JPS63278697A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding

Info

Publication number
JPS63278697A
JPS63278697A JP10047687A JP10047687A JPS63278697A JP S63278697 A JPS63278697 A JP S63278697A JP 10047687 A JP10047687 A JP 10047687A JP 10047687 A JP10047687 A JP 10047687A JP S63278697 A JPS63278697 A JP S63278697A
Authority
JP
Japan
Prior art keywords
metal
wire
flux
nitrogen
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10047687A
Other languages
Japanese (ja)
Other versions
JP2528311B2 (en
Inventor
Tomoyuki Suzuki
友幸 鈴木
Tsukasa Yoshimura
司 吉村
Yasushi Takayama
康 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62100476A priority Critical patent/JP2528311B2/en
Publication of JPS63278697A publication Critical patent/JPS63278697A/en
Application granted granted Critical
Publication of JP2528311B2 publication Critical patent/JP2528311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To improve the quality by filling up the flux adding one or two kinds or more of a silicate mineral and silicon chloride and Si, Mn, etc. to the specified amt. of a metal fluoride and carbonate in the steel made sheath contg. a nitrogen in <=specified amt. CONSTITUTION:The flux contg. 1-12% metal fluoride, 0.1-1.5% metal carbonate, 0.2-3% one or >=two kinds of a silicate mineral and silicon chloride, 0.2-2% Si, 1-2.5% Mn, 0.05-0.3% Ti and 0.1-1% Mg is filled up at 10-30% of the total wire weight into the steel made sheath contg. a nitrogen in <=30ppm. With this composition, the quality can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温靭性に優れた性能を有するガスシールド
溶接用フラックス入りワイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flux-cored wire for gas shield welding that has excellent low-temperature toughness.

〔従来の技術〕[Conventional technology]

従来から使用されているガスシールド溶接用フラックス
入りワイヤ(以下ワイヤと称する]は、ソリッドワイヤ
に比較して特にアークの安定性、スパッタが少なく溶接
作業性やビート外観に優れたチタニャ系が主に使用され
ている。
Flux-cored wires (hereinafter referred to as wires) for gas shield welding that have been conventionally used are mainly titania-based wires, which have excellent arc stability, less spatter, and excellent welding workability and beat appearance compared to solid wires. It is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、エネルギー資源を求める極地化に供い、鋼材の高
級化、高靭化が求められている。しかし従来のチタニャ
系ワイヤは、溶接金属中の酸素量が500 ppm以上
と高い念め溶接金属の性能が劣るという欠点を有してい
る。
In recent years, with the increasing demand for energy resources in polar regions, there has been a demand for higher grade and tougher steel materials. However, conventional titania-based wires have the disadvantage that the performance of weld metals with a high oxygen content of 500 ppm or more is poor.

゛これらの欠点を解消するために、例えは特公昭46−
24124号公報、特開昭52−125437号公報等
に示されるように、低温靭性の向上を討つ次ワイヤがあ
る。そこに示されたワイヤは、金属弗化物を主成分に金
属炭酸塩やスラグ生成剤、強脱酸剤の調整により低温靭
性の向上が計られているが、衝撃値の安定性や溶接作業
性の点で必ずしも満足できるものではない。ま念特開昭
58−119490号公報ではチタニャ系フラックスに
おいて鋼製外皮と鉄粉の窒素量を規制することにより低
温靭性の改善が計られているが、チタニャ系の最大の欠
点は脱酸性元素を多く添加しても溶接金属中の酸素量を
4 o o ppm以下にすることは不可能であること
である。
゛In order to eliminate these shortcomings, for example,
As shown in Japanese Patent Laid-Open No. 24124, Japanese Patent Application Laid-open No. 125437/1983, there are wires that aim to improve low-temperature toughness. The wire shown there has improved low-temperature toughness by adjusting the metal fluoride, metal carbonate, slag forming agent, and strong deoxidizing agent, but the stability of the impact value and welding workability have been improved. It is not always satisfactory in this respect. Manen JP-A No. 58-119490 attempts to improve the low-temperature toughness of titania-based flux by regulating the amount of nitrogen in the steel shell and iron powder, but the biggest drawback of titania-based flux is the deoxidizing element. It is impossible to reduce the amount of oxygen in the weld metal to 4 o ppm or less even if a large amount of is added.

本発明は、上記従来ワイヤの欠点を解消し適用分野を拡
大することを目的としたもので、低温靭性をより低温域
まで安定して得ることのできるフラックス入りワイヤを
提供するっ 〔問題点を解決するための手段〕 本発明は、 窒素含有量が30 ppm以下である鋼製外皮に、ワイ
ヤ全重量に対して 金属弗化物:1〜12 wt%、 金属炭酸項二〇、1〜1.5 wt%、珪酸塩鉱物、珪
酸塩化合物の 1種″!たけ2種以上二0.2〜3wt%、Si:0.
2〜2wt%、 Mn  : 1〜2.5 wt 9k、Ti:0.05
〜0.3 wt%、 My:o、t〜1wtチ を必須成分として含有するフラックスをワイヤ全重量に
対して10〜30 wt%となる様に充填し、なおかつ
フラックス中に含有する金属粉中の総窒素量がワイヤ全
重量に対して25 ppm以下であることを特徴とする
低温靭性に優れたガスシールド溶接用フラックス入りワ
イヤである。
The present invention aims to eliminate the drawbacks of the conventional wires and expand the field of application, and provides a flux-cored wire that can stably obtain low-temperature toughness down to a lower temperature range. Means for Solving the Problem] The present invention provides a steel outer shell having a nitrogen content of 30 ppm or less, a metal fluoride of 1 to 12 wt% based on the total weight of the wire, and a metal carbonate of 20, 1 to 1. 5 wt%, 1 type of silicate mineral, silicate compound''! 2 or more types 20.2 to 3 wt%, Si: 0.
2-2 wt%, Mn: 1-2.5 wt 9k, Ti: 0.05
~0.3 wt%, My:o, t~1 wt% of the flux is filled as an essential component to the total weight of the wire, and the metal powder contained in the flux is This flux-cored wire for gas shield welding has excellent low-temperature toughness, and is characterized in that the total amount of nitrogen is 25 ppm or less based on the total weight of the wire.

以下に本発明に係るワイヤを上記構成にした理由を詳細
に説明する。
The reason why the wire according to the present invention has the above structure will be explained in detail below.

〔作 用〕[For production]

まず、本発明で鋼製外皮中の窒素を309pffl以下
、さらに金属粉中の総窒素含有量f 251)I)m以
下に制限したのは、以下に示すように浴接金属中の窒素
が55 ppmを越えると著しく靭性全劣化させること
か判つ念からである。
First, in the present invention, the nitrogen content in the steel shell is limited to 309 pffl or less, and the total nitrogen content in the metal powder is limited to 55 pffl or less, as shown below. This is to be sure that if the content exceeds ppm, the toughness will be completely deteriorated.

ワイヤ中の窒素はそのまま溶接金属へ移行する六め、溶
接金属の窒素を下げるためにはワイヤの窒素を下げなけ
ればならない、ワイヤの窒素の大部分は鋼製外皮とフラ
ックス成分の金属粉に不可避的に含有されているので、
この両方を下げる必要がらる。従って、後述のように溶
接能率とか合金添加の観点から添加されることのある鉄
粉、およびSi、Mn、Ti、MP以外の金属粉は15
チを限度とし、全金属粉中の総窒素含有量を後述する外
皮からの窒素tを考慮して2599m以下に抑える。
Sixth, the nitrogen in the wire transfers directly to the weld metal.In order to lower the nitrogen in the weld metal, the nitrogen in the wire must be lowered.Most of the nitrogen in the wire is unavoidable in the steel sheath and the metal powder in the flux component. Because it contains
Both of these need to be lowered. Therefore, as described below, iron powder, which is sometimes added from the viewpoint of welding efficiency or alloy addition, and metal powder other than Si, Mn, Ti, and MP are
The total nitrogen content in all metal powders is kept to 2599 m or less, taking into account the nitrogen t from the outer skin, which will be described later.

本発明では後述する成分を必須とするフラックスを窒素
含有量が30 ppm以下の低炭素鋼或いは低合金鋼と
いつ次鋼製外皮に充填するが、外皮の窒素を30 pp
m以下とした理由は第1図の実験結果による。
In the present invention, a flux having the essential components described below is filled into a skin made of low carbon steel or low alloy steel with a nitrogen content of 30 ppm or less, and the nitrogen content of the skin is 30 ppm or less.
The reason for setting it below m is based on the experimental results shown in FIG.

即ち、窒素含有量が17 ppm 、 30 ppm 
、 42ppm、 559pm、 80 ppmである
軟鋼外皮材を用いて、ワイヤ全重量に対しCaF23.
0 (Isカリ長石1.5%、CaCO30,2%、F
e−8i (40% S目1.OS。
That is, the nitrogen content is 17 ppm, 30 ppm
, 42 ppm, 559 pm, and 80 ppm CaF23.
0 (Is Potassium feldspar 1.5%, CaCO30.2%, F
e-8i (40% Sth 1.OS.

Fe −Mn (75%Mn33.0%、Fe−TL(
40チTi10.2%。
Fe-Mn (75%Mn33.0%, Fe-TL(
40chi Ti 10.2%.

MP O,6%、鉄粉5.5チからなるフラックスを含
有したフラックス入りワイヤー、2Wφを試作して鋼製
外皮の窒素含有量と溶接金属の靭性の関係を調査した。
A flux-cored wire, 2Wφ, containing a flux consisting of 6% MPO and 5.5% iron powder was prototyped, and the relationship between the nitrogen content of the steel sheath and the toughness of the weld metal was investigated.

試験板はに32蔵の25m厚鋼板を50゜V開先に組立
て、外接電流270A、アーク電圧30v、溶接速度2
5儒/分、シールドガス(80チーAr−20%CO2
) 2517分の条件で外接し、−50℃に於ける靭性
と外接金属中の窒素量との関係を調べた。第1図の実験
結果から明らかなように1鋼製外皮の窒素量が増加する
と溶接金属中の窒素量も比例的に増大する。実験は自動
外接で風の全くない実験室内で行なった光め、外接によ
る空気の巻き込みは全くなかつfc、この実験結果から
明らかな様に、靭性は溶接金属中の窒素含有量が55 
ppm以上で急激に劣化する。その時の鋼製外皮の窒素
含有量は60 ppmであるが、靭性・を確保するため
には金属粉中の窒素による増加分を考慮し、外皮中の窒
素を30 ppm以下に規制しなければならない。
The test plate was a 25m thick steel plate of 32 sizes assembled with a 50°V groove, a circumscribed current of 270A, an arc voltage of 30V, and a welding speed of 2.
5/min, shielding gas (80 Chi Ar-20% CO2
) The relationship between the toughness at -50°C and the amount of nitrogen in the circumscribed metal was investigated under the conditions of 2517 minutes. As is clear from the experimental results shown in FIG. 1, as the amount of nitrogen in the steel jacket increases, the amount of nitrogen in the weld metal also increases proportionally. The experiment was conducted in a laboratory with automatic circumscription and no wind, and there was no air entrainment due to circumscription.
It deteriorates rapidly above ppm. The nitrogen content of the steel shell at that time is 60 ppm, but in order to ensure toughness, the nitrogen content in the steel shell must be regulated to 30 ppm or less, taking into account the increase in nitrogen in the metal powder. .

本発明者らは溶接金属中の酸素についても実験を行なっ
たうその結果を第2図に示す。
The present inventors also conducted an experiment regarding oxygen in weld metal, and the results are shown in FIG.

実験には前記実験に使用し光窒素量が30 pprn価 である軟硬外皮を用いて、ワイヤ全重量に対し、CaF
23.0 To 、カリ長石1.5 % 、 CaCO
30,2% 。
In the experiment, a soft and hard outer skin with a photonitrogen content of 30 pprn used in the above experiment was used, and CaF was added to the total weight of the wire.
23.0 To, Potassium feldspar 1.5%, CaCO
30.2%.

Fe−8i (40%Si ) 1.0%、Fe −M
n (75%Mn)3.0%、Fe−Ti(40%Ti
 I 0.2 % 、 Mgを0 、0.2.0.4.
0.8.1.0チにし、残部鉄粉を添加し、充填率が1
5%になるよう試作したワイヤ1.2wφを用いて前記
と同一の溶接条件で溶接し、浴接金属中の酸素量と靭性
の関係を調べた。第2図の実験結果から明らかなように
、Mgの添加量が増加するに従って溶接金属中の酸素量
は減少する。低温靭性は一旦向上するが、その後低下す
る。この実験結果から明らかの様に、靭性は溶接金属中
の酸素量が350 ppm以下にすることで大幅に向上
する。
Fe-8i (40%Si) 1.0%, Fe-M
n (75%Mn) 3.0%, Fe-Ti (40%Ti
I 0.2%, Mg 0, 0.2.0.4.
0.8.1.0 inch, add the remaining iron powder, and the filling rate is 1.
Welding was carried out under the same welding conditions as above using a wire of 1.2 wφ which was prototyped to have a concentration of 5%, and the relationship between the amount of oxygen in the bath welded metal and the toughness was investigated. As is clear from the experimental results shown in FIG. 2, as the amount of Mg added increases, the amount of oxygen in the weld metal decreases. Low-temperature toughness improves once, but then decreases. As is clear from this experimental result, toughness is significantly improved by reducing the amount of oxygen in the weld metal to 350 ppm or less.

従って、各接金属中のガス吸収を抑えることにより低温
靭性をより低温域まで向上できることが明らかとなった
Therefore, it has become clear that low-temperature toughness can be improved to a lower temperature range by suppressing gas absorption in each contact metal.

本発明において窒素量を限定するのは上記の知見に基づ
くが、その他に充填フラックス成分を限定した根拠は以
下の通りである。
In the present invention, the amount of nitrogen is limited based on the above findings, and the reasons for limiting the filling flux components are as follows.

金属弗化物は、スラグ剤として溶接金属を被包し、ビー
ド形状を良好にすると共に、溶融金属内の不純物を浮上
させて溶接金属を清浄化する。これにより靭性を向上さ
せる。金属弗化物としてはCaF2 、 MgF2 、
 BaF2 、 MnF2等が有効であるが、アルカリ
金属弗化物を用いるとアークの安定性を向上させる。1
wt%未満ではこれらの特徴が十分ン発揮されず、一方
1+、2wt%を超えるとアークが不安定となる他、ス
ラグ生成量が過剰となって浴接作業性を劣化させる。従
って金属弗化物は1〜12wt%の範囲とする。なお、
アルカリ金属弗化物としては、K2SiF6. NaF
 、 Na2SiF6 等が有効である。シールドガス
としてAr等を混合させて使用する場合は安価なCaF
2のみでもスパッタの発生を減少させることができるの
で、金属弗化物としてCaF2のみを用いることも出来
る。しかし、シールドガスとしてC02ガスを用いる場
合はCaF2のみではスパッタの発生が多くなるので、
アルカリ金属弗化物との併用が好ましい。
The metal fluoride encapsulates the weld metal as a slag agent, improves the bead shape, and cleans the weld metal by floating impurities in the molten metal. This improves toughness. Metal fluorides include CaF2, MgF2,
BaF2, MnF2, etc. are effective, but the use of alkali metal fluorides improves arc stability. 1
If it is less than 1% by weight, these characteristics will not be fully exhibited, while if it exceeds 1+ or 2% by weight, the arc will become unstable and the amount of slag produced will be excessive, deteriorating the bath welding workability. Therefore, the metal fluoride should be in the range of 1 to 12 wt%. In addition,
As the alkali metal fluoride, K2SiF6. NaF
, Na2SiF6, etc. are effective. When using a mixture of Ar, etc. as a shielding gas, use inexpensive CaF.
Since CaF2 alone can reduce the occurrence of sputtering, it is also possible to use only CaF2 as the metal fluoride. However, when using CO2 gas as a shielding gas, sputtering will increase if only CaF2 is used.
Combination use with alkali metal fluorides is preferred.

金属炭酸塩はスラグの粘性を調整する念めに含有させる
もので、0.1Wt1未満ではその効果がなく 、1.
5 wt %を超えるとスラグの粘性が過剰となるとと
もに、アーク雰囲気中で分解されたC02ガス中のCが
溶接金属中に歩留って靭性を劣化させるので、適正範囲
は0.1〜1.5 wt %である。々お、金属炭酸塩
としてはCsCO5、Li 2CO3、K2CO3。
The metal carbonate is added to adjust the viscosity of the slag, and if it is less than 0.1 Wt1, it has no effect.1.
If it exceeds 5 wt%, the viscosity of the slag will become excessive, and C in the CO2 gas decomposed in the arc atmosphere will remain in the weld metal and deteriorate the toughness, so the appropriate range is 0.1 to 1. .5 wt%. Examples of metal carbonates include CsCO5, Li2CO3, and K2CO3.

BaCO3、MtCO5、MnCO3、SrCO3等が
有効である。
BaCO3, MtCO5, MnCO3, SrCO3, etc. are effective.

珪酸塩鉱物または化合物はスラグの粘性を調整すると共
にアーク安定剤としての効果があり、0.2 Wt 1
未満ではこれらの効果が得られず、3w【%を超えると
スラグ量が多くなり過ぎ、浴接作業性を劣化させると共
に、5i02分が強脱酸剤により脱酸されてSiとなっ
てm接金風に歩留り、靭性を低下させる。従って0.2
〜3wt%の範囲とするう珪酸塩鉱物は珪砂、カリ長石
、ソーダ長石、珪灰石等の珪酸塩を含むものでおればよ
い。また化合物とは人造珪灰石等の人為的に造られたも
のをさす。
Silicate minerals or compounds have the effect of adjusting the viscosity of the slag and acting as an arc stabilizer, 0.2 Wt 1
If it is less than 3w%, these effects cannot be obtained, and if it exceeds 3w%, the amount of slag becomes too large, deteriorating the bath welding workability, and 5i02min is deoxidized by a strong deoxidizing agent and becomes Si, resulting in m contact. Gold wind yield and reduce toughness. Therefore 0.2
The borosilicate mineral in the range of ~3 wt% may contain silicates such as silica sand, potassium feldspar, soda feldspar, and wollastonite. Compounds refer to artificially created materials such as artificial wollastonite.

SIは有効な脱酸剤であるが、o、2wt5未満では脱
酸不足となり、2wt%を超えると溶接金属中のSiが
過剰となって靭性を劣化させる。従ってSiは0.2〜
2wt%とする。なおSiは単体あるいはFe −8i
 、 Fe −8i−Mn等の鉄合金で添加してもよい
SI is an effective deoxidizing agent, but if it is less than 2 wt%, deoxidation is insufficient, and if it exceeds 2 wt%, Si in the weld metal becomes excessive and deteriorates toughness. Therefore, Si is 0.2~
It is set to 2wt%. Note that Si is simple or Fe-8i
, Fe-8i-Mn, or other iron alloys may be added.

:b5Mnの添加量を1〜2.5wlチにし次理由は、
浴接継手に適した強度を与えるためである。1wt%未
満では必要な強度が得られない。一方、2.5wtcI
bを超えると強度は向上するが、逆に靭性を劣化させる
。従って、Mnの添加量は1〜2.5wt%とする。な
お、Mnは単体で用いられる他、Fe −Mn等の鉄合
金の形態でも使用できる。
:b5Mn addition amount is 1~2.5wl and the following reason is as follows.
This is to provide suitable strength to the bath welding joint. If it is less than 1 wt%, the required strength cannot be obtained. On the other hand, 2.5wtcI
Exceeding b improves strength, but conversely deteriorates toughness. Therefore, the amount of Mn added is 1 to 2.5 wt%. In addition to being used alone, Mn can also be used in the form of an iron alloy such as Fe--Mn.

Tiは浴接金属組織を細粒化して低温靭性の向上に有効
であるが、0.05wt% 未満ではその効果が得られ
ない、一方、0.3wt%を超えると逆に低温靭性を悪
化させるので、TiFio、05〜0.3wtチとする
。なおTiは単体もしくはFe−Tl等の鉄合金の形態
でも使用できる。′=!た、TiO2の如き酸化物の形
態で添加し、強脱酸剤のMWによってTiを還元させて
隣接金属中へ留まらせることも可能である。
Ti is effective in improving low-temperature toughness by refining the bath-welded metal structure, but if it is less than 0.05 wt%, this effect cannot be obtained, whereas if it exceeds 0.3 wt%, it deteriorates the low-temperature toughness. Therefore, TiFio is set to 05 to 0.3wt. Note that Ti can be used alone or in the form of an iron alloy such as Fe-Tl. ′=! Alternatively, it is also possible to add Ti in the form of an oxide such as TiO2 and reduce Ti by the MW of a strong deoxidizing agent so that it remains in the adjacent metal.

MWけ強力な脱酸剤である。特に溶接金属中の酸素量を
低減するのく最良である。添加量が0.1wtチ未満で
はその効果が十分得られず、一方1 wt%を超えると
溶接作業性が悪化してスパッタ発生量が多くなると共に
低温靭性も劣化させる。従ってMgの適正範囲は0.1
〜1wtチとする。 Mgは単体でもよいし、Ni−M
g、Ca−MW、Fe−MW、Fe−8i −Mg等の
Mg合金の形態で添加してもよい。尚、Mgと同じ強脱
酸剤であるklはMWと共存させると溶接金属へAtヲ
歩留まらせて靭性を劣化させる。
MW is a strong deoxidizing agent. In particular, it is best for reducing the amount of oxygen in weld metal. If the amount added is less than 0.1 wt%, the effect will not be sufficiently obtained, while if it exceeds 1 wt%, welding workability will deteriorate, the amount of spatter will increase, and low temperature toughness will also deteriorate. Therefore, the appropriate range for Mg is 0.1
~1wt. Mg may be used alone, or Ni-M
It may also be added in the form of Mg alloys such as Mg, Ca-MW, Fe-MW, and Fe-8i-Mg. Incidentally, when kl, which is a strong deoxidizing agent like Mg, coexists with MW, it causes a yield of At in the weld metal and deteriorates the toughness.

この他に必要に応じてSi、Mn、Ti、MP以外の金
属粉、鉄粉の1種または2s以上を0.5〜15wt%
含有してもよい。鉄粉は溶着量を多くし、高能率化が計
られ、0.5wt%未満ではこれらの効果が得られない
。ま次、60〜80キロ級の強度を確保するためにNi
、Cr、Mo、V、B等を添加して必要な強度を得るこ
ともできる。しかし、15wt%e超えると2.OWφ
以下の細径ワイヤ上伸る上で伸線性が悪く製造が困難と
なる。従って、含有範囲は0.5〜15wtチが望まし
い。
In addition, 0.5 to 15 wt% of one type or 2s or more of metal powder other than Si, Mn, Ti, and MP, or iron powder as necessary.
May be contained. Iron powder is intended to increase the amount of welding and improve efficiency, but if it is less than 0.5 wt%, these effects cannot be obtained. Next, to ensure the strength of 60 to 80 kg, Ni
, Cr, Mo, V, B, etc. can be added to obtain the necessary strength. However, if it exceeds 15 wt%e, 2. OWφ
The following small diameter wires have poor wire drawability and are difficult to manufacture. Therefore, the content range is preferably 0.5 to 15 wt.

本発明ではフラックスの充填率をワイヤ重量に対して1
0〜30チの範囲に設定した10チ未満では十分な量の
スラグ形成剤を含ませることができなくなり、溶接作業
性を満足させることができない。一方、30チを超える
と逆にスラグ量が多くなり過ぎて、溶接作業性を劣化さ
せる。
In the present invention, the flux filling rate is 1 to the wire weight.
If it is less than 10 inches, which is set in the range of 0 to 30 inches, a sufficient amount of slag forming agent cannot be contained, and welding workability cannot be satisfied. On the other hand, if it exceeds 30 inches, the amount of slag becomes too large, which deteriorates welding workability.

尚ワイヤの断面形状には何の制限もなく、2ffφ以下
の細径の場合は比較的単純な円筒状のものが、Lまた2
、4〜3.2霞φ程度の大径ワイヤの場合は鞘材を内部
へ複雑に折り込んだ構造のものが一般的である。また、
シームレスワイヤにおいては表面にCu等のメッキ処理
を施すことも有効である。
There are no restrictions on the cross-sectional shape of the wire, and in the case of a wire with a small diameter of 2ffφ or less, a relatively simple cylindrical wire may be used.
, 4 to 3.2 diameter wires generally have a structure in which the sheath material is folded inside in a complicated manner. Also,
It is also effective to plate the surface of the seamless wire with Cu or the like.

更に浴接対象鋼種は軟鋼及び高張力鋼が一般的であるが
、用途に応じて低合金鋼や高合金鋼等の溶接に適用して
いくことも可能である。
Further, although mild steel and high-strength steel are generally used as the steel types for bath welding, it is also possible to weld low-alloy steel, high-alloy steel, etc. depending on the application.

〔実施例〕〔Example〕

第1表に試作し穴ワイヤの構成を、第2表に試験結果を
示す、&1〜6は比較例で、&7〜16が本発明の実施
例である。
Table 1 shows the structure of the prototype hole wire, and Table 2 shows the test results. &1 to 6 are comparative examples, and &7 to 16 are examples of the present invention.

いずれも軟鋼外皮を用いて1.2Wφワイヤに仕上げ、
低温用鋼板J I S  5LA33B 25wtを5
0’のV開先に組立て、27OAで5層7パス溶接して
溶接金属の成分と機械的性質を調査した。尚、シールド
ガスは80%Ar  20 % CO2の混合ガスを用
いた。
Both are finished with a 1.2Wφ wire using a mild steel outer sheath.
Low temperature steel plate JIS 5LA33B 25wt 5
It was assembled in a V groove of 0' and welded in 5 layers and 7 passes at 27OA, and the composition and mechanical properties of the weld metal were investigated. Note that a mixed gas of 80% Ar and 20% CO2 was used as the shielding gas.

第2表の試験結果から明らかな様に、外皮と金属粉に含
有する窒素が多すぎる屋1〜A5のワイヤは、溶接金属
中の酸素量が350 ppm以下であるにもかかわらず
遷移温度は一25℃程度で、靭性の向上は認められなか
った。また、A6は窒素は35 ppmと低いが本発明
の必須成分である強脱酸剤のMgが入っていないために
溶接金属中の酸素が420 ppmと高くなり、靭性の
向上は認められなかった。これに対し、扁7〜416は
いずれも遷移温度が全て一50℃以下であることから低
温靭性も良好なことが確認できた。
As is clear from the test results in Table 2, the transition temperature of the wires 1 to A5, which contained too much nitrogen in the sheath and metal powder, was low even though the amount of oxygen in the weld metal was 350 ppm or less. No improvement in toughness was observed at about -25°C. In addition, A6 has a low nitrogen content of 35 ppm, but because it does not contain Mg, a strong deoxidizing agent that is an essential component of the present invention, the oxygen content in the weld metal was high at 420 ppm, and no improvement in toughness was observed. . On the other hand, it was confirmed that flats 7 to 416 also had good low-temperature toughness because the transition temperatures were all below -50°C.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されており、特に醇接金属中の
ガス吸収を抑えることによって良好な低温靭性を得るこ
とができ、溶材の高級化、高靭化を達成できるガスシー
ルド溶接用フラックス入りワイヤを提供し得ることにな
つ穴。
The present invention is constructed as described above, and is a flux for gas shield welding that can obtain good low-temperature toughness by suppressing gas absorption in the welding metal, and can achieve higher quality and higher toughness of the weld metal. Natsu hole to provide the wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は軟鋼外皮中の窒素量と浴接金属の窒素及び靭性
の関係を表わす図、 第2図はMg添加量と溶接金属中の酸素及び靭性の関係
を表わす図である。 代理人 弁理士  秋  沢  政  光信1名 才1図 ?
Figure 1 is a diagram showing the relationship between the amount of nitrogen in the mild steel outer skin and the nitrogen and toughness of the bath weld metal, and Figure 2 is a diagram showing the relationship between the amount of Mg added and oxygen in the weld metal and toughness. Agent Patent attorney Masaaki Aki Sawa Mitsunobu 1 talent 1 figure?

Claims (1)

【特許請求の範囲】[Claims] (1)窒素含有量が30ppm以下である鋼製外皮に、
ワイヤ全重量に対して 金属弗化物:1〜12wt%、 金属炭酸塩:0.1〜1.5wt%、 珪酸塩鉱物、珪酸塩化合物の 1種または2種以上:0.2〜3wt%、 Si:0.2〜2wt%、 Mn:1〜2.5wt%、 Ti:0.05〜0.3wt%、 Mg:0.1〜1wt% を必須成分として含有するフラックスをワイヤ全重量に
対して10〜30wt%となる様に充填し、なおかつフ
ラックス中に含有する金属粉中の総窒素量がワイヤ全重
量に対して25ppm以下であることを特徴とする低温
靭性に優れたガスシールド溶接用フラツクス入りワイヤ
(1) A steel shell with a nitrogen content of 30 ppm or less,
Metal fluoride: 1 to 12 wt%, Metal carbonate: 0.1 to 1.5 wt%, One or more types of silicate minerals and silicate compounds: 0.2 to 3 wt%, based on the total weight of the wire. A flux containing as essential components Si: 0.2 to 2 wt%, Mn: 1 to 2.5 wt%, Ti: 0.05 to 0.3 wt%, and Mg: 0.1 to 1 wt% based on the total weight of the wire. For gas shield welding with excellent low-temperature toughness, characterized in that the total amount of nitrogen in the metal powder contained in the flux is 25 ppm or less based on the total weight of the wire. Flux-cored wire.
JP62100476A 1987-04-23 1987-04-23 Wire with flux for gas shield welding Expired - Lifetime JP2528311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100476A JP2528311B2 (en) 1987-04-23 1987-04-23 Wire with flux for gas shield welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100476A JP2528311B2 (en) 1987-04-23 1987-04-23 Wire with flux for gas shield welding

Publications (2)

Publication Number Publication Date
JPS63278697A true JPS63278697A (en) 1988-11-16
JP2528311B2 JP2528311B2 (en) 1996-08-28

Family

ID=14274969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100476A Expired - Lifetime JP2528311B2 (en) 1987-04-23 1987-04-23 Wire with flux for gas shield welding

Country Status (1)

Country Link
JP (1) JP2528311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764221A1 (en) * 1997-06-09 1998-12-11 Soudure Autogene Francaise WIRE LOW NITROGEN CONTENT
JP2016209931A (en) * 2015-05-01 2016-12-15 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. Improved welding method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226497A (en) * 1975-08-25 1977-02-28 Nitto Electric Ind Co Ltd Resistor or resistor network manufacturing process
JPS5577992A (en) * 1978-12-06 1980-06-12 Nippon Steel Corp Electrogas arc welding method
JPS5680392A (en) * 1979-12-06 1981-07-01 Kobe Steel Ltd Composite wire for electrogas arc welding and vertical welding method using said wire
JPS577396A (en) * 1980-06-12 1982-01-14 Nippon Steel Corp Compound wire for gas sealed arc welding
JPS58119490A (en) * 1982-01-09 1983-07-15 Nippon Steel Corp Composite wire for gas shielded welding
JPS5913955A (en) * 1982-07-15 1984-01-24 Nippon Koutai Kenkyusho:Kk Method for measuring lectin juvenilization
JPS59119490A (en) * 1982-12-27 1984-07-10 Hitachi Ltd Coordinate detecting part of coordinate input device
JPS59189097A (en) * 1983-04-11 1984-10-26 Nippon Steel Corp Composite wire for electrogas arc welding
JPS6045994A (en) * 1983-08-22 1985-03-12 Tokyo Electric Co Ltd Information storing method by prom
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226497A (en) * 1975-08-25 1977-02-28 Nitto Electric Ind Co Ltd Resistor or resistor network manufacturing process
JPS5577992A (en) * 1978-12-06 1980-06-12 Nippon Steel Corp Electrogas arc welding method
JPS5680392A (en) * 1979-12-06 1981-07-01 Kobe Steel Ltd Composite wire for electrogas arc welding and vertical welding method using said wire
JPS577396A (en) * 1980-06-12 1982-01-14 Nippon Steel Corp Compound wire for gas sealed arc welding
JPS58119490A (en) * 1982-01-09 1983-07-15 Nippon Steel Corp Composite wire for gas shielded welding
JPS5913955A (en) * 1982-07-15 1984-01-24 Nippon Koutai Kenkyusho:Kk Method for measuring lectin juvenilization
JPS59119490A (en) * 1982-12-27 1984-07-10 Hitachi Ltd Coordinate detecting part of coordinate input device
JPS59189097A (en) * 1983-04-11 1984-10-26 Nippon Steel Corp Composite wire for electrogas arc welding
JPS6045994A (en) * 1983-08-22 1985-03-12 Tokyo Electric Co Ltd Information storing method by prom
JPS6233094A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764221A1 (en) * 1997-06-09 1998-12-11 Soudure Autogene Francaise WIRE LOW NITROGEN CONTENT
WO1998056532A1 (en) * 1997-06-09 1998-12-17 La Soudure Autogene Francaise Core welding wire with low nitrogen content
US6124569A (en) * 1997-06-09 2000-09-26 La Soudure Autogene Francaise Flux-cored welding wire with a low nitrogen content
US6300596B1 (en) 1997-06-09 2001-10-09 La Soudure Autogene Francaise Flux-cored wire for gas-flow-shielded welding
JP2016209931A (en) * 2015-05-01 2016-12-15 リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. Improved welding method

Also Published As

Publication number Publication date
JP2528311B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
JP4834191B2 (en) Flux-cored wire for gas shielded arc welding that can be welded in all positions
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
JP6377591B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP2008221292A (en) Flux cored wire for welding duplex stainless steel
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
CN104148824A (en) High-tenacity flux-cored wire for electro-gas welding
CN102848103A (en) Ultralow-hydrogen high-toughness submerged arc welding flux core and submerged arc flux-cored wire
JP5726708B2 (en) Submerged arc welding method for low temperature steel
JPH09277087A (en) Flux cored wire for arc welding
KR100265097B1 (en) Flux-cored wire for arc welding
JP6322096B2 (en) Flux-cored wire for gas shielded arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
JPS63278697A (en) Flux cored wire for gas shielded arc welding
JPH04224094A (en) Flux cored wire for gas shielded arc welding
JPH03294093A (en) Flux cored wire electrode for gas shielded arc welding
JPS62166098A (en) Flux-cored wire for gas shielded arc welding
JPH09262693A (en) Flux cored wire for arc welding
JPH01271098A (en) Flux cored wire for gas shielded arc welding
JP3203527B2 (en) Flux-cored wire for gas shielded arc welding
JPH01150497A (en) Low hydrogen covered electrode for fillet welding
CN111644779B (en) Argon-rich shielded flux-cored wire suitable for backing welding of ceramic liner and application
JP2631756B2 (en) Hydrogen coated arc welding rod
CN111886110B (en) Flux-cored wire
JPH07171695A (en) Method for submerged arc welding of 960mpa high tensile steel