JPS63274806A - Detection of shape of slip in continuous annealing furnace - Google Patents

Detection of shape of slip in continuous annealing furnace

Info

Publication number
JPS63274806A
JPS63274806A JP10839787A JP10839787A JPS63274806A JP S63274806 A JPS63274806 A JP S63274806A JP 10839787 A JP10839787 A JP 10839787A JP 10839787 A JP10839787 A JP 10839787A JP S63274806 A JPS63274806 A JP S63274806A
Authority
JP
Japan
Prior art keywords
strip
width direction
continuous annealing
annealing furnace
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10839787A
Other languages
Japanese (ja)
Other versions
JPH061170B2 (en
Inventor
Osamu Sekiguchi
修 関口
Hidetaka Kominami
小南 秀隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62108397A priority Critical patent/JPH061170B2/en
Publication of JPS63274806A publication Critical patent/JPS63274806A/en
Publication of JPH061170B2 publication Critical patent/JPH061170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable detection of the position and size of a heat buckle and the inclination, etc., of a steel sheet by subjecting the image information obtd. by a TV camera to signal processing. CONSTITUTION:Image data A is converted B to one-dimensional displacement data arrangement Z(i), (i=1-N) by preprocessings including binarization, fining of lines, and supplementation of dropout points and is made into the displacement data arrangement X(i), (i=1-N) in the transverse direction of the steel sheet where high-frequency components are removed by moving average. The components except the heat buckle contained in X(i) are subjected to recurrence with the pass position of the steel sheet as a constant term (P0), the inclination of the steel sheet as a proportional term (P1.i), the C camber of the steel sheet as a sinusoidal half-wave term (P2.sin(pi.i/N)), and the general shape of the steel sheet as the 2/3 wave of the full sinusoidal wave + sinusoidal wave (P3.sin(2pi.i/N)+P4.sin(3pi.i/N)). The heat buckle arrangement h(i), (i=1-N) is formed D by subtracting the total sum X0(i), (i=1-N) from (i), (i=1-N) of the one- dimensional displacement data arrangement. The heat buckle is detected by adding the decision of a crest value to h(i).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続焼鈍炉におけるスリップの形状検出方法に
係わり、詳しくは、連続焼鈍炉内を走行するストリップ
例えば鋼板の幅方向変位分布信号から、板巾方向の傾き
、C反りおよび一般形状を検出する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for detecting the shape of slip in a continuous annealing furnace, and more specifically, detecting the shape of a slip in a continuous annealing furnace from a widthwise displacement distribution signal of a strip, for example, a steel plate, running in a continuous annealing furnace. The present invention relates to a method for detecting inclination in the width direction, C warpage, and general shape.

〔従来の技術〕[Conventional technology]

連続焼鈍炉内を走行する平板状の鋼板には、板幅方向の
張力分布や温度分布の不均一性、鋼板蛇行による剪断力
、蛇行防止のためのハースロールクラウン等に起因して
、板幅方向に圧縮応力が生じる。この圧縮応力が、鋼板
の座屈耐力を超えたときには、鋼板にヒートバックルが
生じることが知られている。
A flat steel plate running in a continuous annealing furnace is affected by uneven tension distribution and temperature distribution in the width direction of the plate, shear force due to meandering of the steel plate, hearth roll crown to prevent meandering, etc. Compressive stress occurs in the direction. It is known that when this compressive stress exceeds the buckling strength of the steel plate, heat buckling occurs in the steel plate.

このヒートバックルは、外見的には板中央部、または、
ロールテーパ一部における縦皺として表われ、座屈度合
がさらに進行すると、板破断を誘発して、長時間のライ
ンストップ、ロールへの疵入りの原因となる。このよう
な現象は、特に座屈耐力が小さい極蓮極軟材の高温通板
時や、加減速時等の張力変動時に、加熱冷却の温度急変
ゾーンで、多く発生している。
This heat buckle appears to be located in the center of the board, or
This appears as vertical wrinkles in a portion of the roll taper, and if the degree of buckling progresses further, it will induce plate breakage, causing long-term line stoppages and flaws in the roll. Such phenomena often occur particularly during high-temperature threading of extremely soft materials with low buckling strength, during tension fluctuations such as during acceleration and deceleration, and in zones where the temperature rapidly changes during heating and cooling.

また連続焼鈍炉を走行する鋼板は板巾方向に傾いたり、
C反りと称される板巾方向内の曲がり及び、耳波、中延
等の形状を呈することがある。
In addition, the steel plate running in the continuous annealing furnace may tilt in the width direction,
It may exhibit a bend in the width direction called C-curvature, or a shape such as an ear wave or a middle elongation.

鋼板の形状検出については従来から提案され、例えば特
開昭59−176609号では複数の光電素子で熱間圧
延鋼材を走査し、その温度に対応した検出出力を量子化
し、多値化された信号を積分して濃度ヒストグラムに基
づいて2値化閾値を決定し、形状を検出することが開示
されている。また特開昭59−178127号ではスト
リップの巾方向中央部をロールで押圧して変形させ、そ
の変形形状箇所に光を当て反射光を検出し、ストリップ
の反りを検出することが開示されている。
Detection of the shape of steel plates has been proposed in the past. For example, in Japanese Patent Application Laid-Open No. 59-176609, a hot rolled steel material is scanned with multiple photoelectric elements, the detection output corresponding to the temperature is quantized, and a multivalued signal is generated. It is disclosed that a binarization threshold is determined based on a density histogram by integrating the density histogram, and a shape is detected. Furthermore, JP-A No. 59-178127 discloses that the central part of the strip in the width direction is pressed with a roll to deform it, and that the warpage of the strip is detected by shining light on the deformed shape and detecting the reflected light. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような形状検出があるが、これらを連続焼鈍炉内を
走行する鋼板の形状を検出するのに適用することは難し
い。その理由は連続焼鈍炉では加熱、均熱、冷却の各過
程において、可及的に板巾方向を均一な温度とするのが
所定の材質特性を得るための大きな要件であり、温度情
報から鋼板の形状を検出することは困難である。
Although such shape detection methods exist, it is difficult to apply them to detecting the shape of a steel plate running in a continuous annealing furnace. The reason for this is that in a continuous annealing furnace, it is a major requirement to maintain a uniform temperature as much as possible across the width of the sheet during the heating, soaking, and cooling processes in order to obtain the desired material properties. It is difficult to detect the shape of

また、連続焼鈍された鋼板はその後、製品となるので、
ロールで板巾中央部を押え変形させることは好ましくな
い。
In addition, since the continuously annealed steel plate is then turned into a product,
It is not preferable to press and deform the central part of the board width with a roll.

連続焼鈍炉においては従来では、オペレータが各炉に据
え付けられたテレビ画面を目視することによりヒートバ
ックルの発生を判定し、鋼板の張力を緩める等により、
ハースロールによる圧縮力を低減させ、鋼板の板破断を
防止していた。また。
Conventionally, in continuous annealing furnaces, operators visually check the television screens installed in each furnace to determine the occurrence of heat buckling, and then reduce the tension on the steel plate.
This reduced the compressive force caused by the hearth rolls and prevented the steel plate from breaking. Also.

鋼板の板巾方向の傾き、C反すなどの形状は、テレビ画
面を目視することによりその程度を検知していた。
The degree of inclination of the steel plate in the width direction, C-curve shape, etc. was detected by visually observing the television screen.

しかし、これではストリップの形状を正確に、あるいは
連続的に検出するのが困難である。
However, this makes it difficult to accurately or continuously detect the shape of the strip.

また、オペレータが常時テレビカメラを監視しているわ
けにはゆかないこと、といった問題点があり、形状検出
2判定の自動化が急がれていた。
In addition, there is a problem that the operator cannot constantly monitor the television camera, and there has been an urgent need to automate the shape detection 2 judgment.

本発明は連続焼鈍炉内を走行するストリップにレーザー
光を照射し、当該レーザー照射部をテレビカメラで撮影
して得られた画像情報に信号処理を施こすことにより、
ヒートバックルを検出し、その大きさ2位置を検知する
とともに、鋼板の傾き、C反り、−膜形状をも自動的に
識別、検出することを目的とする。
The present invention irradiates a strip running in a continuous annealing furnace with laser light, photographs the laser irradiated part with a television camera, and performs signal processing on the image information obtained.
The purpose is to detect a heat buckle, detect its size and two positions, and also automatically identify and detect the inclination of a steel plate, C warp, and film shape.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、テレビカメラか
ら取り込んだヒートバックル画像データを2値化、細線
化、欠落点補完の前処理により、1次元変位データ配列
z(i)、i=1〜Nに変換し、移動平均により高周波
成分を除去した板巾方向の変位データ配列X(i)、i
=1〜Nとし、該変位データ配列X (i)中に含まれ
るヒートバックル以外の成分を、鋼板パス位置(フラッ
タリング)を定数項(Po)=鋼板の傾きを比例項(P
t ・i)。
In order to achieve the above object, the present invention pre-processes heat buckle image data captured from a television camera by binarizing it, thinning it, and filling in missing points to create a one-dimensional displacement data array z(i), i=1 Displacement data array in the width direction X(i), i
= 1 to N, and the components other than the heat buckle included in the displacement data array
t・i).

鋼板のC反りを正弦半波項(P2・sin (π・i/
N))、鋼板の一般形状を正弦全波士正弦二分の三波(
P3−sin(2π・i/N) + P4 ・5in(
3c・i/N))により回帰し、これらの総和X0(i
)、i=1〜Nを前述の1次元変位データ配列のX(i
)、i=1〜Nより差し引くことによってヒートバック
ルデータ配列h(i)、i=l〜Nを生成し、該h (
i)に波高値判定ヲ加えることにより、ヒートバックル
を検出する。さらに回帰式を演算し、鋼板の傾き:P1
゜C反り:P2.形状:(Pa、Pa)の成分をも検出
することができる。
The C warp of the steel plate is expressed as a half-sine term (P2・sin (π・i/
N)), the general shape of the steel plate is a full sine wave and a three-half sine wave (
P3-sin(2π・i/N) + P4・5in(
3c・i/N)), and the sum of these X0(i
), i = 1 to N as X(i
), i=1~N to generate a heat buckle data array h(i), i=l~N, and the h (
Heat buckles are detected by adding peak value determination to i). Furthermore, calculate the regression equation and calculate the slope of the steel plate: P1
°C warpage: P2. Shape: (Pa, Pa) components can also be detected.

以下に本発明について一実施例に基づき図面を参照し詳
細に説明する。
The present invention will be described in detail below based on one embodiment with reference to the drawings.

第1図は本発明の一実施例における信号処理の概要を模
式的に示すものである。第2図は、本発明を一態様で実
施するヒートバックル検出装置を示す説明図である。
FIG. 1 schematically shows an overview of signal processing in an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a heat buckle detection device implementing the present invention in one embodiment.

鋼板1の幅方向に直線状のレーザー光を投光ヘッド2か
ら照射し、該レーザー光照射部分をカメラヘッド3によ
り撮影する。該カメラヘッド3は、鋼板1の幅方向を3
分割して撮影する例を示しており、このために可動なミ
ラー4を付属した構成となっているが、これに代えてカ
メラを幅方向に複数個並列に設置してもよい。
A linear laser beam is irradiated from a projection head 2 in the width direction of the steel plate 1, and the portion irradiated with the laser beam is photographed by a camera head 3. The camera head 3 extends 3 in the width direction of the steel plate 1.
An example is shown in which images are taken by dividing, and a movable mirror 4 is attached for this purpose, but instead of this, a plurality of cameras may be installed in parallel in the width direction.

該カメラヘッド3により撮影した画像1例えば第1図の
画像Aは、中継ボックス5を介して画像入出力装置6に
より装置i!6内部の画像メモリ内に取り込まれ、信号
処理部8で1画像の2値化、及び、細線化の処理を受け
、−次元データ配列に変換される。該−次元データは、
レーザーの投受光と、鋼板との角度関係により、欠落点
を生ずることがあるため、該信号処理部8では、更に欠
落点の一次補完処理を行ない、例えば第1図のBで示す
鋼板幅方向変位信号配列Z(i)、i=1〜Nを得る。
The image 1 taken by the camera head 3, for example, the image A in FIG. The signal is captured into the internal image memory of 6, undergoes one-image binarization and thinning processing in the signal processing unit 8, and is converted into a -dimensional data array. The -dimensional data is
Since missing points may occur depending on the angular relationship between the laser beam projection/reception and the steel plate, the signal processing unit 8 further performs primary complementation processing for the missing points, for example, in the steel plate width direction shown by B in FIG. A displacement signal array Z(i), i=1 to N, is obtained.

ところで、該変位信号配列Z(i)には、鋼板のヒート
バックルの情報の他に、鋼板パスライン位置9幅方向の
傾き、C反り、及び、ヒートバックル以外の一般形状の
各情報を含んでいる。このため、該信号処理部8は、こ
れらの各情報成分を分離し、まずヒートバックル成分を
検出する。次に、その方法について述べる。
By the way, the displacement signal array Z(i) includes information on the inclination in the width direction of the steel plate pass line position 9, C warp, and general shape other than the heat buckle, in addition to information on the heat buckle of the steel plate. There is. Therefore, the signal processing unit 8 separates each of these information components and first detects the heat buckle component. Next, the method will be described.

該鋼板幅方向変位信号配列Z (、i) 、i = 1
〜Nは。
The steel plate width direction displacement signal array Z (,i), i = 1
~N is.

先ず、高周波ノイズ除去の為に、複数点づつ移動平均の
処理を受け、例えば第1図のCで示す板巾方向の変位デ
ータ配列X(i)、 i=1〜Nに変換される。つぎに
、前述のヒートバックル以外の成分を分離除去する為に
、前記鋼板板巾方向の変位データ配列X(i)、i=1
〜Nを、下記(1)式で表わされる関数式Xo (iL
 i=1〜Nにより回帰し、更に(2)式にてヒートバ
ックル成分h(i)、i=1〜Nを検出する。
First, in order to remove high frequency noise, a plurality of points are subjected to moving average processing and converted into, for example, a displacement data array X(i) in the board width direction shown by C in FIG. 1, where i=1 to N. Next, in order to separate and remove components other than the heat buckle described above, the displacement data array X(i) in the width direction of the steel plate, i=1
~N is expressed by the function formula Xo (iL
Regression is performed using i=1 to N, and heat buckle component h(i), i=1 to N, is further detected using equation (2).

X0(i)’Pa +P1 ・f+P2 ・sin(g
f)+P3 ・sin(2sf)+P4 ・5in(3
πf)・・・(1) (f蟲i/N、i=1〜N) h (i) A X (i)  X o (i)   
  ・・(2)(i=1〜N) 該(1)式において、第一項PGは、連続焼鈍炉内を走
行する鋼板のパスライン位置を表わし、第二項Pl・f
は、パスラインの板幅方向傾きを表わす。第三項Pl・
sin (πf)は、鋼板のC反りを表わす項である。
X0(i)'Pa +P1 ・f+P2 ・sin(g
f)+P3 ・sin(2sf)+P4 ・5in(3
πf)...(1) (f insect i/N, i=1~N) h (i) A X (i) X o (i)
...(2) (i = 1 to N) In the formula (1), the first term PG represents the pass line position of the steel plate running in the continuous annealing furnace, and the second term Pl・f
represents the inclination of the pass line in the board width direction. Third term Pl.
sin (πf) is a term representing C warpage of the steel plate.

また、第四項及び第五項P3 ・5in(2tc f 
)+ Pa ・5in(3tc f )は、ヒートバッ
クル以外の鋼板の一般形状成分を表わす。
In addition, the fourth term and the fifth term P3 ・5in (2tc f
)+Pa·5in (3tcf) represents the general shape component of the steel plate other than the heat buckle.

h (i)はヒートバックルデータ配列であり、例えば
第1図のDのように示される。ここで、P OtP 1
 s Pl e pa e Paは各項の強度(大きさ
)を表わす係数であり、下記(3)式に示すように。
h(i) is a heat buckle data array, for example shown as D in FIG. Here, P OtP 1
s Pl e pa e Pa is a coefficient representing the intensity (magnitude) of each term, as shown in equation (3) below.

X(i)!  九十名・f+i ・5in(πf)+P
3 ・5ln(2sf)+P4 ・5xn(3πf)(
f=i/N、 i=1〜N) このようにして得られたヒートバックルデータ配列h(
i)、i=1〜N、及び、ヒートバックル以外の情報鋼
板のパスライン位1! P o を板巾方向の傾きPt
、C反りPl、鋼板の板巾方向の波形状P3rP4は、
マイクロコンピュータ7へ送られる。該マイクロコンピ
ュータ7では、板巾方向のヒートバックルデータ配列h
(i)、i=1〜Nの波高値h■ax、及び、その幅方
向位ii t waxを求める。
X(i)! Ninety people・f+i・5in(πf)+P
3 ・5ln (2sf) + P4 ・5xn (3πf) (
f=i/N, i=1~N) The heat buckle data array h(
i), i=1~N, and information other than the heat buckle pass line rank 1 of the steel plate! P o is the slope Pt in the board width direction
, C warp Pl, and the wave shape P3rP4 in the width direction of the steel plate are:
It is sent to the microcomputer 7. The microcomputer 7 has a heat buckle data array h in the board width direction.
(i) The wave height value h*ax of i=1 to N and its width direction position ii t wax are determined.

更に1時系列的に連続するM組のヒートバックルデータ
配列h(i)、i=1〜Nのうちで、h waxの値が
、予じめ定めた基準値り、を越えるものが予じめ定めた
許容上限の個数m個以上となった場合に、そのときのh
 maxの大きさに応じて、ヒートバックル大、あるい
はヒートバックル小、の警報信号を警報装置12に送る
。そして、その後、連続するL組のヒートバックルデー
タ配列h(i)。
Furthermore, among M sets of heat buckle data arrays h(i), i=1 to N, which are continuous in one time series, those whose h wax values exceed a predetermined reference value are predetermined. If the number of pieces exceeds the permissible upper limit set for m, then h
Depending on the size of max, an alarm signal indicating a large heat buckle or a small heat buckle is sent to the alarm device 12. Then, there are successive L sets of heat buckle data arrays h(i).

i=1〜Nのうちでh maxの値が基準値hOを越え
るものが予じめ定めたΩ個未満となった場合に、警報断
の指令を、該警報装置12に送る。また、鋼板のパスラ
イン位置PO+傾きPt、C反す−2、及び、−膜形状
(F3 +P4 )の情報は、各々適当な次元を付与さ
れた後1時刻情報、ヒートバックルの位置、大きさ情報
とともに、数値データとして、プリンター10に出力さ
れる。更に、ヒートバックル発生と判定された場合には
、画像データは、外部記憶装置11にファイルとして記
録される。また、調整用ITV13.及び運転室用IT
V14には、生画像データ、あるいは、画像信号処理を
受けたデータ、のいづれか任意の画像を該画像入出力装
置6を介して表示させることができる。
When the number of h max values exceeding the reference value hO among i=1 to N is less than a predetermined Ω, a command to turn off the alarm is sent to the alarm device 12 . In addition, information on the pass line position PO + slope Pt, C warp -2, and -film shape (F3 + P4) of the steel plate is obtained by adding appropriate dimensions to each time information, heat buckle position, size. The information is output to the printer 10 as numerical data. Furthermore, if it is determined that heat buckling has occurred, the image data is recorded as a file in the external storage device 11. In addition, adjustment ITV13. and IT for the driver's cab
V14 can display any image, either raw image data or data subjected to image signal processing, via the image input/output device 6.

なお、該マイクロコンピュータ7は、本検出系全体を制
御する機能、すなわち、該カメラヘッド3、該画像入力
出装置6.該画像信号処理部8などを制御統括する機能
をも備えている。
The microcomputer 7 has a function of controlling the entire detection system, that is, the camera head 3, the image input/output device 6. It also has a function of controlling and supervising the image signal processing section 8 and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては、レーザー及び
テレビカメラを用いた系から得られる鋼板の幅方向変位
信号に対し、数式による回帰を用いた信号処理を施すこ
とにより、ヒートバックルの位置、大きさ、連続焼鈍炉
内での鋼板の傾き。
As explained above, in the present invention, the position and size of the heat buckle are determined by applying signal processing using mathematical regression to the width direction displacement signal of the steel plate obtained from a system using a laser and a television camera. The tilt of the steel plate in the continuous annealing furnace.

C反り及び形状を検出できる。C. Warp and shape can be detected.

現在、本発明を採用した検出方法が、実ラインで稼動し
ており、高い検出率を上げている。将来的には、以上の
ような連続焼鈍炉内での鋼板挙動の監視機能のみでなく
、ヒートバックル抑制制御用センサー、鋼板形状制御用
センサーとしての機能をも果たすものと期待されている
Currently, a detection method employing the present invention is in operation on an actual line and is achieving a high detection rate. In the future, it is expected that it will not only have the function of monitoring the behavior of steel sheets in a continuous annealing furnace as described above, but also function as a sensor for heat buckle suppression control and a sensor for controlling the shape of steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の画像データの処理方法ま処理過程を
模式的に示したブロック図である。第2図は、本発明を
一態様で実施する装置構成を示すブロック図である。
FIG. 1 is a block diagram schematically showing the image data processing method or process of the present invention. FIG. 2 is a block diagram showing the configuration of an apparatus that implements one embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)連続焼鈍炉を走行するストリップにレーザー光を
照射し、当該照射部をテレビカメラで撮影し得られた画
像を2値化、細線化、欠落点補完の信号処理を施して板
巾方向変位信号とし、この変位信号を複数点移動平均し
高周波ノイズを除去した板巾方向の変位データ配列とし
、該変位データ配列をストリップのパスライン位置、板
巾方向の傾き、C反りおよび波形状を表わす関数式で回
帰し、該回帰よりストリップの、パイライン位置、板巾
方向の傾き、C反りおよび波形状を検出することを特徴
とする連続焼鈍炉におけるストリップの形状検出方法。
(1) Laser light is irradiated onto the strip running through a continuous annealing furnace, the irradiated area is photographed with a television camera, and the resulting image is subjected to signal processing such as binarization, thinning, and missing point complementation in the width direction. A displacement signal is used as a displacement signal, and this displacement signal is moved averaged at multiple points to remove high-frequency noise, and a displacement data array in the width direction of the strip is used. 1. A method for detecting the shape of a strip in a continuous annealing furnace, characterized by performing regression using a functional equation expressed by the regression method, and detecting the pie line position, inclination in the width direction, C warpage, and wave shape of the strip from the regression.
(2)連続焼鈍炉を走行するストリップにレーザー光を
照射し、当該照射部をテレビカメラで撮影し得られた画
像を2値化、細線化、欠落点補完の信号処理を施して板
巾方向変位信号とし、この変位信号を複数点移動平均し
高周波ノイズを除去した板巾方向の変位データ配列X(
i)とし、該変位データ配列をストリップのパスライン
位置、板巾方向の傾き、C反りおよび波形状を表わす関
数式で回帰した回帰式X_0(i)を求め、前記X(i
)から前記回帰式X_0(i)を差し引いてヒートバッ
クルデータ配列h(i)を求め、そのヒートバックルデ
ータ配列h(i)より最大値である波高値h_m_a_
xを計算し、以上の処理を繰り返して前記波高値h_m
_a_xが予め定めた基準値h_0を越えるのが、予め
定めた許容回数以上継続の場合に、ヒートバックルが発
生したとする連続焼鈍炉におけるストリップの形状検出
方法。
(2) Laser light is irradiated onto the strip running through a continuous annealing furnace, the irradiated area is photographed with a television camera, and the resulting image is subjected to signal processing such as binarization, thinning, and missing point complementation in the width direction. A displacement data array X (
i), a regression equation X_0(i) is obtained by regressing the displacement data array using a functional equation representing the pass line position of the strip, the inclination in the width direction, the C warp, and the wave shape.
) to obtain the heat buckle data array h(i) by subtracting the regression formula
x and repeat the above process to obtain the wave height value h_m
A method for detecting the shape of a strip in a continuous annealing furnace in which heat buckling is determined to have occurred when _a_x exceeds a predetermined reference value h_0 for a predetermined allowable number of times or more.
(3)ヒートバックルが発生した場合に、ヒートバック
ルの大きさを予め定めた許容回数内の波高値に基づいて
定めることを特徴とする特許請求の範囲第(2)項の連
続焼鈍炉におけるストリップの形状検出方法。
(3) A strip in a continuous annealing furnace according to claim (2), characterized in that when heat buckling occurs, the size of the heat buckle is determined based on the peak value within a predetermined allowable number of times. shape detection method.
JP62108397A 1987-05-01 1987-05-01 Strip shape detection method in continuous annealing furnace Expired - Lifetime JPH061170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108397A JPH061170B2 (en) 1987-05-01 1987-05-01 Strip shape detection method in continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108397A JPH061170B2 (en) 1987-05-01 1987-05-01 Strip shape detection method in continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPS63274806A true JPS63274806A (en) 1988-11-11
JPH061170B2 JPH061170B2 (en) 1994-01-05

Family

ID=14483721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108397A Expired - Lifetime JPH061170B2 (en) 1987-05-01 1987-05-01 Strip shape detection method in continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPH061170B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071722A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Method and device for inspecting unevenness flaws
JP2012228706A (en) * 2011-04-26 2012-11-22 Sumitomo Heavy Industries Techno-Fort Co Ltd Straightening press
WO2024042825A1 (en) * 2022-08-25 2024-02-29 Jfeスチール株式会社 Manufacturing equipment for metal band, acceptability determination method for metal band, and manufacturing method for metal band

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107911A (en) * 1979-02-13 1980-08-19 Nippon Steel Corp Method of average calculation for thickness meter
JPS56124006A (en) * 1980-02-05 1981-09-29 Sumitomo Metal Ind Ltd Measuring method for flatness of plane plate
JPS5965710A (en) * 1982-10-07 1984-04-14 Kawasaki Steel Corp Measurement for center line profile of belt-shaped matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107911A (en) * 1979-02-13 1980-08-19 Nippon Steel Corp Method of average calculation for thickness meter
JPS56124006A (en) * 1980-02-05 1981-09-29 Sumitomo Metal Ind Ltd Measuring method for flatness of plane plate
JPS5965710A (en) * 1982-10-07 1984-04-14 Kawasaki Steel Corp Measurement for center line profile of belt-shaped matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071722A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Method and device for inspecting unevenness flaws
JP2012228706A (en) * 2011-04-26 2012-11-22 Sumitomo Heavy Industries Techno-Fort Co Ltd Straightening press
WO2024042825A1 (en) * 2022-08-25 2024-02-29 Jfeスチール株式会社 Manufacturing equipment for metal band, acceptability determination method for metal band, and manufacturing method for metal band

Also Published As

Publication number Publication date
JPH061170B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
CA2679667C (en) Method and apparatus for hot-rolling metal strip using near-infrared camera
US20110249700A1 (en) Method for detecting defect in material and system for the method
US4000402A (en) Scanning gauge control for sheet processing apparatus
US6909502B2 (en) Method and apparatus for measuring ripple and distortion in a transparent material
JPS63274806A (en) Detection of shape of slip in continuous annealing furnace
JPS6362825A (en) Detection of heat buckle of strip in continuous annealing furnace
JPH06148098A (en) Surface defect inspection apparatus
JP7428197B2 (en) Steel plate shape discrimination method, shape measurement method, shape control method, manufacturing method, shape discrimination model generation method, and shape discrimination device
EP3657125A1 (en) Device and method for determining variations in flatness when handling a material in the form of a strip
CN111398288B (en) Full-width circumferential detection system, method and device for surface of continuous casting billet in online thermal state
KR100523219B1 (en) Method for measuring dog-bone profile of bar using both CCD camera and laser slit beam in hot strip mill
JPS5922894B2 (en) Surface quality identification method for moving objects
CN111570523A (en) Rolling line parameter acquisition and analysis and negative difference early warning system for steel rolling production
JP2008541074A (en) Method and apparatus for manufacturing a strip
JPH05277533A (en) Method for controlling surface roughness of steel plate in temper rolling
JP2843273B2 (en) Hot rolled steel sheet shape prediction method
JP2019124469A (en) Surface inspection device
KR102012121B1 (en) Apparatus for controlling surface defect detection and method thereof
KR950001933B1 (en) Process for detecting high spot at hot rolling plate
JP2510430B2 (en) Strip surface defect inspection method in continuous annealing furnace
KR20240045615A (en) Strip vibration minimizing method and system
JPH0639864A (en) Method for controlling calender bank
JPH0689407B2 (en) Uniformity control method
JP2021179414A (en) Hot rolled steel strip meandering rate measuring apparatus and hot rolled steel strip meandering rate measuring method
JPS619917A (en) Removal of skid mark of rolling stock