JPS63275136A - Semiconductor device provided with insulating isolation region - Google Patents

Semiconductor device provided with insulating isolation region

Info

Publication number
JPS63275136A
JPS63275136A JP11132687A JP11132687A JPS63275136A JP S63275136 A JPS63275136 A JP S63275136A JP 11132687 A JP11132687 A JP 11132687A JP 11132687 A JP11132687 A JP 11132687A JP S63275136 A JPS63275136 A JP S63275136A
Authority
JP
Japan
Prior art keywords
substrate
layer
semiconductor device
conductive
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11132687A
Other languages
Japanese (ja)
Inventor
Susumu Oi
進 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11132687A priority Critical patent/JPS63275136A/en
Publication of JPS63275136A publication Critical patent/JPS63275136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a substrate potential taking-out structure of small area with low resistance, by taking out a substrate potential from a conductive region formed by burying conductive material such as metal in a groove having an insulating film on the side surface thereof. CONSTITUTION:The title device is provided with the following; grooves 20 penetrating through a first and a second conducting layers 12, 13 and reaching a substrate 11, an insulating layer 21 formed on both sides of groove, and a conductive region 22 buried in the groove 20 and being in contact with the substrate 11. The substrate 11 and a wiring 18 for elements are electrically connected by the conductive region 22. As the wiring 18 for elements is formed on a semiconductor surface matching with the conductive region 22, the substrate 11 and the wiring layer 18 are electrically connected via the conductive region 22, so that the electric potential of the substrate 11 is lead out. Thereby, the potential of a substrate having a small area, a low resistance and a small capacitance can be taken out.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、絶縁分離領域を備えた半導体装置に関し、
特に、バイポーラ型集積回路に好適の絶縁分離領域を面
えた半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device including an insulating isolation region.
In particular, the present invention relates to a semiconductor device facing an insulating isolation region suitable for bipolar integrated circuits.

[従来の技術] 集積回路の高集積化に伴い、素子間の絶縁分離領域の微
細化が要求されている。このため、絶縁分離領域を溝型
とした溝絶縁分離技術が開発されている。この溝絶縁分
離技術をバイポーラ型の集積回路に適用すると、絶縁弁
@満は、ザブコレクタとなる高濃度埋込層を分離するこ
とができるので、選択酸化法のように高W!A度哩込層
を選択的に形成することなく、この高濃度埋込層を基板
表面の全域に形成しても、素子間を絶縁分離することが
可能である。
[Prior Art] As integrated circuits become more highly integrated, there is a demand for miniaturization of insulation isolation regions between elements. For this reason, a groove insulation isolation technique in which the insulation isolation region is groove-shaped has been developed. When this trench insulation isolation technology is applied to bipolar integrated circuits, the isolation valve @mitsu can separate the highly concentrated buried layer that becomes the sub collector, allowing for high W! Even if this high-concentration buried layer is formed over the entire surface of the substrate without selectively forming the A-degree buried layer, it is possible to insulate and isolate the elements.

しかし、バイポーラ型の集積回路においては、基板に電
源電位を印加する必要があり、拡散層を挿通して、基板
と回路配線とを接続することが必要である。このため、
基板電位を取り出す領域、つまり基板と回路配線とを接
続する領域には、ザブコレクタとなる高濃度埋込層を形
成することができない。このため、ザブコレクタの埋込
層は、選択酸化法と同様に、予め、基板電位取出し領域
を除いて選択的に形成しておく必要がある。
However, in bipolar integrated circuits, it is necessary to apply a power supply potential to the substrate, and it is necessary to connect the substrate and circuit wiring through a diffusion layer. For this reason,
A high-concentration buried layer that will serve as a sub-collector cannot be formed in a region where the substrate potential is taken out, that is, a region where the substrate and circuit wiring are connected. Therefore, similarly to the selective oxidation method, it is necessary to selectively form the buried layer of the sub collector in advance, excluding the substrate potential extraction region.

例えば、第4図に示すように、n+埋込層2は基板電位
取出し領域を除いてP型シリコン基板1の全面に形成さ
れる。そして、p+埋込層3が基板電位取り出し領域に
形成されている。また、n”エピタキシャル層4が埋込
層2上に形成され、■ごタキシャル層4の表面から拡散
させることにより、p1拡散層5が埋込層3上に形成さ
れている。これにより、基板1と半導体装置表面の配線
9とは、p1埋込層3及び7p+拡散層5を介して電気
的に接続され、基板電位が配線9に導出される。なお、
埋込・層2及びエピタキシャル層4は絶縁分離溝10に
より小領域ことに絶縁分離されている。
For example, as shown in FIG. 4, the n+ buried layer 2 is formed over the entire surface of the P-type silicon substrate 1 except for the substrate potential extraction region. A p+ buried layer 3 is formed in the substrate potential extraction region. Further, an n'' epitaxial layer 4 is formed on the buried layer 2, and a p1 diffusion layer 5 is formed on the buried layer 3 by diffusion from the surface of the epitaxial layer 4. 1 and the wiring 9 on the surface of the semiconductor device are electrically connected via the p1 buried layer 3 and the 7p+ diffusion layer 5, and the substrate potential is led to the wiring 9.
The buried layer 2 and the epitaxial layer 4 are insulated into small regions by an insulating isolation groove 10.

[発明が解決しようとする問題点] しかしながら、上述した従来の半導体装置においては、
サブコレクタとなるN型埋込層2を選択的に形成する必
要があると共に、基板電位の取出し領域に埋込層3及び
拡散層5を形成する必要がある。このため、半導体装置
の製造工程が煩雑である。
[Problems to be solved by the invention] However, in the above-mentioned conventional semiconductor device,
It is necessary to selectively form the N-type buried layer 2 which becomes the sub-collector, and it is also necessary to form the buried layer 3 and the diffusion layer 5 in the region from which the substrate potential is taken out. Therefore, the manufacturing process of the semiconductor device is complicated.

談だ、基板電位を導出する拡散層5の接続抵抗が高いと
、基板電位が上昇してラッヂアップが発生するので、拡
散層5の濃反を上げると共に、拡散層5の面積を広くと
る必要がある。この結果、素子面積が増大すると共に、
コレクタと基板との間の容量が増大して、半導体装置の
動作速度が理延してしまうという問題がある。
In fact, if the connection resistance of the diffusion layer 5 from which the substrate potential is derived is high, the substrate potential will rise and lag-up will occur, so it is necessary to increase the concentration of the diffusion layer 5 and to increase the area of the diffusion layer 5. be. As a result, the element area increases and
There is a problem in that the capacitance between the collector and the substrate increases, which slows down the operating speed of the semiconductor device.

この発明はかかる事情に鑑みてなされたものであって、
小面積で低抵抗の基板電位取出し構造を有して動作速度
が速く、製造■稈が簡素である絶縁分離領域を有する半
導体装置を捉供することを目的とする。
This invention was made in view of such circumstances, and
It is an object of the present invention to provide a semiconductor device having an insulating isolation region, which has a small area and low resistance substrate potential extraction structure, has a high operating speed, and is simple to manufacture.

U問題点を解決するだめの手段] この発明に係る絶縁分離領域を備えた半導体装置は、第
1の導電型の半導体基板上に形成された第2のS電型の
第1の導電層と、この第1の導電層上に形成された第2
の導電型の第2の導電層と、第1及び第2の導電層を所
定領域毎に絶縁分離する絶縁分離領域と、を有する絶縁
分離領域を備えた半導体装置において、前記第1及び第
2の導電層を貫通して前記基板に到達する溝と、この溝
の側面に形成された絶縁層と、前記溝内に即設され前記
基板と接触する導電領域と、を有し、この導電領域が基
板と素子用配線とを電気的に接続することを特徴とする
Means for Solving Problem U] A semiconductor device including an insulating isolation region according to the present invention includes a first conductive layer of a second S conductivity type formed on a semiconductor substrate of a first conductivity type; , a second conductive layer formed on this first conductive layer.
A semiconductor device comprising: a second conductive layer having a conductivity type of a groove penetrating the conductive layer to reach the substrate; an insulating layer formed on the side surface of the groove; and a conductive region immediately disposed within the groove and in contact with the substrate; is characterized in that it electrically connects the substrate and the element wiring.

[作用] この発明においては、第1及び第2の導電層を貫通して
基板に到達する溝内に埋設された導電領域により、基板
の電位が半導体装置の表面に導出され、基板と半導体装
置表面の配線とが電気的に接続される。また、満の側面
には絶縁層が形成されているから、この導電領域は第1
及び第2の導電層から電気的に遮断されている。このよ
うな導電領域によって、小面積で低抵抗かつ低容量の基
板電位取出し構造を得ることができる。
[Operation] In the present invention, the potential of the substrate is led to the surface of the semiconductor device by the conductive region buried in the groove that penetrates the first and second conductive layers and reaches the substrate, and the potential of the substrate is drawn out to the surface of the semiconductor device. The wiring on the surface is electrically connected. In addition, since an insulating layer is formed on the side surface of the plate, this conductive region is
and is electrically isolated from the second conductive layer. With such a conductive region, it is possible to obtain a substrate potential extraction structure with a small area, low resistance, and low capacitance.

[実施例] 以下、添付の図面を参照して、この発明の実施例につい
て説明する。第1図はこの発明の実施例に係る絶縁分離
領域を備えた半導体装置を示す断面図である。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view showing a semiconductor device including an insulating isolation region according to an embodiment of the present invention.

P型シリコン基板11の上に、サブコレクタとして作用
するn+埋込層12が形成されており、この埋込層12
の上にエピタキシャル成長されたn−■ビタキシャル層
13が形成されている。この半導体装置の適所には、絶
縁分離溝14が配設されており、この絶縁分離溝14に
より埋込層12及び■ピタキシャル層13は微細な領域
毎に仕切られ、他の領域と電気的に遮断される。この絶
縁分離溝14においては、その底部にp1チャンネルの
ストッパ層15が形成され、次いで溝の底面及び側面を
覆うようにシリコン酸化膜(絶縁膜)17が形成されて
いる。溝の内部には多結晶シリコンが即設されて、多結
晶シリコン領域16が形成されている。n−zピタキシ
ャル層13及び多結晶シリコン領域16の表面は絶縁性
のシリコン酸化膜17で被覆されている。
An n+ buried layer 12 that acts as a sub-collector is formed on a P-type silicon substrate 11.
An n--bitaxial layer 13 is epitaxially grown on the substrate. Insulating isolation trenches 14 are provided at appropriate locations in this semiconductor device, and the buried layer 12 and (1) pitaxial layer 13 are partitioned into minute regions by the insulating isolation trenches 14, and are electrically connected to other regions. will be cut off. In this isolation groove 14, a p1 channel stopper layer 15 is formed at the bottom thereof, and then a silicon oxide film (insulating film) 17 is formed to cover the bottom and side surfaces of the groove. Polycrystalline silicon is immediately placed inside the groove to form a polycrystalline silicon region 16. The surfaces of the nz pitaxial layer 13 and the polycrystalline silicon region 16 are covered with an insulating silicon oxide film 17.

絶縁分離溝14で仕切られた領域内に、基板11の電位
を取出す導出領域19が配設されている。
A derivation region 19 for extracting the potential of the substrate 11 is provided in a region partitioned by the insulating isolation trench 14 .

この導出領域19においては、埋込層12及びエピタキ
シャル層13を挿通し、基板11に到達する満20が形
成されており、この渦20の側面に、絶縁性のシリコン
酸化膜21が形成されている。
In this lead-out region 19, a vortex 20 is formed that penetrates the buried layer 12 and epitaxial layer 13 and reaches the substrate 11, and an insulating silicon oxide film 21 is formed on the side surface of this vortex 20. There is.

そして、4雷体である適宜の金属(例えば、タングステ
ン又はアルミニウム)を溝20内に埋設して導電領域2
2が形成されている。この導電領域22に整合する半導
体装置表面には、その素子用の配線層18が形成されて
いる。これにより、導電領域22を介して基板11と配
線層18とが電気的に接続され、基板11の電位が導出
される。
Then, a suitable metal (for example, tungsten or aluminum) is buried in the groove 20 to form the conductive region 2.
2 is formed. A wiring layer 18 for the element is formed on the surface of the semiconductor device aligned with the conductive region 22. Thereby, the substrate 11 and the wiring layer 18 are electrically connected via the conductive region 22, and the potential of the substrate 11 is derived.

このように構成される半導体装置においては、絶縁分離
溝14により、その溝14によって仕切られた領域が他
の領域から電気的に遮断され、各素子が絶縁分離される
In the semiconductor device configured in this manner, the isolation trench 14 electrically isolates the region partitioned by the trench 14 from other regions, thereby insulating and isolating each element.

一方、基板11の電位は導電領域22により取り出され
る。この導電領域22は、基板11の全面にわたって形
成されたn+埋込層12及びn−エピタキシャル層13
を貫通してシリコン基板11と接しており、n+埋込層
12及びn−エピタキシャル層13とはシリコン酸化膜
21によって絶縁されている。また、この導電領域22
は、素子間を配線する配線層18の少なくとも一部に電
気的に接続されている。従って、第4図に示すように、
p+即埋込3及びp+拡散層5を介して基板電位を取り
出していた従来の半導体装置に比して、この発明におけ
る基板電位取出し構造は、必要な占有面積が狭くて足り
、低抵抗かつ低容量である。またこの構造は、基板11
の表面の全域にn + 埋込層12が存在していても形
成することができ、溝絶縁分離を有する集積回路の製造
工程を簡素化することができる。
On the other hand, the potential of the substrate 11 is taken out by the conductive region 22. This conductive region 22 includes an n+ buried layer 12 and an n- epitaxial layer 13 formed over the entire surface of the substrate 11.
It penetrates through and is in contact with the silicon substrate 11, and is insulated from the n+ buried layer 12 and the n- epitaxial layer 13 by a silicon oxide film 21. Moreover, this conductive region 22
is electrically connected to at least a portion of the wiring layer 18 that interconnects the elements. Therefore, as shown in Figure 4,
Compared to conventional semiconductor devices in which the substrate potential is taken out through the p+ immediate implant 3 and the p+ diffusion layer 5, the substrate potential take-out structure of the present invention requires a smaller occupied area, and has low resistance and low resistance. It is capacity. In addition, this structure is similar to the substrate 11
The n + buried layer 12 can be formed even if it exists over the entire surface of the substrate, and the manufacturing process of an integrated circuit having groove insulation isolation can be simplified.

次に、この半導体装置の製造工程について第2図(a)
乃至(d)を参照して説明する。先ず、P型シリコン基
板11上にその全面に亘ってn+埋込層12及びn−エ
ピタキシ1フル層13を積層形成し、内部に多結晶シリ
コン領域16及びシリコン酸化膜17を有する絶縁分離
溝14を形成覆る[第2図(a)]。次に、シリコン窒
化膜3゜を成長させ、フォトレジスト31をマスクとし
て、選択的にシリコン窒化膜30及びシリコン酸化膜1
7を除去する。更に、シリコンエツチングにより、シリ
コン基板11まで達する?1i20を形成する[第2図
(b)]。次に、溝20の側壁面に酸化膜21を形成し
、買方性のドライエツチングにより、溝20の底部に形
成された酸化膜のみを除去する[第2図(C)]。その
後、CVD法等の段差被榎率が優れた方法により、金属
膜32を溝20が完全に埋設されるまで成長させる[第
2図(d)]。次に、フォトレジスト33をマスクにし
て選択的に金属Wi32を除去することにより、第1図
に示すこの発明の実施例に係る半導体装置が製造される
Next, the manufacturing process of this semiconductor device is shown in FIG. 2(a).
This will be explained with reference to (d). First, an n+ buried layer 12 and an n- epitaxial 1 full layer 13 are laminated over the entire surface of a P-type silicon substrate 11, and an insulating isolation trench 14 having a polycrystalline silicon region 16 and a silicon oxide film 17 therein is formed. Form and cover [Figure 2(a)]. Next, a silicon nitride film 30 is grown, and the silicon nitride film 30 and silicon oxide film 1 are selectively grown using the photoresist 31 as a mask.
Remove 7. Furthermore, does silicon etching reach the silicon substrate 11? 1i20 is formed [FIG. 2(b)]. Next, an oxide film 21 is formed on the side wall surface of the trench 20, and only the oxide film formed at the bottom of the trench 20 is removed by dry etching [FIG. 2(C)]. Thereafter, the metal film 32 is grown by a method such as CVD which has an excellent step coverage rate until the trench 20 is completely buried [FIG. 2(d)]. Next, by selectively removing the metal Wi 32 using the photoresist 33 as a mask, the semiconductor device according to the embodiment of the invention shown in FIG. 1 is manufactured.

次に、第3図(a)及び(b)を参照して、この発明の
実施例に係る絶縁分離領域を備えた半導体装置の他の製
造方法について説明する。この製造方法においては、第
2図(C)の状態から、タングステン(W>又はアルミ
ニウム(A1)等の金属を溝20の内部のみに選択成長
させて溝20を導電領域34で埋める[第3図(a)]
。その後、金属膜35を全面に成長させ、フォトレジス
ト36をマスクどじで選択的に金属膜35を除去する[
第3図(b)]ことによって、第1図に示すこの発明の
実施例に係る半導体装置が製造される。
Next, with reference to FIGS. 3(a) and 3(b), another method of manufacturing a semiconductor device having an insulating isolation region according to an embodiment of the present invention will be described. In this manufacturing method, a metal such as tungsten (W) or aluminum (A1) is selectively grown only inside the groove 20 from the state shown in FIG. Figure (a)]
. Thereafter, a metal film 35 is grown on the entire surface, and the metal film 35 is selectively removed using a photoresist 36 mask.
3(b)], the semiconductor device according to the embodiment of the present invention shown in FIG. 1 is manufactured.

[発明の効果] 以上、説明したように、この発明は、その側面に絶縁膜
を有する溝内に金属等の導電性物質を埋設して導電領域
を形成し、この導電領域により基板電位を取り出してい
るので、その基板電位取出構造を小面積で且つ低抵抗に
覆ることができる。
[Effects of the Invention] As explained above, the present invention forms a conductive region by burying a conductive material such as a metal in a trench having an insulating film on its side surface, and extracts a substrate potential from the conductive region. Therefore, the substrate potential extraction structure can be covered with a small area and low resistance.

従って、コレクタと基板との間の容量が増大することが
なく、動作速度が速い。更に、ザブコレクタとなる埋込
層を全面にわたって形成しても、この基板電位取出し構
造を形成することができるので、製造工程を極めて簡素
に1−ることができる。
Therefore, the capacitance between the collector and the substrate does not increase, and the operating speed is high. Furthermore, even if a buried layer serving as a sub-collector is formed over the entire surface, this substrate potential extraction structure can be formed, so that the manufacturing process can be extremely simplified.

従って、この発明によれば、高信頼性及び高性能の半導
体装置を得ることができる。
Therefore, according to the present invention, a highly reliable and high performance semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る半導体装置を示す断面
図、第2図(a)乃至(d)はその製造方法を示す断面
図、第3図(a)及び(b)は他の製造方法を示す断面
図、第4図は従来の半導体装置を示す断面図である。
FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention, FIGS. 2(a) to (d) are cross-sectional views showing a manufacturing method thereof, and FIGS. 3(a) and (b) are FIG. 4 is a cross-sectional view showing a conventional semiconductor device.

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型の半導体基板上に形成された第2の導電型
の第1の導電層と、この第1の導電層上に形成された第
2の導電型の第2の導電層と、第1及び第2の導電層を
所定領域毎に絶縁分離する絶縁分離領域と、を有する絶
縁分離領域を備えた半導体装置において、前記第1及び
第2の導電層を貫通して前記基板に到達する溝と、この
溝の側面に形成された絶縁層と、前記溝内に埋設され前
記基板と接触する導電領域と、を有し、この導電領域が
基板と素子用配線とを電気的に接続することを特徴とす
る絶縁分離領域を備えた半導体装置。
a first conductive layer of a second conductive type formed on a semiconductor substrate of a first conductive type; a second conductive layer of a second conductive type formed on the first conductive layer; In a semiconductor device including an insulating isolation region that insulates and isolates a first and a second conductive layer for each predetermined region, the first and second conductive layers are penetrated to reach the substrate. an insulating layer formed on the side surface of the groove, and a conductive region buried in the groove and in contact with the substrate, and the conductive region electrically connects the substrate and the element wiring. A semiconductor device comprising an insulating isolation region.
JP11132687A 1987-05-06 1987-05-06 Semiconductor device provided with insulating isolation region Pending JPS63275136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11132687A JPS63275136A (en) 1987-05-06 1987-05-06 Semiconductor device provided with insulating isolation region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11132687A JPS63275136A (en) 1987-05-06 1987-05-06 Semiconductor device provided with insulating isolation region

Publications (1)

Publication Number Publication Date
JPS63275136A true JPS63275136A (en) 1988-11-11

Family

ID=14558370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11132687A Pending JPS63275136A (en) 1987-05-06 1987-05-06 Semiconductor device provided with insulating isolation region

Country Status (1)

Country Link
JP (1) JPS63275136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067663A (en) * 2016-10-20 2018-04-26 ローム株式会社 Diode element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125171A (en) * 1984-11-22 1986-06-12 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125171A (en) * 1984-11-22 1986-06-12 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067663A (en) * 2016-10-20 2018-04-26 ローム株式会社 Diode element

Similar Documents

Publication Publication Date Title
US6124179A (en) Inverted dielectric isolation process
US5449946A (en) Semiconductor device provided with isolation region
KR850003068A (en) Semiconductor integrated circuit and manufacturing method thereof
US5049521A (en) Method for forming dielectrically isolated semiconductor devices with contact to the wafer substrate
US5356827A (en) Method of manufacturing semiconductor device
JPH0548936B2 (en)
JPH1074921A (en) Semiconductor device and manufacturing method thereof
US4988639A (en) Method of manufacturing semiconductor devices using trench isolation method that forms highly flat buried insulation film
US4980748A (en) Semiconductor device made with a trenching process
JPS6159852A (en) Manufacture of semiconductor device
JPS60123039A (en) Epitaxially separated semiconductor device and method of producing same
KR970000552B1 (en) Deep trench isolation with surface contact to substrate and the manufacturing method
US5892292A (en) Getterer for multi-layer wafers and method for making same
JP2979554B2 (en) Method for manufacturing semiconductor device
JPH0629376A (en) Integrated circuit device
JPS63275136A (en) Semiconductor device provided with insulating isolation region
JP2809025B2 (en) Bipolar transistor
JPH06151728A (en) Semiconductor integrated circuit device
EP0724298B1 (en) Semiconductor device with bipolar transistor and fabrication method thereof
JPH05144930A (en) Semiconductor device
JPH08148504A (en) Semiconductor device and fabrication thereof
JP2535519B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2536616B2 (en) Semiconductor device
JPS61225866A (en) Semiconductor device
JPH02137233A (en) Manufacture of semiconductor integrated circuit device