JPS6327621B2 - - Google Patents

Info

Publication number
JPS6327621B2
JPS6327621B2 JP55101782A JP10178280A JPS6327621B2 JP S6327621 B2 JPS6327621 B2 JP S6327621B2 JP 55101782 A JP55101782 A JP 55101782A JP 10178280 A JP10178280 A JP 10178280A JP S6327621 B2 JPS6327621 B2 JP S6327621B2
Authority
JP
Japan
Prior art keywords
evaporator
compressor
capacity
evaporation temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101782A
Other languages
Japanese (ja)
Other versions
JPS5726353A (en
Inventor
Katsumi Hokotani
Yukio Nishihama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP10178280A priority Critical patent/JPS5726353A/en
Publication of JPS5726353A publication Critical patent/JPS5726353A/en
Publication of JPS6327621B2 publication Critical patent/JPS6327621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は除湿能力を高めて顕熱比を低い値で確
保しながら、エネルギー有効比(E・E・R,冷
凍能力の所要動力に対する比)を高く保持するこ
とが可能な空気調和装置に関する。
[Detailed description of the invention] The present invention is capable of maintaining a high effective energy ratio (E・E・R, ratio of refrigeration capacity to required power) while increasing dehumidification capacity and ensuring a low sensible heat ratio. Regarding possible air conditioners.

空気調和装置のE・E・Rを向上してランニン
グコストを低減することは、省エネルギー化が希
求されている現下の情勢にあつて極めて好ましい
ことである。
In the current situation where energy saving is desired, it is extremely desirable to improve the E/E/R of an air conditioner and reduce its running cost.

E・E・Rを向上するためには、理論上蒸発温
度(Te)を高くし、凝縮温度Tcを低くした状態
で運転すればよいことは十分認識されるところで
ある。
It is well recognized that in order to improve E・E・R, it is theoretically possible to operate with a high evaporation temperature (Te) and a low condensation temperature Tc.

ところで、夏季の冷房条件は室外温度35℃の場
合で、室内空気の状態が温度27℃相対温度50%
(露点温度15.5℃)が好ましいとされており、こ
の場合には、冷凍装置における蒸発温度が27℃以
下、凝縮温度が35℃以上に要求されるところか
ら、E・E・Rの達成値には自ら限界がある。
By the way, the air conditioning condition in summer is when the outdoor temperature is 35℃, and the indoor air condition is 27℃ relative temperature 50%.
(dew point temperature of 15.5℃). In this case, the evaporation temperature in the refrigeration equipment is required to be 27℃ or less, and the condensation temperature is required to be 35℃ or higher. has its own limits.

実際上の運転に当つては、室内側・室外側熱交
換器において、上記温度条件との間に温度差を取
る必要があり、また、蒸発温度Teに関しては除
湿をさらに必要とするところから、凝縮温度Tc
≒50℃、蒸発温度Te≒10℃の値を取るのが一般
的であつて、E・E・Rは尚更低下する。
In actual operation, it is necessary to maintain a temperature difference between the indoor and outdoor heat exchangers with the above temperature conditions, and further dehumidification is required regarding the evaporation temperature Te. Condensing temperature Tc
It is common to take values of ≒50°C and evaporation temperature Te≒10°C, and E・E・R further decreases.

このように、E・E・Rの改善には、単冷媒系
統のものでは限度があつて、向上が期待できない
事実に鑑みて、本発明はかかる理論上の限界を超
えて、さらにE・E・Rの向上をはかると共に、
除湿能力を確保し得る新規システムの空気調和装
置を提供しようとして成されたものであつて、以
下、添付図面に示す装置例および特性線図によつ
て、本発明装置の具体的内容を詳しく説明する。
In this way, there is a limit to the improvement of E・E・R in a single refrigerant system, and in view of the fact that no improvement can be expected, the present invention goes beyond such theoretical limits and further improves E・E・R.・While aiming to improve R,
This invention was developed in an attempt to provide an air conditioner with a new system that can ensure dehumidification ability, and the specific contents of the device of the present invention will be explained in detail below with reference to device examples and characteristic diagrams shown in the attached drawings. do.

第1図において、2点鎖線で区分した右半部は
室外側ユニツト1であり、左半部は室内側ユニツ
ト2であつて、室外側ユニツト1には、2台の圧
縮機3A,3Bからなる圧縮機構3と、凝縮器4
と、室外側フアン7とがケーシング内に収納さ
れ、一方、室内側ユニツト2には、空気冷却用蒸
発器5と、減圧機構6と、室内側フアン8とがケ
ーシング内に収納されている。
In FIG. 1, the right half divided by the two-dot chain line is the outdoor unit 1, and the left half is the indoor unit 2. The outdoor unit 1 includes two compressors 3A and 3. A compression mechanism 3 consisting of B and a condenser 4
and an outdoor fan 7 are housed in the casing, while an air cooling evaporator 5, a pressure reducing mechanism 6, and an indoor fan 8 are housed in the casing of the indoor unit 2.

上記室内側ユニツト2において、蒸発器5およ
び減圧機構6は夫々2つの冷媒系を形成してお
り、蒸発器5を第1蒸発器5Aと第2蒸発器5B
に2分するとともに、減圧機構6を両蒸発器5A
Bに対応させた第1減圧器6Aと第2減圧器6B
とから形成している。
In the indoor unit 2, the evaporator 5 and the pressure reducing mechanism 6 each form two refrigerant systems, and the evaporator 5 is divided into a first evaporator 5A and a second evaporator 5B . The pressure reducing mechanism 6 is connected to both evaporators 5A ,
5 B , the first pressure reducer 6 A and the second pressure reducer 6 B
It is formed from.

前記第1、第2蒸発器5A,5Bは、ケーシング
内の室内空気流を基準として、第1蒸発器5A
上流側、第2蒸発器5Bを下流側に夫々配設し、
吸込口9から流入した室内空気を第1蒸発器5A
で一次冷却した後、第2蒸発器5Bで二次冷却し
て、冷風にし、吹出口10を介し室内に再送せし
める。
The first and second evaporators 5 A and 5 B are arranged such that the first evaporator 5 A is disposed on the upstream side and the second evaporator 5 B is disposed on the downstream side, with respect to the indoor air flow in the casing.
The indoor air flowing in from the suction port 9 is transferred to the first evaporator 5A.
After primary cooling, the second evaporator 5 B performs secondary cooling to produce cold air, which is then re-sent into the room through the outlet 10.

前記両ユニツト1,2間に構成される冷凍回路
は、第1図々示の如く、凝縮器4を共用として、
第1圧縮機3A→凝縮器4→第1減圧器6A→第1
蒸発器5A→第1圧縮機3Aの第1冷凍サイクルお
よび第2圧縮機3B→凝縮器4→第2減圧器6B
第2蒸発器5B→第2圧縮機3Bの第2冷凍サイク
ルの2冷媒系からなつており、圧縮機3A,3B
減圧器6A,6Bおよび両蒸発器5A,5Bの容量を
適当に選ぶことによつて、第1蒸発器5Aを室内
空気の露点温度よりも高い蒸発温度Te1で、また
第2蒸発器5Bを前記露点温度よりも低い蒸発温
度Te2で夫々運転し得るよう形成している。
The refrigeration circuit constructed between the two units 1 and 2 shares a condenser 4 as shown in FIG.
1st compressor 3 A → condenser 4 → 1st pressure reducer 6 A → 1st
Evaporator 5 A → first refrigeration cycle of first compressor 3 A and second compressor 3 B → condenser 4 → second pressure reducer 6 B
It consists of two refrigerant systems in the second refrigeration cycle: second evaporator 5 B → second compressor 3 B , compressors 3 A , 3 B ,
By appropriately selecting the capacities of the pressure reducers 6 A , 6 B and both evaporators 5 A , 5 B , the first evaporator 5 A can be operated at an evaporation temperature Te 1 higher than the dew point temperature of the indoor air, and the first evaporator 5 A can be The two evaporators 5B are formed so that they can each be operated at an evaporation temperature Te2 lower than the dew point temperature.

なお、本発明装置は上記例の如く、第1,第2
蒸発器5A,5Bに対応して2基の圧縮機3A,3B
を設けるほか、住復多気筒圧縮機の場合では1台
であつても良く、また回転式圧縮機の場合でも1
基で複気筒有する構造であればそれでもよい。
Note that, as in the above example, the device of the present invention has the first and second
Two compressors 3A and 3B correspond to the evaporators 5A and 5B .
In addition, in the case of a Sumifuku multi-cylinder compressor, there may be one unit, and in the case of a rotary compressor, there may be one unit.
As long as it has a structure with multiple cylinders, any structure is acceptable.

また、凝縮器4についても上記例の共用回路形
でなく、蒸発器5A,5Bに対応して2基の凝縮器
を用い、相互に独立した冷凍サイクルが形成され
るようにしても勿論差支えない。
Furthermore, the condenser 4 may also be of the shared circuit type as in the above example, but of course two condensers may be used corresponding to the evaporators 5 A and 5 B to form mutually independent refrigeration cycles. No problem.

次に、上記構造となした装置の運転作動態様を
説明すると、第1圧縮機3A,3Bを共に付勢する
ことにより、吸込口9から流入した室内空気イは
第1蒸発器5Aで一次冷却され、顕熱変化するだ
けで温度低下するとともに、相対湿度は高くな
る。
Next, to explain the operating mode of the device with the above structure, by energizing both the first compressors 3A and 3B , the indoor air A flowing in from the suction port 9 is transferred to the first evaporator 5A. The temperature decreases due to only sensible heat changes, and the relative humidity increases.

この空気ロは、さらに第2蒸発器5Bで除湿を
伴つた二次冷却され、潜熱および顕熱が変化して
低温・脱湿空気ハとなつた後、吹出口10から室
内に再送される。
This air is further cooled secondary with dehumidification in the second evaporator 5B , and after changing its latent heat and sensible heat to become low-temperature, dehumidified air, it is sent back into the room from the outlet 10. .

ここで、第1圧縮機3Aにおける単位冷媒循環
量当りの所要動力をW1、冷凍能力をQ1、冷媒循
環量をG1とし、第2圧縮3Bにおける同様の各値
をW2,Q2,G2とすると、 圧縮機EER=0.86×G1Q1+G2Q2/G1W1+G2W2 =0.86×Q1+G2/G1Q2/W1+G2/G1W2
…(A) その際、凝縮温度Tc=40℃、第1蒸発温度
Te1=20℃、第2蒸発温度Te2=9℃とすると、
冷媒R―22における理論上の値として W1=3.3Kcal/Kg,W25.0Kcal/Kg, Q1=40.4Kcal/Kg,Q2=39.6Kcal/Kg, が定まる。なお、G2/G1は次のように計算する。
Here, the required power per unit refrigerant circulation amount in the first compressor 3A is W 1 , the refrigeration capacity is Q 1 , and the refrigerant circulation amount is G 1 , and similar values in the second compression 3 B are W 2 , Assuming Q 2 and G 2 , compressor EER=0.86×G 1 Q 1 +G 2 Q 2 /G 1 W 1 + G 2 W 2 =0.86× Q 1 + G 2 /G 1 Q 2 /W 1 +G 2 /G 1 W 2
...(A) At that time, condensation temperature Tc = 40℃, first evaporation temperature
Assuming Te 1 = 20°C and second evaporation temperature Te 2 = 9°C,
The theoretical values for refrigerant R-22 are determined as follows: W 1 = 3.3Kcal/Kg, W 2 5.0Kcal/Kg, Q 1 = 40.4Kcal/Kg, Q 2 = 39.6Kcal/Kg. Note that G 2 /G 1 is calculated as follows.

第1蒸発器5Aを通る空気重量流量をGW1、同
じく第2蒸発器5BのそれをGW2とすると、 GW1・△i1=G1Q1 ……(B) GW2・△i2=G2Q2 ……(C) 但し、△i1,△i2は第2図を参照のこと、 ∴G2/G1=GW2/GW1×△i2/△i1×Q1/Q2 ……(D) ここでGW2/GW1=1であるから、 G2/G1=1×11.8−9.3/13.25−11.8×40.4/39.6 =2.5/1.45×40.4/39.6≒1.76 ∴EER=0.86×40.4+1.76×39.6/3.3+1.76×5.0≒7
.83 となる。
If the air weight flow rate passing through the first evaporator 5 A is GW 1 and that of the second evaporator 5 B is GW 2 , then GW 1・△i 1 = G 1 Q 1 ...(B) GW 2・△ i 2 = G 2 Q 2 ...(C) However, please refer to Figure 2 for △i 1 and △i 2 , ∴G 2 /G 1 =GW 2 /GW 1 ×△i 2 /△i 1 ×Q 1 /Q 2 ...(D) Here, since GW 2 /GW 1 = 1, G 2 /G 1 = 1 × 11.8 − 9.3 / 13.25 − 11.8 × 40.4 / 39.6 = 2.5 / 1.45 × 40.4 / 39.6≒1.76 ∴EER=0.86×40.4+1.76×39.6/3.3+1.76×5.0≒7
It becomes .83.

一方、これに対して蒸発器を単冷媒系統とした
場合の空気調和機では、蒸発温度10℃、凝縮温度
40℃で運転すると、EERは7.0となり、従つて、
本発明装置の場合は、 7.83−7.0/7×100≒11.9% の向上がはかれることが明らかとなる。
On the other hand, in an air conditioner where the evaporator is a single refrigerant system, the evaporation temperature is 10℃ and the condensation temperature is
Operating at 40°C gives an EER of 7.0, therefore:
It is clear that in the case of the device of the present invention, an improvement of 7.83-7.0/7×100≒11.9% can be achieved.

これは、EERの悪い低い蒸発温度Te2で運転す
る第2圧縮機3Bにおける冷凍処理能力を従来の
単冷媒系に比し相対的に小さくしたことに依つて
いる。
This is due to the fact that the refrigerating capacity of the second compressor 3B , which operates at a low evaporation temperature Te2 with poor EER, is made relatively small compared to the conventional single refrigerant system.

以上は理論上のEERに対する効果であるが実
際においてはさらに第1圧縮機3Aにおける吸入
ガス圧力が通常の単系統の場合よりも高くなつ
て、冷媒ガスの比体積が減少するので、同一容量
を較べた場合に圧縮機能力が増大することと、圧
縮比も小さくなるために圧縮機内部におけるガス
洩れ、逆流、機械摩擦損失等の値が何れも小さく
なり、効率が良くなる効果があり、上記EER向
上の比率はさらに増大する。
The above is a theoretical effect on EER, but in reality, the suction gas pressure in the first compressor 3A becomes higher than in the case of a normal single system, and the specific volume of refrigerant gas decreases, so the same capacity When compared, the compression function increases and the compression ratio decreases, which reduces the values of gas leakage, backflow, mechanical friction loss, etc. inside the compressor, and improves efficiency. The rate of EER improvement mentioned above will further increase.

しかして本発明装置は、蒸発温度が高い方の第
1蒸発器5Aが接続されている第1圧縮機3Aと、
第2蒸発器5Bが接続されている第2圧縮機3B
の容量比(シリンダ容積、同一運転条件下におけ
る冷房能力の比)を、 第1圧縮機3Aの容量≦第2圧縮機3Bの容量の
関係が保たれるようにしている。
Therefore, the device of the present invention includes a first compressor 3A to which the first evaporator 5A having a higher evaporation temperature is connected;
The capacity ratio (cylinder volume, cooling capacity ratio under the same operating conditions) with the second compressor 3 B to which the second evaporator 5 B is connected is determined as follows: Capacity of the first compressor 3 A ≦ Second compressor 3 The capacity relationship of B is maintained.

かかる容量関係を持たせたことによつて、、下
記の如き特徴が発揮される。
By providing such a capacity relationship, the following characteristics are exhibited.

第1図々示の空気調和装置では、第1蒸発器5
の蒸発温度Te1を高くして主に顕熱冷却のみを
行わせ、一方、第2蒸発器5Bの蒸発温度Te2
低くして除湿冷却を行わせることによつて、全体
として除湿性能をそこなうことなく高いE・E・
R得るものであるが、ここで第1圧縮機3Aの容
量が相対的に大きいと、第1蒸発器5Aにおける
熱交換量は、室内空気温度と蒸発温度Te1との差
に比例するので、この蒸発温度Te1は必然的に低
くなつて第3図Te′1となり、また、第2圧縮機3
の容量が相対的に小さいと、蒸発温度Te2は高
い温度域Te′2となつてバランスしてしまつて、そ
の結果、E・E・R向上の効果が抑えられること
となる。
In the air conditioner shown in the first figure, the first evaporator 5
The evaporation temperature Te 1 of the second evaporator 5 B is raised to mainly perform sensible heat cooling, while the evaporation temperature Te 2 of the second evaporator 5 B is lowered to perform dehumidification cooling, thereby dehumidifying the whole. High E・E・ without sacrificing performance
Here, if the capacity of the first compressor 3 A is relatively large, the amount of heat exchange in the first evaporator 5 A is proportional to the difference between the indoor air temperature and the evaporation temperature Te 1 . Therefore, this evaporation temperature Te 1 inevitably becomes low and becomes Te′ 1 in Fig. 3, and the second compressor 3
If the capacity of B is relatively small, the evaporation temperature Te 2 becomes balanced in a high temperature range Te' 2 and as a result, the effect of improving E・E・R is suppressed.

さらに、除湿能力を表わす顕熱比については、
特に蒸発温度Te2がTe′2と高くなるので、除湿性
能が落ちてくる。
Furthermore, regarding the sensible heat ratio, which represents the dehumidification ability,
In particular, as the evaporation temperature Te 2 becomes as high as Te' 2 , the dehumidification performance decreases.

このような問題は、第1圧縮機3Aの容量を第
2圧縮機3Bに対して相対的に小さくすることに
よつて、蒸発温度Te1の低下ならびに蒸発温度
Te2の上昇を抑制し高いE・E・Rでの安定と、
除湿性能の確保とをはかることができる。
These problems can be solved by reducing the capacity of the first compressor 3A relative to the second compressor 3B , thereby reducing the evaporation temperature Te 1 and reducing the evaporation temperature.
Suppressing the rise in Te 2 and stabilizing at high E・E・R,
Dehumidification performance can be ensured.

これは、第1圧縮機3Aと第2圧縮機3Bの比を
横軸とし、E・E・Rおよび顕熱比SHFを縦軸
とした図表上に画いた特性線(第4図参照)によ
つてさらに明らかにされる。
This is a characteristic line drawn on a chart with the horizontal axis representing the ratio of the first compressor 3 A and the second compressor 3 B and the vertical axis representing E・E・R and the sensible heat ratio SHF (see Figure 4). ) is further clarified by:

かかる特徴は、圧縮機の容量比を上述せる条件
に規定することによつて可能であるが、さらに本
発明は以下述べる如く、蒸発器間の容量比熱交換
器の大きさ、或は同一条件における熱交換量)を
適当に選定することによつて一層、前述する効果
が発揮される。
Such characteristics can be achieved by specifying the capacity ratio of the compressor to the above-mentioned conditions, but as described below, the present invention also provides the following features: By appropriately selecting the heat exchange amount), the above-mentioned effects can be further exhibited.

この場合は、 第1蒸発器5Aの容量≧第2蒸発器5Bの容量の
関係とすることであつて、このようにすれば、蒸
発温度Te1はさらに高く、かつ蒸発温度Te2がさ
らに低めに均衡することになるから、除湿性能は
向上する傾向を持つようになるが、蒸発温度
Te1,Te2を決定する要素は圧縮機が主であり、
熱交換器(蒸発器)の能力比も可成り影響される
こととなる。
In this case, the relationship is such that the capacity of the first evaporator 5A ≧the capacity of the second evaporator 5B , and by doing so, the evaporation temperature Te1 will be higher and the evaporation temperature Te2 will be higher. Since the equilibrium will be even lower, the dehumidification performance will tend to improve, but the evaporation temperature
The main factor that determines Te 1 and Te 2 is the compressor.
The capacity ratio of the heat exchanger (evaporator) will also be affected considerably.

なお、第4図において第2圧縮機3Bの容量を
大きくすると、第2蒸発器5Bの蒸発温度Te2
高くなるので、顕熱比が高くなる結果、E・E・
Rが見掛け上高くなる場合がある。(第3図では
容量比=1近辺)。
In addition, in FIG. 4, when the capacity of the second compressor 3 B is increased, the evaporation temperature Te 2 of the second evaporator 5 B becomes higher, and as a result, the sensible heat ratio becomes higher.
R may become apparently high. (In Figure 3, the capacity ratio is close to 1).

しかし、それだけ除湿性能がそこなわれるの
で、同じ顕熱比を得るために、第2蒸発器5B
能力を第1蒸発器5Aに対して相対的に低下させ
た場合には、E・E・Rは実線で示すように低下
することとなり、かくして除湿性能をそこなうこ
となく高いE・E・Rを確保することができる。
However, since the dehumidification performance is impaired accordingly, if the capacity of the second evaporator 5B is lowered relative to the first evaporator 5A in order to obtain the same sensible heat ratio, E. The E.R. decreases as shown by the solid line, and thus a high E.E.R. can be ensured without impairing the dehumidification performance.

第5図は圧縮機の容量比第1圧縮機/第2圧縮
機=0.55の一定条件とした場合の蒸発器能力比に
対するE・E・Rおよび顕熱比(SHF)の変化
を示したものであつて、第1蒸発器5A/第2蒸
発器5B=1〜2の範囲では除湿能力が大で、か
つ、E・E・Rが大となる結果を示している。
Figure 5 shows the changes in E・E・R and sensible heat ratio (SHF) with respect to the evaporator capacity ratio under the constant condition of compressor capacity ratio 1st compressor/2nd compressor = 0.55. The results show that in the range of first evaporator 5 A /second evaporator 5 B = 1 to 2, the dehumidification capacity is large and E·E·R becomes large.

本発明は以上説明したところから明らかなよう
に、吸込口9からの導入空気の流れに対して上流
側に配した第1蒸発器5Aを含む第1冷凍回路を、
下流側に配した第2蒸発器5Bを含む第2冷凍回
路に対して高い蒸発温度で運転するようにし、か
つ第1冷凍回路の圧縮機に対し同量もしくは小さ
くした構成とすることによつて、低い顕熱比を確
保しながら高いE・E・Rを得ることができて、
低ランニングコストの運転を保証し得る。
As is clear from the above description, the present invention includes a first refrigeration circuit including a first evaporator 5A disposed upstream of the flow of air introduced from the suction port 9.
By operating the second refrigeration circuit including the second evaporator 5B located on the downstream side at a higher evaporation temperature, and by making the compressor of the first refrigeration circuit the same or smaller in size. Therefore, it is possible to obtain high E・E・R while ensuring a low sensible heat ratio,
Low running cost operation can be guaranteed.

しかも、除湿性能をそこなうこともなく、オー
ルシーズン用として頗る好適である。
Furthermore, it does not impair dehumidification performance and is highly suitable for use in all seasons.

さらに、本発明は第1蒸発器5Aの容量を第2
蒸発器5Bに対して同量もしくは大きくする構成
を付加することによつて、上述の効果はより一層
安定的に確保されると共に、各蒸発器5A,5B
無駄なく利用できて、低コストの効果はさらに高
められる。
Furthermore, the present invention reduces the capacity of the first evaporator 5 A to the second evaporator 5 A.
By adding a configuration that increases the same amount or larger size to the evaporator 5B , the above-mentioned effects can be more stably secured, and each evaporator 5A and 5B can be used without waste, The low cost effect can be further enhanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置例に係る装置回路図、第2
図および第3図は本発明装置の特性を説明するた
めの空気線図、第4図は同じく圧縮機容量比―
E・E・R,顕熱比線図、第5図は同じく蒸発器
容量比―E・E・R,顕熱比線図である。 3A……第1圧縮機、3B……第2圧縮機、5A
……第2蒸発器、5B……第2蒸発器。
FIG. 1 is a device circuit diagram according to an example of the device of the present invention, and FIG.
3 and 3 are psychrometric diagrams for explaining the characteristics of the device of the present invention, and FIG. 4 is the compressor capacity ratio.
E・E・R, sensible heat ratio diagram. FIG. 5 is also an evaporator capacity ratio - E・E・R, sensible heat ratio diagram. 3 A ...First compressor, 3 B ...Second compressor, 5 A
...Second evaporator, 5 B ...Second evaporator.

Claims (1)

【特許請求の範囲】 1 吸込口9から吹出口10に至る空気流を基準
として第1蒸発器5Aを上流側、第2蒸発器5B
下流側にそれぞれ配設し、第1蒸発器5Aおよび
第1圧縮機3Aを含む第1冷凍回路と、第2蒸発
器5Bおよび第2圧縮機3Bを含む第2冷凍回路と
を構成すると共に、第1冷凍回路を第2冷凍回路
に比し高い蒸発温度で運転する如くなす一方、第
1圧縮機3Aの容量を第2圧縮機3Bの容量に対し
て同量もしくは小さくし、また、第1蒸発器5A
の容量を第2蒸発器5Bの容量に対して同量もし
くは大きくしたことを特徴とする空気調和装置。 2 第1冷凍回路の蒸発温度が、室内空気の露点
温度よりも高く、第2冷凍回路の蒸発温度が前記
露点温度よりも低い特許請求の範囲第1項記載の
空気調和装置。
[Scope of Claims] 1. The first evaporator 5 A is disposed on the upstream side and the second evaporator 5 B is disposed on the downstream side with respect to the air flow from the suction port 9 to the blowout port 10. 5A and a first refrigeration circuit including a first compressor 3A , and a second refrigeration circuit including a second evaporator 5B and a second compressor 3B , the first refrigeration circuit is connected to a second refrigeration circuit. While operating at a higher evaporation temperature than the circuit, the capacity of the first compressor 3A is made equal to or smaller than the capacity of the second compressor 3B , and the first evaporator 5A is
An air conditioner characterized in that the capacity of the second evaporator 5B is the same as or larger than the capacity of the second evaporator 5B. 2. The air conditioner according to claim 1, wherein the evaporation temperature of the first refrigeration circuit is higher than the dew point temperature of indoor air, and the evaporation temperature of the second refrigeration circuit is lower than the dew point temperature.
JP10178280A 1980-07-23 1980-07-23 Air conditioner Granted JPS5726353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10178280A JPS5726353A (en) 1980-07-23 1980-07-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10178280A JPS5726353A (en) 1980-07-23 1980-07-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5726353A JPS5726353A (en) 1982-02-12
JPS6327621B2 true JPS6327621B2 (en) 1988-06-03

Family

ID=14309753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10178280A Granted JPS5726353A (en) 1980-07-23 1980-07-23 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5726353A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630561A (en) * 1979-08-17 1981-03-27 Shin Meiwa Ind Co Ltd Refrigeration equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630561A (en) * 1979-08-17 1981-03-27 Shin Meiwa Ind Co Ltd Refrigeration equipment

Also Published As

Publication number Publication date
JPS5726353A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
US4104890A (en) Air conditioning apparatus
JP6491119B2 (en) Integrated air conditioner
EP1304529A2 (en) Air conditioner
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
US9651282B2 (en) Refrigeration and air-conditioning apparatus and humidity control device
US11268739B2 (en) System for head pressure control
US10254021B2 (en) Cooling systems and methods using two cooling circuits
CN111486534A (en) Low-power-consumption constant-temperature constant-humidity machine and working method thereof
JPH10300128A (en) Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
JPS602505Y2 (en) air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JPS6150211B2 (en)
JPH109693A (en) Air conditioner
JP5548921B2 (en) Heat source air conditioner
JP2760500B2 (en) Multi-room air conditioner
JPS6327621B2 (en)
JP2001090990A (en) Dehumidifier
Cao et al. Comprehensive analysis of exhaust air heat pump heat recovery efficiency in dedicated outdoor air system
CN111351150A (en) Heat pump heat recovery type water-wind integrated unit
JPS6117318Y2 (en)
KR20050043089A (en) Heat pump
JPS6323456B2 (en)
CN216769637U (en) Novel dedicated dehumidification heat pump set of swimming pool
CN210688590U (en) New fan
JP2000320863A (en) Air conditioner