JPS63276821A - Manufacture of compound superconductive wire - Google Patents
Manufacture of compound superconductive wireInfo
- Publication number
- JPS63276821A JPS63276821A JP62109869A JP10986987A JPS63276821A JP S63276821 A JPS63276821 A JP S63276821A JP 62109869 A JP62109869 A JP 62109869A JP 10986987 A JP10986987 A JP 10986987A JP S63276821 A JPS63276821 A JP S63276821A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- opening
- strip
- superconductor
- metal strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 13
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052802 copper Inorganic materials 0.000 claims abstract 2
- 239000010949 copper Substances 0.000 claims abstract 2
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000007750 plasma spraying Methods 0.000 claims description 4
- 238000007751 thermal spraying Methods 0.000 claims description 4
- 239000002887 superconductor Substances 0.000 abstract description 20
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000003466 welding Methods 0.000 abstract 1
- 238000003754 machining Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は化合物超電導線の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a compound superconducting wire.
(従来の技術)
近年、 Ba−La−Cu−0系の層状ペロブスカイト
型酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行なわれ
ている(Z、Phys、B Condensed Ma
tter 64゜189−193(1986)、その中
でもY−Ba−Cu−0系に代表される多層ペロブスカ
イト型(AB* c s o を−型)の酸化物超電導
体は、Tcが90に以上と液体窒素以上の高い温度を示
すため非常に有望な材料である(Phys、Rev、L
stt、vol、5B No、9.p90&−910)
。(Prior Art) In recent years, since it was announced that layered perovskite oxides based on Ba-La-Cu-0 may have a high critical temperature, research on oxide superconductors has been conducted in various places. There is (Z, Phys, B Condensed Ma
tter 64゜189-193 (1986), among which multilayer perovskite type oxide superconductors represented by Y-Ba-Cu-0 type (AB* c s o - type) have a Tc of 90 or more. It is a very promising material because it shows temperatures higher than liquid nitrogen (Phys, Rev, L
stt, vol, 5B No, 9. p90&-910)
.
しかしながらこれらの酸化物超電導体は従来、焼結によ
るベレット状のものしかできなかった。However, these oxide superconductors have conventionally been produced only in the form of pellets by sintering.
また超電導マグネット等の応用を考慮した場合は超伝導
体の線材化が必要である。また、大電流を流すため、常
電導に転位した時も超電導材の損傷を防ぐためCu等の
導電材が必要となる。Furthermore, when considering applications such as superconducting magnets, it is necessary to make the superconductor into a wire. Furthermore, since a large current is passed, a conductive material such as Cu is required to prevent damage to the superconducting material even when the superconducting material changes to normal conductivity.
(発明が解決しようとする問題点)
このように層状ペロブスカイト型等の酸化物超電導体は
非常に有望な材料であるが、線材への加工ができなかっ
たために超電導マグネット等への応用が困難である。そ
こで本発明は、化合物超電導体を用いた超電導線の製造
方法の提供を目的とする。(Problems to be solved by the invention) As described above, oxide superconductors such as layered perovskite type are very promising materials, but because they cannot be processed into wires, it is difficult to apply them to superconducting magnets, etc. be. Therefore, an object of the present invention is to provide a method for manufacturing a superconducting wire using a compound superconductor.
(問題点を解決するための手段及び作用)本発明は上記
の問題点に鑑み、肉厚のある金属例えばCu又はCu合
金から成る条体に特殊を加工を施し、該Cu条体内に特
殊な手段で化合物超電導体を埋めこむようにしたもので
あり、以下その具体的方法を図示と共に説明する。(Means and effects for solving the problems) In view of the above-mentioned problems, the present invention applies special processing to a strip made of a thick metal such as Cu or a Cu alloy, and has a special process inside the Cu strip. The compound superconductor is embedded using a method, and the specific method will be explained below with illustrations.
第1図は金属条体1の断面図である。金属条体1は、そ
の断面形状が図示のごとき円形である場合、外径が6閣
程度となっている。FIG. 1 is a sectional view of the metal strip 1. FIG. When the metal strip 1 has a circular cross-sectional shape as shown in the figure, the outer diameter is about 6 mm.
この金属条体1に関してはその断面形状が厚肉の多面体
であってもよい。The metal strip 1 may have a thick polyhedral cross section.
本発明では、まず、金属条体lに特殊な加工を施すので
あり、これに際しては、図示しない刃物を第1図点線に
沿って金属条体1に喰いこませながら該金属条体1の一
部を切り起すことにより第2図のごとき形状とする。In the present invention, first, a special process is applied to the metal strip 1. At this time, one part of the metal strip 1 is cut while cutting a blade (not shown) into the metal strip 1 along the dotted line in FIG. By cutting and raising the part, the shape shown in Fig. 2 is obtained.
この際の加工では、刃物の喰いこみにより金属条体1に
は2−幅程度の凹溝が形成され、かつ。In this machining, a concave groove with a width of approximately 2 mm is formed in the metal strip 1 due to the biting of the blade.
該刃物による切り起しにより、当該凹溝2の開口部3は
その両側縁4a、4bが長短二様に立ち上がると共に該
各部側縁4a、 4bの端部は先細りの尖鋭形となる。By cutting with the knife, the opening 3 of the groove 2 has both side edges 4a and 4b rising up in two shapes, long and short, and the ends of each side edge 4a and 4b have a tapered and sharp shape.
上記の加工時において、凹溝2の開幅度が不足する場合
、該凹溝2を反間するとか、あるいは該凹溝2の内面を
切削、研削などにより削除することがある。During the above processing, if the opening width of the groove 2 is insufficient, the groove 2 may be recessed or the inner surface of the groove 2 may be removed by cutting, grinding, or the like.
つぎに、金属条体の凹溝内に化合物超電導体を埋設内装
する。この埋設内装は、化合物超電導体の特性を維持し
得るものであれば如何なる方法でも用いらるが、プラズ
マ溶射法を用いることで効率良く緻密な埋設層を形成す
ることができる。Next, a compound superconductor is embedded in the groove of the metal strip. Any method can be used for this buried interior as long as it can maintain the properties of the compound superconductor, but a dense buried layer can be efficiently formed by using a plasma spraying method.
(第3図)。(Figure 3).
次に開口部4a、4bを閉口するが、4a、 4bが加
工等により共に短い場合と、長短2様に立ち上がる場合
とで、閉口方法は異った方法を用いることが有効である
。Next, the openings 4a and 4b are closed, but it is effective to use different closing methods depending on whether the openings 4a and 4b are both short due to machining or the like, or when they stand up in two different lengths.
まず、4a、4bが共に短い場合は金属条体と同質材を
開口部3に充てんする形となる。これは金属を超電導材
5の上に被覆する方法とも言えるが。First, when both 4a and 4b are short, the opening 3 is filled with the same material as the metal strip. This can also be said to be a method of coating the superconducting material 5 with metal.
機械的、物理的、化学的等如何なる方法を用いても可能
である。しかし、閉合を無理なく効率良く行なうために
は、溶射法あるいはダイス加工が好ましい。Any method such as mechanical, physical, chemical, etc. can be used. However, in order to achieve smooth and efficient closure, thermal spraying or die processing is preferred.
溶射法の場合、開口部3の上方より条体と同材質の金属
をプラズマ溶射、火炎溶射等で被覆するだけで良い、こ
の溶射法の場合、開口部3、両側縁4a、 4bの形状
にかかわらず開口することができるため好ましいと言え
る。In the case of the thermal spraying method, it is only necessary to coat the opening 3 with the same metal as the strip by plasma spraying, flame spraying, etc. from above the opening 3. In the case of this thermal spraying method, the opening 3 and both side edges 4a and 4b are coated in the shape. This is preferable because it can be opened regardless of the situation.
次に、両側縁4a、 4bが長短2様の場合に有効なダ
イス加工法について説明する。Next, a die processing method that is effective when both side edges 4a and 4b have two lengths and a short length will be described.
このダイス加工時には、金属条体1の長手方向先端にお
いてあらかじめ開口部3の長い側縁4aを短かい側縁4
bに重ね合せ、該重合状態の先端から金属条体1をダイ
スに通す。At the time of this die processing, the long side edge 4a of the opening 3 is cut into the short side edge 4 at the longitudinal end of the metal strip 1 in advance.
b, and pass the metal strip 1 through a die from the tip of the polymerized state.
このようにすると、金属条体1はその先端部における両
側縁4a、 4bの重合状態に倣って該両側縁4a、
4bの残部も重合状態となり、この際、ダイスにより外
部形態が円形に成形され、かつ、減径される当該金属条
体1は上記両側縁4a及び4bの重なり都合を大きくし
、しかも上記の減径に伴って長手方向に伸延状態となる
。In this way, the metal strip 1 follows the overlapping state of both side edges 4a, 4b at its tip.
The remaining part of the metal strip 4b is also in a polymerized state, and at this time, the metal strip 1 whose external shape is formed into a circular shape by a die and whose diameter is reduced increases the overlap of the above-mentioned side edges 4a and 4b, and furthermore, the above-mentioned reduction It becomes distracted in the longitudinal direction as the diameter increases.
そして、金属条体1の両側縁4a、4bが上記の重合状
態により互いに密接閉合される結果、凹溝2の開口部3
が消去され、該凹溝2内の超電導材5は金属条体1によ
り第4図のごとく被覆される。As a result of the above-mentioned overlapping state, the opposite side edges 4a and 4b of the metal strip 1 are tightly closed to each other, and as a result, the opening 3 of the groove 2
is erased, and the superconducting material 5 in the groove 2 is covered with the metal strip 1 as shown in FIG.
上記のダイス加工時、1回のダイス加工で金属条体1を
最終外径にまで減径するよりも、数回のダイス加工でそ
の径を引き落す方が望ましく、このようにすると、加工
歪を大きくさせずに金属条体1の外径を最終径(5mφ
)にまで減径できる。During the die machining described above, it is preferable to reduce the diameter of the metal strip 1 by several die machining steps, rather than reducing the diameter of the metal strip 1 to the final outer diameter in one die machining process. The outer diameter of the metal strip 1 can be adjusted to the final diameter (5 mφ) without increasing the
) can be reduced in diameter.
なお、溝加工は上記方法以外にも、ダイス加工、機械研
削等によっても可能であり、その場合は第5図形状とな
りやすい、この場合は、4a、 4bの閉口を上記のプ
ラズマ溶射法が適切と言える。In addition to the methods described above, groove processing can also be done by die processing, mechanical grinding, etc. In that case, the shape shown in Figure 5 is likely to be obtained.In this case, the plasma spraying method described above is appropriate for closing 4a and 4b. I can say that.
また、上記超電導線を加熱処理して、超電導特性向上を
図っても、本発明の効果を損うものでないことは言うま
でもない。Furthermore, it goes without saying that even if the superconducting wire is heat-treated to improve its superconducting properties, the effects of the present invention will not be impaired.
超電導体としては希土類元素を含有しペロブスカイト型
構造を有する酸化物超電導体を用いることができる。こ
の材料は超電導状態を実現しできればよく、ABazC
u307−1系(AはY + Yb t Ha 、 D
y 、 Er 。As the superconductor, an oxide superconductor containing a rare earth element and having a perovskite structure can be used. This material only needs to realize a superconducting state, and ABazC
u307-1 series (A is Y + Yb t Ha, D
y, Er.
Tm、Lu)等の多層ペロブスカイト型、5r−La−
Cu−0系等の層状ペロブスカイト型等の広義にペロブ
スカイト構造を有する酸化物とする。また希土類元素も
広義の定義とし、Se、Y及びランタン系を含むものと
する。代表的な系としてY−Ba−Cu−0系のほかに
、5c−Ba−Cu−0系、5r−La−Cu−系、さ
らにSrをBa。Multilayer perovskite type such as Tm, Lu), 5r-La-
The oxide is an oxide having a perovskite structure in a broad sense, such as a layered perovskite type such as Cu-0 type. Rare earth elements are also broadly defined to include Se, Y, and lanthanum. Typical systems include Y-Ba-Cu-0 system, 5c-Ba-Cu-0 system, 5r-La-Cu- system, and Sr and Ba.
CaFeE換した系等が挙げられる。各々の原料はY2
O、、BaO,CuO,Aら01等の酸化物を用いるこ
とができる。また、これらの酸化物のほかに、焼成後酸
化物に転化する炭酸塩、硝酸塩、水酸化物等の化合等の
化合物を用いてもよい、ペロブスカイト型酸化物超電導
体を構成する元素は、基本的に化学量論比の組成となる
ように混合するが、多少製造条件等との関係等でずれて
いても構わない6例えばY−Ba−Cu−0系ではY
1 mol、Cu3 molが標準組成であるが、実用
上は多少のずれは問題ない。Examples include systems with CaFeE exchange. Each raw material is Y2
Oxides such as O, BaO, CuO, A et al. 01 can be used. In addition to these oxides, compounds such as carbonates, nitrates, hydroxides, etc. that are converted into oxides after firing may be used.The elements constituting the perovskite-type oxide superconductor are basically The composition is mixed so that it has a stoichiometric composition, but it does not matter if it deviates slightly due to manufacturing conditions, etc. 6 For example, in the Y-Ba-Cu-0 system, Y
The standard composition is 1 mol and Cu3 mol, but a slight deviation is not a problem in practice.
(実施例)
実施例−1
直径7謹、長さ3mのCu線材を刃物により第5図に示
す断面形状に加工した0次いで第5図の溝2内へ、La
−Ba−Cu−0ペロブス力イト型超電導体酸化物のN
o−44,粒径粉末を、30V 750Aの条件でプラ
ズマ溶射し埋設内装した1次いで10〜44μs粒径こ
の化合物超電導線を用いて超電導特性を調べたところ、
臨界温度は30K、臨界電流は5Aと良好な特性を示し
た。(Example) Example-1 A Cu wire rod with a diameter of 7 mm and a length of 3 m was processed with a cutter into the cross-sectional shape shown in Figure 5.
-N in Ba-Cu-0 perovus-type superconductor oxide
o-44, particle size powder was plasma sprayed under the conditions of 30V and 750A, and buried inside.The particle size was 10 to 44μs.The superconducting properties were investigated using this compound superconducting wire.
The critical temperature was 30K and the critical current was 5A, showing good characteristics.
実施例−2
直径6■、長さ3m Cu線材を刃物により第5同断面
形状に加工した1次いで第5図の溝2内へ、Y−Ba−
Cu−0ペロブス力イト型超電導体酸化物の粉末を埋設
内装した0次いでダイス加工を行ない、第5図の開口部
3を閉口した。さらに、850℃で96時間熱処理を行
なった。Example-2 A Cu wire rod having a diameter of 6 cm and a length of 3 m was processed into the same cross-sectional shape using a cutter.Then, Y-Ba-
Next, die processing was carried out in which powder of Cu-0 perovskite type superconductor oxide was embedded, and the opening 3 shown in FIG. 5 was closed. Furthermore, heat treatment was performed at 850° C. for 96 hours.
この化合物超電導線を用いて超電導特性を調べたところ
、臨界温度は30K、臨界電流は5Aと良好な特性を示
した。When the superconducting properties of this compound superconducting wire were investigated, it showed good properties with a critical temperature of 30 K and a critical current of 5 A.
以上説明したように本発明によれば、臨界温度が高い層
状ペロブスカイト型等の酸化物超伝導体を用いた化合物
超伝導線を得ることができ、超電導マグネット等への応
用に寄与するところ大である。As explained above, according to the present invention, it is possible to obtain a compound superconducting wire using an oxide superconductor such as a layered perovskite type having a high critical temperature, which greatly contributes to the application to superconducting magnets, etc. be.
第1図はCu条体の断面図、第2図は刃物による加工後
の状態にあるCu条体の断面図、第3図は超電導体を埋
設内装したCu条体の断面図、第4図はCu条体をより
超電導体を被覆した状態の断面図。
第5図はダイス研削加工等による後のCu条体の断面図
である。
1・・・Cu条体 2・・・溝又は洞3・・
・開口部 4a、4b・・・両側縁5・・・
超電導体
代理人 弁理士 則 近 憲 佑
同 松山光之Figure 1 is a sectional view of the Cu strip, Figure 2 is a sectional view of the Cu strip after processing with a knife, Figure 3 is a sectional view of the Cu strip with a superconductor buried inside, and Figure 4 is a cross-sectional view of a Cu strip body covered with a superconductor. FIG. 5 is a cross-sectional view of the Cu strip after die grinding or the like. 1... Cu striations 2... Grooves or sinuses 3...
・Openings 4a, 4b...both side edges 5...
Superconductor agent Patent attorney Nori Chika Yudo Mitsuyuki Matsuyama
Claims (4)
を前記条体の長手方向に形成した後、この溝・洞内に化
合物超電導材を埋設内装し、該溝・洞の開口部両側縁を
閉合することを特徴とする化合物超電導線の製造方法。(1) After forming a groove or a cavity with an opening in the outer periphery of a metal strip in the longitudinal direction of the strip, a compound superconducting material is buried inside the groove or cavity, and the groove or cavity is filled with a compound superconducting material. A method for producing a compound superconducting wire, the method comprising closing both sides of an opening.
なうことを特徴とする特許請求の範囲第1項記載の化合
物超電導線の製造方法。(2) The method for producing a compound superconducting wire according to claim 1, wherein the interior embedding of the compound superconducting material is carried out by a plasma spraying method.
で行なうことを特徴とする特許請求の範囲第1項記載の
化合物超電導線の製造方法。(3) A method for manufacturing a compound superconducting wire according to claim 1, characterized in that both sides of the opening are closed by thermal spraying of the same material as the strip.
許請求の範囲第1項記載の化合物超電導線の製造方法。(4) The method for manufacturing a compound superconducting wire according to claim 1, wherein the strip is made of copper or a copper alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62109869A JPS63276821A (en) | 1987-05-07 | 1987-05-07 | Manufacture of compound superconductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62109869A JPS63276821A (en) | 1987-05-07 | 1987-05-07 | Manufacture of compound superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63276821A true JPS63276821A (en) | 1988-11-15 |
Family
ID=14521260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62109869A Pending JPS63276821A (en) | 1987-05-07 | 1987-05-07 | Manufacture of compound superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63276821A (en) |
-
1987
- 1987-05-07 JP JP62109869A patent/JPS63276821A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2914331B2 (en) | Method for producing composite oxide ceramic superconducting wire | |
JP3450328B2 (en) | Improved processing of oxide superconductors | |
US6949490B2 (en) | High-TC superconducting ceramic oxide products and macroscopic and microscopic methods of making the same | |
EP0499411A1 (en) | Method of making a metal substrate having a superconducting layer | |
EP2495734A1 (en) | Tape base material for a superconducting wire rod, and superconducting wire rod | |
US5756427A (en) | High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same | |
JP5415824B2 (en) | Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate | |
JPS63276821A (en) | Manufacture of compound superconductive wire | |
EP1414049A2 (en) | Superconducting cable conductor with REBCO-coated conductor elements | |
JP2889286B2 (en) | Superconducting body and superconducting coil formed using the superconducting body | |
JP4011131B2 (en) | Tape-shaped oxide superconducting wire, superconducting magnet and current lead using the same | |
JP2509642B2 (en) | Superconducting power lead manufacturing method | |
JP2835069B2 (en) | Superconducting coil | |
JP3928304B2 (en) | Manufacturing method of oxide superconducting wire | |
JP3154239B2 (en) | Manufacturing method of ceramic superconducting conductor | |
JP3108543B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JPS63271816A (en) | Superconductive wire | |
JPH04324209A (en) | Oxide superconductive wire and its manufacture | |
JP2644245B2 (en) | Oxide superconducting wire | |
CA1338753C (en) | Method of producing oxide superconducting wire and oxide superconducting wire produced by this method | |
JP2834525B2 (en) | Method for manufacturing superconductor microcircuit | |
JPH10144152A (en) | Oxide superconducting material | |
JPH0227622A (en) | Manufacture of superconductive filament | |
JPH05325667A (en) | Oxide superconductive wire rod | |
JPS63225410A (en) | Compound superconductive wire and its manufacture |