JP2005225744A - Method for manufacturing silicon nitride sintered compact - Google Patents

Method for manufacturing silicon nitride sintered compact Download PDF

Info

Publication number
JP2005225744A
JP2005225744A JP2004068121A JP2004068121A JP2005225744A JP 2005225744 A JP2005225744 A JP 2005225744A JP 2004068121 A JP2004068121 A JP 2004068121A JP 2004068121 A JP2004068121 A JP 2004068121A JP 2005225744 A JP2005225744 A JP 2005225744A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
sintered body
sintered
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068121A
Other languages
Japanese (ja)
Inventor
Hiroo Kobayashi
弘旺 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004068121A priority Critical patent/JP2005225744A/en
Publication of JP2005225744A publication Critical patent/JP2005225744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a manufacturing method for forming an elaborate silicon nitride sintered compact by adding a small amount of a sintering auxiliary to silicon nitride and by sintering at a relatively lower temperature. <P>SOLUTION: The method for manufacturing an elaborate silicon nitride sintered compact whose grain boundary has a crystalline phase containing YAG (Y<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>) comprises adding to silicon nitride 5-16 % by mass of a sintering auxiliary of oxides consisting of the three component system of alumina/zirconia/yttria or of a mixture of the oxides and the fourth component added thereto such as an other oxide or a metal, then forming a shaped compact, and then sintering the shaped compact at 1,450-1,650°C in a nitrogen gas atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、比較的低温で焼結できる、緻密で破壊靭性、熱衝撃抵抗性に優れた窒化珪素焼結体の製造方法に関する。  The present invention relates to a method for producing a silicon nitride sintered body that can be sintered at a relatively low temperature and is dense and excellent in fracture toughness and thermal shock resistance.

窒化珪素セラミックスは、通常、窒化珪素粉末にイットリア(Y)、アルミナ(Al)−マグネシア(MgO)系、アルミナ(Al)−イットリア(Y)系、ジルコニア(ZrO)−イットリア(Y)系などからなる焼結助剤を添加して窒素ガス雰囲気中、1700℃〜1800℃以上で液相焼結して緻密な焼結体を得ている(例えば、非特許文献1参照。)。Silicon nitride ceramics are usually made of silicon nitride powder with yttria (Y 2 O 3 ), alumina (Al 2 O 3 ) -magnesia (MgO), alumina (Al 2 O 3 ) -yttria (Y 2 O 3 ), A sintering aid made of zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) system or the like is added, and liquid phase sintering is performed at 1700 ° C. to 1800 ° C. or higher in a nitrogen gas atmosphere to obtain a dense sintered body. (For example, refer nonpatent literature 1.).

また、アルミナ(Al)−イッテルビウム酸化物(Yb)系の焼結助剤を用いて、ミリ波焼結法により1550℃〜1750℃で焼結して緻密な焼結体を得る方法なども報告されている(例えば、特許文献1参照。)。
坂野久夫、ニューセラミックス、パワー社、p.134(1984) 特開平2002−68845号 公報
Further, a dense sintered body obtained by sintering at 1550 ° C. to 1750 ° C. by a millimeter wave sintering method using an alumina (Al 2 O 3 ) -ytterbium oxide (Yb 2 O 3 ) -based sintering aid. A method for obtaining the above has also been reported (see, for example, Patent Document 1).
Hisao Sakano, New Ceramics, Power Company, p. 134 (1984) Japanese Patent Laid-Open No. 2002-68845

以上に述べた従来の窒化珪素焼結体の製造方法では、窒化珪素に上記の焼結助剤を添加して電気炉などを用いて、窒素ガス雰囲気中で液相焼結されているが、緻密な焼結体を得るためには助剤の添加量を多くすることが必要である。しかし、助剤の添加量が多くなると粒界のガラス層が増加して窒化珪素セラミックスの高温強度が低下するという問題点がある。また、窒素ガス雰囲気中、1700℃〜1800℃以上で液相焼結されているため、焼結温度が高い、ミリ波焼結法では設備費が高価につく、などの欠点がある。  In the conventional method for producing a silicon nitride sintered body described above, the above-mentioned sintering aid is added to silicon nitride and liquid phase sintering is performed in a nitrogen gas atmosphere using an electric furnace or the like. In order to obtain a dense sintered body, it is necessary to increase the amount of auxiliary agent added. However, there is a problem in that the glass layer at the grain boundary is increased and the high temperature strength of the silicon nitride ceramic is lowered when the additive amount is increased. Moreover, since liquid phase sintering is performed at 1700 ° C. to 1800 ° C. or higher in a nitrogen gas atmosphere, there are disadvantages such as high sintering temperature and expensive equipment costs in the millimeter wave sintering method.

本発明は、このような従来の窒化珪素焼結体の製造方法が有していた問題点を解決しようとするものであり、比較的低温で比較的少量の焼結助剤を用いて、緻密に焼結できる安価な製造方法の確立を実現することを目的とするものである。  The present invention is intended to solve the problems of such a conventional method for producing a silicon nitride sintered body, and it is possible to use a relatively small amount of sintering aid at a relatively low temperature, It aims at realizing the establishment of an inexpensive manufacturing method that can be sintered.

上述の課題を解決するための手段として、窒化珪素粉末原料に焼結助剤として、アルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系の酸化物、または、それらに他の酸化物、非酸化物や金属などの第4成分を加えたものを5〜16mass%の範囲で添加混合・混練して成形体を作製し、その成形体を窒素ガス雰囲気中で1450℃〜1650℃焼結して、粒界がYAGを含む結晶層(組成により異なり、YAG+立方晶ZrO、YAG+立方晶ZrO+Al、またはYAG+立方晶ZrO+Y・Alからなる)からなる緻密な焼結体を安価に製造できる製造方法を提供することにある。As means for solving the above-mentioned problems, alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary oxide is used as a silicon nitride powder raw material as a sintering aid, Alternatively, a molded product is produced by adding and mixing and kneading a material in which a fourth component such as another oxide, non-oxide, or metal is added in a range of 5 to 16 mass%, and the molded product is subjected to a nitrogen gas atmosphere. In which a grain boundary is YAG-containing crystal layer (YAG + cubic ZrO 2 , YAG + cubic ZrO 2 + Al 2 O 3 , or YAG + cubic ZrO 2 + Y 2 O depending on the composition) 3 · Al 2 O 3 ) and a manufacturing method capable of manufacturing a dense sintered body at low cost.

YAGはガーネット(XSi12)のXにYが、YにAlが入り、Siの代わりにAlの入った人工鉱物であるため、YAl12の組成を持っており、通常AlとYを用いて1700℃程度でホットプレス焼結して作られている。一方、AlとYにZrOを加えた三元系では、1450℃、500h常圧焼結でYAGを含む結晶層(YAG+立方晶ZrO、YAG+立方晶ZrO+Al、YAG+立方晶ZrO+Y・Al)の生成が報告されている(参考文献:W.D.Tuohing and T.Y.Tien,J.Am.Ceram.Soc.,63[9−10]595−596(1980))。従って、本法によると粒界は強度の弱いガラス層ではなく、YAGを含有する結晶層からなる特徴を持っている。YAG is an artificial mineral containing Y in the garnet (X 3 Y 2 Si 3 O 12 ), Y in the Y, Al in the Y, and Al in place of the Si, so it has the composition of Y 3 Al 5 O 12 It is usually made by hot press sintering at about 1700 ° C. using Al 2 O 3 and Y 2 O 3 . On the other hand, in the ternary system in which ZrO 2 is added to Al 2 O 3 and Y 2 O 3 , crystal layers containing YAG at 1450 ° C. and 500 h under normal pressure sintering (YAG + cubic ZrO 2 , YAG + cubic ZrO 2 + Al 2). O 3 , YAG + cubic ZrO 2 + Y 2 O 3 .Al 2 O 3 ) has been reported (reference: WD Tuohing and TY Tien, J. Am. Ceram. Soc., 63 [9-10] 595-596 (1980)). Therefore, according to this method, the grain boundary is not a weak glass layer but has a characteristic of a crystal layer containing YAG.

本発明による窒化珪素セラミックスの製造方法は、焼結助剤として、アルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系の酸化物、または、それに他の酸化物や金属などの第4成分を加えた混合物を少量添加し、成形した成形体を窒素ガス雰囲気中で1500℃程度の比較的低温で常圧焼結、加圧焼結、またはホットプレス焼結して緻密な焼結体を得るものである。したがって、従来の製造法に比較して、特殊な焼結炉は必要でなく通常の電気炉を用いて低温で緻密に焼結できる、焼結助剤の添加量が少なくてよい、などの特徴を持っており、窒化珪素セラミックスの安価な製造方法を提供できる。In the method for producing silicon nitride ceramics according to the present invention, as a sintering aid, alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary oxide, or other oxides are used. A small amount of a mixture containing a fourth component such as oxide or metal is added, and the formed compact is subjected to atmospheric pressure sintering, pressure sintering, or hot press sintering at a relatively low temperature of about 1500 ° C. in a nitrogen gas atmosphere. By bonding, a dense sintered body is obtained. Therefore, compared to the conventional manufacturing method, a special sintering furnace is not required, and it can be densely sintered at a low temperature using a normal electric furnace, and the amount of addition of a sintering aid may be small. Therefore, an inexpensive method for producing silicon nitride ceramics can be provided.

添加された焼結助剤は焼結中にYAGを含む結晶層を生成するため、従来のものに比較して粒界がガラス相やSi−Y系化合物などではなく、YAGを含む結晶層からなる組織を持った窒化珪素セラミックスを容易に得ることができる。Since the added sintering aid produces a crystal layer containing YAG during sintering, the grain boundary is not a glass phase or Si 3 N 4 —Y 2 O 3 based compound compared to the conventional one, Silicon nitride ceramics having a structure composed of a crystal layer containing YAG can be easily obtained.

窒化珪素粉末に、焼結助剤としてアルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系の酸化物の混合物、または、それらに他の酸化物、非酸化物や金属などの第4成分を加えた混合物を5〜16mass%まで添加し、それらに結合剤、分散剤、可塑剤および消泡剤などの成形助剤を添加混合、あるいは混練して粉末、顆粒、泥漿、または杯土などの成形用原料を調整する。次に、それらの調整された原料を用いて金型プレス成形、鋳込み成形、押し出し成形、または射出成形法などの各種の成形法により成形体を作製する。得られた成形体を窒素ガス雰囲気中、1450℃〜1650℃で常圧焼結、加圧焼結、または、ホットプレス焼結して緻密な焼結体を製造する。Silicon nitride powder, alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary oxide mixture as a sintering aid, or other oxides, non-oxides Add a mixture containing a fourth component such as an oxide or metal to 5 to 16 mass%, and add or mix or knead a molding aid such as a binder, a dispersant, a plasticizer and an antifoaming agent to the powder. Prepare raw materials for molding, such as granules, slurry, or clay. Next, a molded body is produced by various molding methods such as die press molding, cast molding, extrusion molding, or injection molding using these adjusted raw materials. The obtained compact is subjected to atmospheric pressure sintering, pressure sintering, or hot press sintering in a nitrogen gas atmosphere at 1450 ° C. to 1650 ° C. to produce a dense sintered body.

まず始めに、焼結用助剤単味の焼結特性、および生成する鉱物相を検討した。アルミナ(Al、純度99.99%、平均粒径0.2μm)、イットリア部分安定化ジルコニア(ZrO94.52%、Y5.28%、平均粒径0.56μm)、およびイットリア(Y、特級試薬、平均粒径0.4μm)の微粉を、各種組成(mass%)で配合して成形助剤とともに十分に混合後、100MPaで金型プレス成形して、外径約20mm、厚み約5mmの円板状試片を成形した。成形体を乾燥後、窒素ガス雰囲気中(0.1MPa)で1450℃〜1650℃、2h焼結して得られた助剤単味の焼結体の見掛け気孔率とかさ密度の結果から焼結性を判定した。
1450℃焼結では、YAGを生成する組成範囲内で配合したアルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系のいずれの組成でも、焼結体の見掛け気孔率が30%以上あり、焼結は不十分であった。しかし、1500℃の焼結では、YAGを生成する組成範囲で3成分を配合すれば、いずれの組成でも十分に焼結していた。特に、それらの中では60Al−20ZrO−20Y組成、および33.3Al−33.3ZrO−33.3Y組成が著しく焼結しており、それらの組成からなる焼結体の見掛け気孔率はほぼ0%であった。更に、1550℃焼結、および1600℃焼結では、YAG生成範囲のいずれの組成でも十分に焼結しており、それら焼結体の見掛け気孔率もほぼ0%であった。30Al−30ZrO−40Y組成からなる焼結体の見掛け気孔率も0%であった。これらの焼結体では、X線回折結果よりYAGの生成、およびAl、ZrOが確認された。従って、これらのYAGを生成する組成範囲の3成分系からなる焼結剤を窒化珪素粉末に添加して作製した成形体を1450℃以上の温度で焼結すれば、YAGを含む結晶層からなる粒界を伴って焼結できるものと考えられる。一方、アルミナ(Al)−イットリア(Y)からなる2成分系では、1600℃焼結でも焼結体の見掛け気孔率は約25%あり、焼結不十分でしかもYAGの生成は認められなかった。
First, the sintering characteristics of the sintering aid and the resulting mineral phase were studied. Alumina (Al 2 O 3 , purity 99.99%, average particle size 0.2 μm), yttria partially stabilized zirconia (ZrO 2 94.52%, Y 2 O 3 5.28%, average particle size 0.56 μm) , And yttria (Y 2 O 3 , special grade reagent, average particle size 0.4 μm) fine powders are blended in various compositions (mass%) and mixed well with a molding aid, and then press-molded at 100 MPa. A disk-shaped specimen having an outer diameter of about 20 mm and a thickness of about 5 mm was formed. Sintered from the results of apparent porosity and bulk density of a simple sintered body obtained by drying the molded body in a nitrogen gas atmosphere (0.1 MPa) at 1450 ° C. to 1650 ° C. for 2 hours. Sex was judged.
In sintering at 1450 ° C., any composition of the alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary system blended within the composition range for generating YAG is used for the sintered body. The apparent porosity was 30% or more, and the sintering was insufficient. However, in 1500 degreeC sintering, if 3 components were mix | blended in the composition range which produces | generates YAG, it was fully sintered with any composition. In particular, 60Al 2 O 3 -20ZrO 2 -20Y 2 O 3 composition among them, and 33.3Al 2 O 3 -33.3ZrO 2 -33.3Y 2 O 3 composition has significantly sintering thereof The apparent porosity of the sintered body composed of the composition was almost 0%. Furthermore, in 1550 degreeC sintering and 1600 degreeC sintering, it was fully sintered with any composition of the YAG production | generation range, and the apparent porosity of these sintered compacts was also about 0%. The apparent porosity of the sintered body composed of the 30Al 2 O 3 -30ZrO 2 -40Y 2 O 3 composition was also 0%. In these sintered bodies, generation of YAG and Al 2 O 3 and ZrO 2 were confirmed from the X-ray diffraction results. Therefore, if a molded body prepared by adding a sinter comprising a three-component system in the composition range that generates these YAGs to silicon nitride powder is sintered at a temperature of 1450 ° C. or more, it consists of a crystal layer containing YAG. It is thought that it can be sintered with grain boundaries. On the other hand, in the two-component system composed of alumina (Al 2 O 3 ) -yttria (Y 2 O 3 ), the sintered body has an apparent porosity of about 25% even at 1600 ° C. sintering, and the sintering is insufficient. Production was not observed.

次に、窒化珪素に上記の3成分系の焼結用助剤を添加して、窒化珪素の焼結におよぼす焼結助剤の効果を検討した。窒化珪素(Si)粉末(α化率97%、平均粒径0.6μm)に、アルミナ(Al)、イットリア部分安定化ジルコニア(ZrO)、およびイットリア(Y)を各種組成(mass%)で添加した。それらの代表的な組成を表1に示す。これらの組成混合物に結合剤、分散剤、可塑剤および消泡剤などを含む水系の成形助剤を外掛け46mass%添加して48h混練して泥漿を調整し、石膏型を用いて外径約30mm、厚み約5mmの円筒状に鋳込み成形した。成形体は乾燥後、多目的高温炉で1000℃までは真空中で、それ以上では窒素ガス雰囲気(0.1MPa)中で1450℃〜1650℃、2h焼結して窒化珪素焼結体を得た。得られた焼結体の見掛け気孔率とかさ密度の結果も表1中に併せて示す。
1450℃焼結では、アルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系のいずれの組成を添加しても、また添加量を増加(16%)しても焼結体の見掛け気孔率は高く、また、かさ密度は低く、焼結不十分である。しかし、参考例としてNo.1に示した焼結助剤無添加の窒化珪素単味の1600℃焼結での焼結体に比較すると焼結が進んでいる。

Figure 2005225744
1500℃以上の焼結では各実施例とも十分に焼結しており、特に60Al−20ZrO−20Y組成、および33.3Al−33.3ZrO−33.3Y組成からなる焼結助剤の添加が良好であった。特に1550℃以上の焼結では、焼結助剤8%(Al4.8%、ZrO1.6%、Y1.6%)添加でも十分に焼結しており、それらの相対密度は90%以上に達していた。これらの焼結体では、X線回折結果より、α−Si、β−Si、およびYAGが確認された。また、切断面の顕微鏡観察から、均一に分散したYAG層がSi粒子を膠結して著しく焼結が促進されたものと思われる。Next, the effect of the sintering aid on the sintering of silicon nitride was studied by adding the above three-component sintering aid to silicon nitride. Silicon nitride (Si 3 N 4 ) powder (α conversion 97%, average particle size 0.6 μm), alumina (Al 2 O 3 ), yttria partially stabilized zirconia (ZrO 2 ), and yttria (Y 2 O 3) ) Was added in various compositions (mass%). Their typical compositions are shown in Table 1. A water-based molding aid containing a binder, a dispersant, a plasticizer, an antifoaming agent, etc. is added to these composition mixtures at an outer coating of 46 mass%, and kneaded for 48 hours to adjust the slurry, and using a plaster mold to obtain an outer diameter of about It was cast into a cylindrical shape having a thickness of 30 mm and a thickness of about 5 mm. After the molded body was dried, it was sintered in a multipurpose high-temperature furnace up to 1000 ° C. in a vacuum, and beyond that, sintered at 1450 ° C. to 1650 ° C. for 2 hours in a nitrogen gas atmosphere (0.1 MPa) to obtain a silicon nitride sintered body. . The results of apparent porosity and bulk density of the obtained sintered body are also shown in Table 1.
In sintering at 1450 ° C., any composition of alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary system is added and the amount added is increased (16%). However, the apparent porosity of the sintered body is high, the bulk density is low, and the sintering is insufficient. However, no. Compared with the sintered body obtained by sintering 1600 ° C. of silicon nitride with no sintering aid added as shown in 1, the sintering proceeds.
Figure 2005225744
In 1500 ° C. or more sintering are sufficiently sintered each embodiment, particularly 60Al 2 O 3 -20ZrO 2 -20Y 2 O 3 composition, and 33.3Al 2 O 3 -33.3ZrO 2 -33.3Y The addition of the sintering aid composed of 2 O 3 composition was good. In particular, when sintering at 1550 ° C. or higher, sintering is sufficiently performed even with the addition of 8% sintering aid (Al 2 O 3 4.8%, ZrO 2 1.6%, Y 2 O 3 1.6%). Their relative density reached 90% or more. In these sintered bodies, α-Si 3 N 4 , β-Si 3 N 4 , and YAG were confirmed from the X-ray diffraction results. Also, from the microscopic observation of the cut surface, it is considered that the uniformly dispersed YAG layer agglomerated Si 3 N 4 particles to significantly promote the sintering.

焼結用助剤として、アルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系の酸化物に他の酸化物や金属などの第4成分を加えた混合物を検討した。3成分系助剤として有効であった60Al−20ZrO−20Y組成にTiO、またはMoを加えた混合物を、窒化珪素に8mass%添加・混練して鋳込み成形体を作製し、1550℃、2h焼結した。焼結体の物性値を表2に示す。

Figure 2005225744
第4成分を加えた焼結体ではアルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)の3成分系のみを添加した焼結体より焼結が進んでいないが、TiO添加は比較的良好であった。A mixture of alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary oxide and a fourth component such as another oxide or metal as a sintering aid It was investigated. A cast molded body is prepared by adding and kneading 8 mass% of silicon nitride with a mixture of 60Al 2 O 3 -20ZrO 2 -20Y 2 O 3 and TiO 2 or Mo, which was effective as a three-component auxiliary agent. And sintered at 1550 ° C. for 2 hours. Table 2 shows the physical property values of the sintered body.
Figure 2005225744
In the sintered body to which the fourth component is added, the sintering does not proceed more than the sintered body to which only the three-component system of alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) is added. TiO 2 addition was relatively good.

Claims (2)

窒化珪素にアルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系の酸化物からなる焼結助剤を5〜16mass%の範囲で添加して成形体を作製し、その成形体を窒素ガス雰囲気中で1450℃〜1650℃焼結して、粒界がYAG(YAl12)を含む結晶相からなる緻密な焼結体を製造することを特徴とする窒化珪素焼結体の製造方法。A sintering aid made of oxide of alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary system is added to silicon nitride in a range of 5 to 16 mass% to obtain a molded body. The compact is manufactured and sintered at 1450 ° C. to 1650 ° C. in a nitrogen gas atmosphere to produce a dense sintered body in which the grain boundary is composed of a crystal phase containing YAG (Y 3 Al 5 O 12 ). A method for producing a silicon nitride sintered body. 窒化珪素にアルミナ(Al)−ジルコニア(ZrO)−イットリア(Y)3成分系の酸化物に他の酸化物、非酸化物や金属などの第4成分を加えた焼結助剤を5〜16mass%の範囲で添加して成形体を作製し、その成形体を窒素ガス雰囲気中で1450℃〜1650℃焼結して、粒界がYAGを含む結晶相からなる緻密な焼結体を製造することを特徴とする窒化珪素焼結体の製造方法。A sintering process in which a fourth component such as another oxide, non-oxide or metal is added to silicon nitride and alumina (Al 2 O 3 ) -zirconia (ZrO 2 ) -yttria (Y 2 O 3 ) ternary oxide. A compact is produced by adding a binder in the range of 5 to 16 mass%, and the compact is sintered at 1450 ° C. to 1650 ° C. in a nitrogen gas atmosphere, and the grain boundaries are formed of a crystal phase containing YAG. A method for producing a silicon nitride sintered body, characterized by producing a sintered body.
JP2004068121A 2004-02-10 2004-02-10 Method for manufacturing silicon nitride sintered compact Pending JP2005225744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068121A JP2005225744A (en) 2004-02-10 2004-02-10 Method for manufacturing silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068121A JP2005225744A (en) 2004-02-10 2004-02-10 Method for manufacturing silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JP2005225744A true JP2005225744A (en) 2005-08-25

Family

ID=35000751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068121A Pending JP2005225744A (en) 2004-02-10 2004-02-10 Method for manufacturing silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JP2005225744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170021418A (en) 2015-08-17 2017-02-28 한국과학기술원 Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
CN114988882A (en) * 2022-07-11 2022-09-02 中材高新氮化物陶瓷有限公司 Silicon nitride high-temperature ceramic part with complex shape and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170021418A (en) 2015-08-17 2017-02-28 한국과학기술원 Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
CN114988882A (en) * 2022-07-11 2022-09-02 中材高新氮化物陶瓷有限公司 Silicon nitride high-temperature ceramic part with complex shape and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5060093B2 (en) Semiconductor device substrate
JP3100871B2 (en) Aluminum nitride sintered body
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
Biswas et al. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC
KR960016070B1 (en) Sintered aluminium nitride and its production
JP2006232659A (en) Silicon carbide sintered body and its manufacturing method
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
JP2005225744A (en) Method for manufacturing silicon nitride sintered compact
JP5673945B2 (en) Method for producing silicon nitride ceramics
JP2021172556A (en) Aluminum nitride sintered compact and manufacturing method thereof
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
Xu et al. α‐SiAlON Ceramics Obtained by Slip Casting and Pressureless Sintering
JP3121996B2 (en) Alumina sintered body
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP2001322865A (en) Alumina sintered body with high strength and high toughness and method for manufacturing the same
JP4702978B2 (en) Aluminum nitride sintered body
JP2508511B2 (en) Alumina composite
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JP3719762B2 (en) Refractories for firing ferrite
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same
WO2018038252A1 (en) Dititanium trioxide ceramic bulk body and production method therefor
JP3078462B2 (en) Alumina sintered body and method for producing the same
JP2015189625A (en) Porous ceramic-made member for heat treatment
JP2014051416A (en) Low-thermal-expansion ceramics, stage for exposure apparatus, and method of manufacturing low-thermal-expansion ceramics
JP2020117419A (en) Ceramic body and rolling element