場合に
は、成形体に密度むらやつまり不良の欠陥が現われてし
まう。
Precise parts cannot be obtained. Further, in the case of A/B) 8/2, defects such as uneven density and clogging appear in the molded product.

本発明にかかる炭化ケイ素組成物は、特に射出成形によ
り部品を成形する際に有効に働く。該炭化ケイ素組成物
を射出成形により成形する方法として、以下の方法があ
る。
The silicon carbide composition according to the present invention works particularly effectively when molding parts by injection molding. The following methods are available for molding the silicon carbide composition by injection molding.

すなわち1本発明の炭化ケイ素組成物に適当な焼結助剤
を添加し、さらに有機結合剤を加えて混練を行なう。焼
結助剤としては9次に挙げる物が有効である。いずれも
炭化ケイ素組成物100重量部に対し。
That is, 1. A suitable sintering aid is added to the silicon carbide composition of the present invention, an organic binder is further added, and kneading is performed. As the sintering aid, the following are effective. All based on 100 parts by weight of silicon carbide composition.

1、 ホウ素ろるいはホウ素化合物11〜1重量部およ
び炭素らるいVi熱熱分後後炭素となる有機物質(L5
〜5重量部。
1. 11 to 1 parts by weight of boron or a boron compound and an organic substance that becomes carbon after thermal decomposition (L5
~5 parts by weight.

Z アルミニウムあるいはアルミニウム化合物8.3〜
3重量部および炭素あるいは熱分解後に炭素となる有機
物質[1,5〜5重量部。
Z aluminum or aluminum compound 8.3~
3 parts by weight and carbon or an organic substance that becomes carbon after pyrolysis [1.5 to 5 parts by weight.

五 酸化アルミニウム1〜10重量部あるいはこれと希
土類酸化物1〜10重量部との混合物。
1 to 10 parts by weight of aluminum oxide or a mixture of aluminum oxide and 1 to 10 parts by weight of a rare earth oxide.

4、 マグネシウムアルミニウムスピネA/1〜10重
量部あるいはこれと希土類酸化物1〜10重量部との混
合物。
4. Magnesium aluminum spine A/1 to 10 parts by weight or a mixture of this and 1 to 10 parts by weight of rare earth oxide.

また、有機結合剤としては、熱可塑性樹脂と滑剤との混
合物が選ばれる。
Further, as the organic binder, a mixture of a thermoplastic resin and a lubricant is selected.

混線物を所望の形に射出成形した後、成形体中の有機成
分を熱分解により除去し、焼成を行う。
After the hybrid material is injection molded into a desired shape, the organic components in the molded product are removed by thermal decomposition and then fired.

焼成は真空めるいは不活性雰囲気にて、1900〜23
00℃で行う。
Firing is done in a vacuum or in an inert atmosphere at 1900-2300℃.
Perform at 00°C.

なお1本発明にかかる炭化ケイ素組成物は、射出成形済
以外にも金型成形、静水圧成形、押出成形、スリップキ
ャスト等の成形法でも使用することができ、いずれの方
法においても成形性と焼結体特性に優れている。
In addition to being injection molded, the silicon carbide composition according to the present invention can also be used in other molding methods such as mold molding, isostatic pressing, extrusion molding, and slip casting. Excellent sintered properties.

〔発明の効果〕〔Effect of the invention〕

本発明の炭化ケイ累組成物は、5!2形性と焼結体特性
とが共に優れたものであり、特に射出成形法に適用した
際にこの効果は更に発揮される。
The silicon carbide composite composition of the present invention has excellent 5!2 shape properties and sintered body properties, and this effect is particularly exhibited when applied to injection molding.

すなわち、射出成形法による場会、異なる粒径を有する
2種類の炭化ケイ素粉末の混合使用によリ、有機結合剤
との混練時に、剪断力による混練トルク値の過度の増加
を抑制することができる。
That is, when using an injection molding method, by using a mixture of two types of silicon carbide powders having different particle sizes, it is possible to suppress an excessive increase in the kneading torque value due to shear force when kneading with an organic binder. can.

また、射出成形時の流動性についても、やはり剪断力の
低減によって、良好になるため、型内への混練物の射出
を容易に行うことができ、欠陥の発生を抑える。また、
従来焼結性の悪かった粗粒子と粗粒子の間に微粒子が存
在するため、焼成時の緻督化も容易である。
Further, the fluidity during injection molding is also improved by reducing the shearing force, so that the kneaded material can be easily injected into the mold and the occurrence of defects can be suppressed. Also,
Since fine particles exist between the coarse particles, which have conventionally had poor sinterability, densification during firing is also easy.

〔実施例〕〔Example〕

以下1本発明の詳細な説明する。 Hereinafter, one aspect of the present invention will be explained in detail.

実施例 1゜ 平均粒径α28μmのβ−8iCと平均粒径α7μmの
a−8i0を第1表に示す比率で混合し、これに15重
量%の炭化ホウ素と1.8重量%のカーボンブラックを
添加した。この混合粉58体積%に対し、有機結合剤4
2体ぽ1加え、東洋精機製ラボプラストミルで60分間
の混練(160℃。
Example 1゜β-8iC with an average particle size α of 28 μm and a-8i0 with an average particle size α of 7 μm were mixed in the ratio shown in Table 1, and to this was added 15% by weight of boron carbide and 1.8% by weight of carbon black. Added. For 58% by volume of this mixed powder, 4% organic binder
Add 2 parts and knead for 60 minutes (160℃) using Toyo Seiki Laboplasto Mill.

30rpm)を行った。その結果、第1表に示すように
微粒の8iCの比率が高いほど混線トルク値が高かった
30 rpm). As a result, as shown in Table 1, the higher the ratio of fine particles of 8iC, the higher the crosstalk torque value.

また、同じ試料について森山製作所製加圧ニーダによっ
て各6 Kgの混練物を得て、射出成形によってターボ
チャージャロータを製造したところ。
In addition, 6 kg of the same samples were kneaded using a pressure kneader manufactured by Moriyama Seisakusho, and a turbocharger rotor was manufactured by injection molding.

微粒子の比率が100重量%および90重量%の試料で
は、つまり不良による欠陥が生じ、焼結体では割れとな
って現れた(第1表)。
In samples with a fine particle ratio of 100% by weight and 90% by weight, defects occurred due to defects, which appeared as cracks in the sintered body (Table 1).

また、JI8R−1601規格の抗折試験片を射出成形
によって得た後、脱脂、焼成を行い、焼結体の密度と強
度を測定したところ、微粒の8iCの比率が0重量%お
よび10重量%の試料では。
In addition, after obtaining a JI8R-1601 standard bending test piece by injection molding, it was degreased and fired, and the density and strength of the sintered body were measured, and it was found that the proportion of fine 8iC was 0% by weight and 10% by weight. In the sample.

密度はi 04 f/d以下1曲げ強度は40に9シー
”未満という低い値にとどまった。微粒の8iCの比率
が20重量%から80重量%の試料では密度五1g/i
以上1強度50Kqf/−“以上という優れた焼結体特
性を示した上、外観およびX線撮影によって無欠陥なタ
ーボチャージャロータをiることかできた。
The density was less than i 04 f/d, and the bending strength remained at a low value of less than 40 to 9 c. In the samples where the proportion of fine 8iC was 20% to 80% by weight, the density was 51g/i.
In addition to exhibiting excellent sintered body properties with a strength of 50 Kqf/-" or more, a turbocharger rotor with no defects was obtained by appearance and X-ray photography.

第1表 実施例 2 微粒シよび粗粒の8iC原料として、第2表に示す結晶
相および平均粒径のものを選び、実施例1と同様に、微
粒の8i0/粗粒の8iC−80/20の重量比で混合
し、15重量%の炭化ホウ素と1.8重量%のカーボン
ブラックを添加した。この混合粉58体積%に対し、有
機結合剤42体積%を加え、実施例1と同様に、混線ト
ルク値、ターボチャージャロータ射呂戊形体の成否、試
験片の密度および強度を調べた。その結果を第2表に示
す(なお、実施例1の試料7111のものも参考として
第2表中に示す)。
Table 1 Example 2 As fine-grained and coarse-grained 8iC raw materials, those with the crystal phases and average particle sizes shown in Table 2 were selected, and in the same manner as in Example 1, fine-grained 8i0/coarse-grained 8iC-80/ Mixed in a weight ratio of 20, 15% by weight boron carbide and 1.8% by weight carbon black were added. To 58 volume % of this mixed powder, 42 volume % of an organic binder was added, and in the same manner as in Example 1, the crosstalk torque value, the success or failure of the turbocharger rotor cylindrical body, and the density and strength of the test piece were examined. The results are shown in Table 2 (note that sample 7111 of Example 1 is also shown in Table 2 for reference).

本実施例のもの(試料轟6〜8)は、すべて密度五1 
id以上、4点曲げ強度50 Kqf/xx′以上の特
性の焼結体が得られた上、無欠陥のターボチャージャロ
ータを得ることができた。
All of the samples of this example (Samples 6 to 8) had a density of 51
A sintered body having characteristics of id or higher and a four-point bending strength of 50 Kqf/xx' or higher was obtained, and a defect-free turbocharger rotor was also obtained.

微粒o8ic/粗粒(1) 8 ioカCL 28 p
m/[L4pmの平均粒径であった比較例試料&C5で
は、ターボチャージャロータ焼結体には中心に空洞が生
じ。
Fine grain o8ic/coarse grain (1) 8 ioka CL 28 p
In Comparative Example Sample &C5, which had an average particle size of m/[L4pm, a cavity was formed in the center of the turbocharger rotor sintered body.

割れが起こった。また、微粒の8iC/粗粒の8iCが
t17μm71μmの平均粒径でおった比較例試料&C
6では、焼結体の密度1強度は2.9617d 。
A crack occurred. In addition, comparative example sample &C in which fine particle 8iC/coarse particle 8iC had an average particle size of t17μm and 71μm.
6, the density 1 strength of the sintered body is 2.9617d.

S G K4f/xxsときわめて低い値にとどまった
The value remained at an extremely low value of SG K4f/xxs.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims]  平均粒径0.5μm以下の炭化ケイ素粉末20〜80
重量%と、残部が平均粒径0.6〜5μmの炭化ケイ素
粉末とから成ることを特徴とする炭化ケイ素組成物。
Silicon carbide powder with an average particle size of 0.5 μm or less 20-80
% by weight, and the remainder is silicon carbide powder having an average particle size of 0.6 to 5 μm.
JP61145653A 1986-06-20 1986-06-20 Silicon carbide composition Pending JPS632803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145653A JPS632803A (en) 1986-06-20 1986-06-20 Silicon carbide composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145653A JPS632803A (en) 1986-06-20 1986-06-20 Silicon carbide composition

Publications (1)

Publication Number Publication Date
JPS632803A true JPS632803A (en) 1988-01-07

Family

ID=15389988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145653A Pending JPS632803A (en) 1986-06-20 1986-06-20 Silicon carbide composition

Country Status (1)

Country Link
JP (1) JPS632803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383102B1 (en) * 2000-12-22 2003-05-12 주식회사 포스코 Slip of silicon carbide-water system and a method for manufacturing the same
JP2008093725A (en) * 2006-10-13 2008-04-24 Toshiba Corp Erosion preventive method and member with erosion preventive section
JP2015525198A (en) * 2012-06-15 2015-09-03 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic body containing silicon carbide and method for forming the same
DE102006000271B4 (en) 2005-06-06 2018-06-21 Kabushiki Kaisha Toyota Jidoshokki Compression ignition internal combustion engine with homogeneous charge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383102B1 (en) * 2000-12-22 2003-05-12 주식회사 포스코 Slip of silicon carbide-water system and a method for manufacturing the same
DE102006000271B4 (en) 2005-06-06 2018-06-21 Kabushiki Kaisha Toyota Jidoshokki Compression ignition internal combustion engine with homogeneous charge
JP2008093725A (en) * 2006-10-13 2008-04-24 Toshiba Corp Erosion preventive method and member with erosion preventive section
JP2015525198A (en) * 2012-06-15 2015-09-03 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic body containing silicon carbide and method for forming the same
US9540283B2 (en) 2012-06-15 2017-01-10 Saint-Gobain Ceramics & Plastics, Inc. Ceramic body comprising silicon carbide and method of forming same

Similar Documents

Publication Publication Date Title
US4925815A (en) Silicon carbide composite ceramic
US20120172193A1 (en) Method for producing pressurelessly sintered zirconium diboride/silicon carbide composite bodies
JPS5924751B2 (en) Sintered shaped body
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
JP4691891B2 (en) C-SiC sintered body and manufacturing method thereof
JPS632803A (en) Silicon carbide composition
JP5999492B2 (en) Ti3SiC2 atmospheric pressure sintered body and method for producing the same
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
JPS632913B2 (en)
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JPS60131865A (en) Manufacture of silicon nitride ceramics
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPS61227968A (en) Silicon carbide base sintered body and manufacture
JPH054870A (en) High-toughness silicon carbide-based sintered compact
JP3662628B2 (en) Silicon nitride-based sintered body and method for producing the same
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP2005225744A (en) Method for manufacturing silicon nitride sintered compact
JPH0816029B2 (en) Method for manufacturing high-strength ceramic compact sintered body
JP2700925B2 (en) Fiber reinforced ceramics and manufacturing method
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JPH07267734A (en) Particle dispersed silicon nitride sintered compact and its production
JPH10167807A (en) Mgo-base composite ceramics and its production
JPH04254471A (en) Ceramic composite sintered body and sliding member using the same