JPS5965710A - Measurement for center line profile of belt-shaped matter - Google Patents

Measurement for center line profile of belt-shaped matter

Info

Publication number
JPS5965710A
JPS5965710A JP17669782A JP17669782A JPS5965710A JP S5965710 A JPS5965710 A JP S5965710A JP 17669782 A JP17669782 A JP 17669782A JP 17669782 A JP17669782 A JP 17669782A JP S5965710 A JPS5965710 A JP S5965710A
Authority
JP
Japan
Prior art keywords
shaped object
strip
center
measured
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17669782A
Other languages
Japanese (ja)
Inventor
Katsumi Nishizaki
西崎 克己
Yoshiki Fukutaka
善己 福高
Yuji Tanaka
田中 佑児
Takanori Miyake
三宅 孝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17669782A priority Critical patent/JPS5965710A/en
Publication of JPS5965710A publication Critical patent/JPS5965710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure a center line profile of a belt-shaped matter, by calculating a shift distance between a straight line connecting the center positions measured at two areas and the center position measured at an area. CONSTITUTION:It is supposed that a center line l1 is equal to an n-order curved line which is shown by the following equation. That is, f(x)=Cnxn+Cn-1xn-1+...+ C1x+0 (x: lengthwise direction of a belt-shaped matter 20 and Cn, Cn-1...C1, C0: coefficients). It is understood that a shift distance DL is shown by an (n-2)- order equation containing coefficients C2-Cn by calculating an DL=f2(x3)-f(x3). Therefore a sufficient units of distances DL are repetitively measured with the line l1 to perform the regression of (n-2)-order. Thus a regression coefficient is obtained, and therefore coefficients C2-Cn are obtained. While the coefficients C0 and C1 are obtained by solving 2-dimensional simple simultaneous equations after measuring simultaneously the position of the line l1 of the matter 20 at three points and defining the measured value as A[(X1e, f(x1e)] and B[x2e, f(x2e)] at two points among those three measured points.

Description

【発明の詳細な説明】 本発明は、帯状物体の中心線プロフィール測定方法に係
シ、特に、19−鋼板や熱延鋼板等の帯状物体の長=J
=方向の曲りの(支)度ケ、帯状物体の製造ラインで測
定する除に用いるのに好適な、帯状物体の中心線プロフ
ィール測屋方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the centerline profile of a strip-shaped object, and in particular, 19-Length of a strip-shaped object such as a steel plate or a hot-rolled steel plate=J
This invention relates to a method for measuring the centerline profile of a strip-shaped object, which is suitable for use in measuring the bending of a strip-shaped object on a manufacturing line of the strip-shaped object.

一般に、帯状物体の製造ラインにおいては、帯状物体の
長手方向の曲りの程度、及び、製造ライン上における帯
状物体の位置関係を知ることは一製造上重要な事項であ
る。例えば、厚鋼板(以下厚板と称する)の圧延プロセ
スにおいては1歩留りを向上させるため、厚板の曲シヲ
測定し、圧延機全適切に制御することが重要な課題とな
っている。
Generally, on a manufacturing line for belt-shaped objects, it is important to know the degree of bending of the belt-shaped object in the longitudinal direction and the positional relationship of the belt-shaped object on the manufacturing line. For example, in the rolling process of thick steel plates (hereinafter referred to as thick plates), in order to improve the yield, it is important to measure the bending of the thick plates and appropriately control the entire rolling mill.

このような目的で、従来、厚板の曲!ll會制御するた
め、キャンバ測距がよく行われている。このキャンバと
は、第1図に示す如く、埋板lOの両端部を結ぶ直線距
離Fと長手方向の倶]縁部の最大距離Gとの比を意味し
ており、キャンバG’に測定することによって、厚板1
0の曲りは成る程度把握できるが、それは、厚板10の
曲りが簡単な形状のものに限られ、厚板100曲9が3
次曲線のような形状である場合には、キャンバGだけで
曲9を把握ブるのVi困難となり1曲りの制御も十分に
は行えなくなる。
For such purposes, traditionally, plank tunes! Camber distance measurement is often used to control traffic conditions. As shown in Figure 1, this camber means the ratio of the straight line distance F connecting both ends of the buried board lO to the maximum distance G of the edges in the longitudinal direction, and is measured to camber G'. By this, plank 1
It is possible to grasp the extent to which the bend of 0 is possible, but this is limited to the case where the plank 10 has a simple bend.
In the case of a shape like the following curve, it becomes difficult to grasp the track 9 using only the camber G, and it becomes impossible to control the single bend sufficiently.

そこで、厚板の中心線プロフィールを求める方法が提案
されている。この厚板の中心線プロフィールを求める土
での問題点は、厚板が製造ライン上で厚板の長手方向と
直角の方向に移動(以下横掘れと称する)したり1回転
することである。従つて、光学的な方法等で、単に厚板
の側端部位置(エツジ位置と称フーる)全測定するだけ
では、正確な中心線プロフィールを求F+ることはでき
ない。
Therefore, a method of determining the centerline profile of a thick plate has been proposed. The problem with soil for determining the centerline profile of a plank is that the plank moves in a direction perpendicular to the longitudinal direction of the plank (hereinafter referred to as lateral digging) or rotates once on the production line. Therefore, it is not possible to obtain an accurate centerline profile by simply measuring all the side edge positions (referred to as edge positions) of a thick plate using an optical method or the like.

よって従来から、厚板のエツジ位置を測定する3台の検
出器會、厚板の長手方向に任意の間隔全おいて設置し、
l番目の検出器で、盪ず、厚板の側縁部の特定点におけ
るエツジ位置を測定し1次いで、厚板が長手方向にLだ
け進んだ時、1置目の検出器で測定した側縁部の特定点
におけるエツジ位置を2査目の検出器で測定して、厚板
がLだけ進む間のエツジ位置のずれ量?ボめゐ。更に、
2、盲目と3雀目の検出器との間でも、同様に厚板エツ
ジ位置のずれ量を・求め−このような測定を、サンプリ
ング間隔り毎にbい、厚板の横振れ或いは回転を補正す
る方法が行われている。し、かじなから−この方法は、 (1)、検出器の設置間隔りの間での厚板の中心線プロ
フィールを求めることができない。
Therefore, conventionally, three detectors are installed at arbitrary intervals in the longitudinal direction of the plate to measure the edge position of the plate.
The lth detector measures the edge position at a specific point on the side edge of the plank. Then, when the plank advances by L in the longitudinal direction, the side measured by the first detector Measure the edge position at a specific point on the edge using the second detector, and find out how much the edge position shifts while the plate advances by L? Bomei. Furthermore,
2. Similarly, determine the amount of deviation of the plate edge position between the blind and third sparrow detectors. Repeat this measurement at every sampling interval to detect the horizontal deflection or rotation of the plate. There are ways to correct it. However, this method: (1) cannot determine the centerline profile of the plank between the detector installation intervals;

(2)−(1)の欠点ケ補うため、検出器の設置間隔L
′t−短くすると、計算によるA差が増大する等の欠点
を有しており、結局、厚板の中心線プロフィールケシ)
′:ボIIIに求めることはできなかった。
In order to compensate for the shortcomings of (2)-(1), the detector installation interval L
If it is shortened, it has the disadvantage that the calculated A difference increases, and as a result, the centerline profile of the thick plate
': I couldn't ask Bo III.

本発明(d、前阿ピ従来の欠点を解消するべくなさ1t
たもので、t・j振れの影@lt受けることなく、帯状
物体の中心線プロフィールを精度よくn・細に求めるこ
とができる帯状物体の中心線プロフィール測定方法を提
供することケ目的とする。
The present invention (d) was designed to eliminate the drawbacks of the conventional technology.
It is an object of the present invention to provide a method for measuring the centerline profile of a strip-shaped object, which can accurately determine the centerline profile of the strip-shaped object to n-th fineness without being affected by the shadow of tj runout.

本発明は、帯状物体の中心線プロフィールケ求めるに際
し−C,帯状物体長手方向に平行な基準線と帯状物体中
心位置との距離全、帯状物体長手方向の3個所でjll
l iし、そのりら2個Mで測定された中心位置を結ぶ
直線と残りの1個M[で測定された中心位1置とのすれ
距離會求め、帯状物体長手方向行位置で繰返し、求めら
れたずれ距離と帯状物体投手方向位置との関係を回帰演
算によ!1n−2次多項式として求め、前記n −2次
多項式の各係数及び前6に回帰演算を行う際に用いたデ
ータのうち任意の2組のデータと帯状物体の中心線プロ
フィール’tn次多項式として近似した場合の各係数と
の間に成立する関係音用いて前Nt n次多項式の各係
kik求めて、帯状物体の中心線プロフィールをn次多
項式として近似するようにして、前2ピ目的を達成した
ものでおる7、 又−rjiJ記う”スし距・t、1′Fを、瞬俵した2
個Mで測定されグヒ中心位1αを結ぶ直線の延長線と、
残りの1個Mで測定された中心位置とのずれ距離とした
ものである。
In the present invention, when determining the center line profile of a strip-shaped object, -C, the total distance between the reference line parallel to the longitudinal direction of the strip-shaped object and the center position of the strip-shaped object, and
l i, and find the passing distance between the straight line connecting the center positions measured by the two radials M and the center position 1 measured by the remaining one M [, repeat at the longitudinal direction row position of the strip-like object, and find. The relationship between the deviation distance and the position of the belt-shaped object in the pitcher direction is calculated by regression calculation! 1n-2nd degree polynomial, each coefficient of the n-2nd degree polynomial, any two sets of data from the data used in the previous 6 regression calculations, and the centerline profile of the band-shaped object as the tnth degree polynomial. Each coefficient kik of the previous Nt n-th degree polynomial is calculated using the relation sound established between each coefficient in the case of approximation, and the center line profile of the strip-shaped object is approximated as an n-th degree polynomial. This is what I achieved.
An extension line of a straight line measured at M and connecting Guhi center position 1α,
This is the deviation distance from the center position measured for the remaining one piece M.

或いは、前記すれ距離τ、両端の2個Mで測定された中
心位置全結ぶ厘態と、中央の1個Mで測定された中心位
置とのずれ距離としたものである。
Alternatively, the above-mentioned slipping distance τ is the deviation distance between the center position measured at the two ends M, which connects all the center positions, and the center position measured at the center position M.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、第2図及び第3図に示す如く、帯状物体20の中
心!l+−hの@接する2点A−B奮進る直線12の延
長庫と、残りの1個Mで仰1定された中心位置Cとのす
れ距11i[、D L ”、Hjii1定することによ
り、帯状物体20の中心線ブロン1−ルを求めるように
した場合を例tことって説明する。
First, as shown in FIGS. 2 and 3, the center of the strip-shaped object 20! By determining the distance 11i [, D L '', Hjii1 between the extension of the straight line 12 where the two touching points A-B of l + - h and the center position C raised by the remaining one M are determined. , a case in which the center line of the strip-shaped object 20 is determined will be explained as an example.

第2区において、中心線11  は−次式で表わされる
n次の曲縁であると仮定1′る。
In the second section, it is assumed that the center line 11 is an nth-order curved edge expressed by the following equation.

f (x)=Cn xn+ Cn−I X  +−1−
C1x+Co     ・・・・・・−・−・・・・・
・(1)C’:、 −Q −Xは−’itr g +)
74体20の長手方間位置、crt、Cn−1−・””
 c、 −”Oは係数である。
f (x)=Cn xn+ Cn-I X +-1-
C1x+Co ・・・・・・−・−・・・・・・
・(1) C':, -Q -X is -'itr g +)
Longitudinal position of 74 bodies 20, crt, Cn-1-・””
c, −”O is a coefficient.

一方、直線B2は、中心線ll上の2忌A、B’i辿る
@紐て゛あるので、2点A−B0)座標r、A(x+−
fへ、)、B(x2、f (X2) )  とり−ると
1次式で従って、点c−p(直膨12上の点)の座標を
On the other hand, the straight line B2 traces the two points A and B'i on the center line ll, so the two points A-B0) coordinates r, A(x+-
), B(x2, f (X2) ) is a linear equation. Therefore, the coordinates of point c-p (point on direct expansion 12) are:

それぞB、 C(X3− f(x3))、D(X3、f
2(x3))とすると、ずれ距離几は1次のようVこ表
わされる。
B, C(X3-f(x3)), D(X3, f
2(x3)), the deviation distance is expressed as V as linear.

D’L=f2(X3) −f (X3)ここで、第2図
に示した如< 、 x2−xI= L2−一中中一石(
f(xとf(X+)l+f(xl) −f(x3)・・
−・・・・・(4)2 更に、F21(X)=f(X2) f(xl)−Ft3
(x)=f(x+)  f(xs)と紐くと、前出(1
)式より、F 21 (x)、F+5(x)は、それぞ
れ次のように表わされる。
D'L=f2(X3) -f (X3) Here, as shown in Figure 2, x2-xI= L2-one in one stone (
f(x and f(X+)l+f(xl) -f(x3)...
-...(4)2 Furthermore, F21(X)=f(X2) f(xl)-Ft3
(x)=f(x+) When linked with f(xs), the above (1
), F 21 (x) and F+5(x) are respectively expressed as follows.

F2+(x)=Cn(x2rL−xl”)+Cn−+(
x2  Xi  )+ −−F13(x)−Cn (x
、”−x3)+Cn−1(Xl”−’−X、n−4) 
+ −・・”””+C2()5”  x3”)+C,(
x、  X3)この(5)式、(6)ヲ、前出(4)式
に代入すると、ずれ距j’lI D L i、i: 、
 h局1次式に示す如くとなる。
F2+(x)=Cn(x2rL-xl")+Cn-+(
x2 Xi )+ --F13(x)-Cn (x
,"-x3)+Cn-1(Xl"-'-X,n-4)
+ −...”””+C2()5”x3”)+C,(
x,
The result is as shown in the h-station linear equation.

この(7)式より、ずれ距離DLは+(n−2)次式に
なることがわかる。又、中心線11に表わす(1)式の
係数Q〜Cnのうち−C3〜Cnが(7)式に含まれて
いる。従って、帯状物体20の中心線11について、十
分な個数のずれ距陰DLt繰返し測定し、(n−2)次
の回帰を行って一1帰係数る:求め、(7)式?展開し
たときの各係数との比較全行えば、帯状物体20の中心
線l+ k n次式と仮定したときの。
From this equation (7), it can be seen that the deviation distance DL becomes a +(n-2) order equation. Further, among the coefficients Q to Cn of equation (1) represented by the center line 11, −C3 to Cn are included in equation (7). Therefore, with respect to the center line 11 of the strip-shaped object 20, a sufficient number of deviation distance shadows DLt are repeatedly measured, and the (n-2) regression is performed to obtain the 11 regression coefficient. If all the comparisons are made with each coefficient when expanded, then the center line of the strip-shaped object 20 is assumed to be l+k n-dimensional equation.

2次からn次までの係蘇C2〜に11が未着ることにな
る。
This means that 11 has not arrived at C2~ from the second to the nth order.

一方、係数Co%C1については−以下の方法で求める
。即ち、fRa図に示す如く、ずれ距離DL’に1つ求
めるために、帯状物体20の中心線11の位置を、同時
に3点で測定する。これらの測定値のうち、2点での測
定値2 A (X、e−f(x+e)) −B (Xy
a、 f(x2e ) )とすると5次の2式が得られ
る。
On the other hand, the coefficient Co%C1 is determined by the following method. That is, as shown in the fRa diagram, in order to obtain one deviation distance DL', the position of the center line 11 of the strip-shaped object 20 is measured at three points at the same time. Among these measured values, measured value 2 at two points A (X, e-f(x+e)) -B (Xy
a, f(x2e)), the following two equations of 5th order are obtained.

f(x、6)=C1x、(r−)On−1xl”−’ト
−+ C2x、。”+C,x1g十c。・  (8)f
(x2e)=Cn X2 enl(h−1x22”−1
+ HHH+C2x2e 2+ CI X2e + C
o・−(9)この(8)式、(9)式において一〇2〜
cn  は既知であるから、結局(8)−(9)式は次
のようになる。
f(x,6)=C1x,(r-)On-1xl"-'to-+C2x,."+C,x1gtenc.・(8)f
(x2e)=Cn X2 enl(h-1x22”-1
+ HHH+C2x2e 2+ CI X2e + C
o・-(9) In this formula (8) and formula (9), 102~
Since cn is known, equations (8)-(9) become as follows.

x+eCH十〇。=s、   ・・・・・・・・・・・
・(!0)XvC,+C6=S2   ・・・・・・・
・・・・・ (11)ここで、 S+””f(x+e)  CllX1e  Cn−lX
1e”−’  ”’ C3x、6” ”””(12)S
2”f(X2e)  CllX26  Ch−tx、、
   +++ E2x26”・・・・・・(13)であ
る。
x+eCH 10. =s, ・・・・・・・・・・・・
・(!0)XvC,+C6=S2 ・・・・・・・
... (11) Here, S+""f(x+e) CllX1e Cn-lX
1e"-'"' C3x, 6"""" (12)S
2”f(X2e) CllX26 Ch-tx,,
+++ E2x26” (13).

従って、(LO)−(11)式の2元−次連立方程式ケ
解けば、係数Co−C1が求まる、 次に、第41ヌ!に示す々1」<、偶・状・)ス体20
の中心ffMel上ノl:f#、れft 2 点A−C
’11itニルLMk13.!:、中央の1個F5iで
測定された中心位置Bとのずれ距離M ’< 1iil
l ’、i:y: することにより、帯状物体20の中
心線プロフィール?c永めるよう(1′(シy=場合ケ
例にとって、本発明の詳細な説明ずも、 この場合も、中心1111は、前出(1)式で表わされ
るn次の曲線であると仮定する。
Therefore, by solving the two-dimensional simultaneous equation of (LO)-(11), the coefficient Co-C1 can be found. Next, the 41st Nu! Shown in 1"<, even, shape,) 20
Center of ffMel upper nol:f#,reft 2 points A-C
'11it Nil LMk13. ! :, deviation distance from center position B measured by one central piece F5i M'< 1iil
l', i:y: The centerline profile of the strip-shaped object 20 by ? As shown in FIG. Assume.

一方、市i1.lJ!13け、中心線ll上の2点A−
Ct通る直線であるので、2点A、Cの座標を、A(X
I−f(x、))、 C(x3、f(x3))とすると
、次式で表わされる。
On the other hand, city i1. lJ! 13, two points A- on the center line ll
Since it is a straight line passing through Ct, the coordinates of the two points A and C are A(X
If I−f(x, )) and C(x3, f(x3)), it is expressed by the following equation.

従ワて、点B−E(直線13上の点)の座標上。On the coordinates of point B-E (point on straight line 13).

それぞれ、B(X2− f(X2)−E(x2− f3
(X2))とすると、ずれ距離Mは、次式のように表わ
でれる。
respectively, B(X2- f(X2)-E(x2- f3
(X2)), the deviation distance M is expressed as the following equation.

M= f3(X2)−f(x2) ここで第4図に示した如く、X3−XI”L、 + x
2−Xl−L2とすると、(15)式は次のようになる
M= f3(X2)-f(x2) Here, as shown in Figure 4, X3-XI"L, + x
2-Xl-L2, equation (15) becomes as follows.

更に、F3+ (xl)=f (X3)−f(x、)、
F+z(x)=f (xl)−f (X2)とおくと、
前出(1)式より−F31 (X)、F12 (X)は
、それぞれ次のようになる。
Furthermore, F3+ (xl)=f (X3)−f(x,),
If we set F+z(x)=f(xl)-f(X2),
From the above equation (1), -F31 (X) and F12 (X) are respectively as follows.

Fa+ (x) = Cn (X311−xln)+C
n−1(x3n−x、、 n−1) + −”+C2(
x3”−x I 2) +C1(x3−xl)F12(
X)−Cn(XInX2n)−+−c、−1(x、 n
−’  X2”−’ ) + ””””’+C2(XI
” x2”)+C,(xIX2)この(17)−(18
)式を前出(16)式に代入すると、ずれ距離Mは、結
局、次式に示す如くと在る。
Fa+ (x) = Cn (X311-xln)+C
n-1(x3n-x,, n-1) + -”+C2(
x3”-x I 2) +C1(x3-xl)F12(
X)-Cn(XInX2n)-+-c,-1(x, n
-'X2"-') +""""'+C2(XI
"x2") + C, (xIX2) this (17) - (18
) is substituted into the above-mentioned equation (16), the deviation distance M is finally as shown in the following equation.

この(19)式より、ずれ距離Mも、やはり(n−2)
次式になることがわかる。父、中心MAAi+に懺ゎす
(1)式の係数Co”’−Cnのうち、c2〜cnが(
19)式に含まれている。槌って、帯状物体2oの中心
線111について、十分な個数のずれ距離Mi繰返し測
定し。
From this formula (19), the deviation distance M is also (n-2)
It can be seen that the following formula is obtained. Of the coefficients Co'''-Cn of equation (1) given to the center MAAi+, c2 to cn are (
19) Included in Eq. Using a hammer, a sufficient number of deviation distances Mi are repeatedly measured about the center line 111 of the strip-shaped object 2o.

(n−2)次のLす1殆)ビイjって回5箒係詮ヌ盆求
め−(19)式全展開し7たときの各係数との比較全行
えば、帯状物体20の甲ノひ線11+ k n次式と仮
がしたときの、2次からn次までの係数02〜C11が
求まることになる。
(n-2) Next L 1 almost) Bij 5 times 5 broomstick calculation - Comparison with each coefficient when formula (19) is fully expanded and 7 is completed. The coefficients 02 to C11 from the second order to the nth order are found when assuming that the equation is the n-th order equation.

一方、係数Cn−C1については、すれ距離L)Lから
中心線フロンづ一ル金求める場合と同様にして。
On the other hand, the coefficient Cn-C1 is calculated in the same way as when calculating the center line freon from the sliding distance L)L.

前出(10)−(11)式の2元−代連立方程式を解く
ことによって求めることかできる。
It can be obtained by solving the two-dimensional simultaneous equations of equations (10) and (11) above.

なお、前bB画定I J隔L1とL2は一帝状物体2゜
の長さdとの関係が、例えは)、、==ffl−1,2
:’!−とな2′4 るように55 N)れげよい。この関係は、帯状物体2
0の中心線フロフィールが俊化すれば多少震るが、通常
、[F、廷過程で観察される厚板の中心線プロフィール
につ(・−〇tよ、十分適用できる。
In addition, the relationship between the front bB demarcation IJ distance L1 and L2 and the length d of the 2° diameter object is, for example), ==ffl-1,2
:'! -tona2'4 55 N) Regeyoi. This relationship is based on the band-shaped object 2
If the centerline profile of 0 is sharpened, it will tremble somewhat, but it is usually fully applicable to the centerline profile of a slab observed during the process.

以上のように、本発り]は、すれ距離1)L又l1−1
Mを測定することで、帯状物体20の中心線フロフィー
ルIt k n rLの多項式として求めるものである
。ずれ距I#lit D L MにMirよ、帯状物体
20がy軸方向へ平行移動しても変化しないので、本発
明は。
As mentioned above, the main departure] is the passing distance 1) L or l1-1
By measuring M, it is determined as a polynomial of the center line flow field It k n rL of the strip-shaped object 20. In the present invention, the deviation distance I#lit D L M does not change even if the strip-shaped object 20 is translated in the y-axis direction.

帯状物体2 Uの悟振れの影Vを受けな(・0又、係数
Co、C+に求める際に、中心線l]のデータA(Xt
e−f(x+e))−B(x2e−f(x2e))  
k耳B込むことから、データA (Xte −f (x
te) )、B(Xze−f (X2e ) )測定時
の帯状物体20と製造ラインとの位置関係も明確にでき
る。従って、帯状物体20の長手方向にわたって、連続
的に1曲りの制御l量を変化させることも可能となる。
The data A (Xt
e-f(x+e))-B(x2e-f(x2e))
Since k ears B are included, data A (Xte −f (x
The positional relationship between the strip-shaped object 20 and the production line at the time of measuring te)) and B(Xze-f(X2e)) can also be clarified. Therefore, it is also possible to continuously change the control amount for one bend over the longitudinal direction of the strip-shaped object 20.

な訃、本発明によれば、帯状物体20の横振れによる誤
差は生じないが、帯状物体20が回転すれば誤差となり
、回転による誤差の増加の具合は。
However, according to the present invention, an error does not occur due to lateral vibration of the belt-shaped object 20, but if the belt-shaped object 20 rotates, an error occurs, and the extent to which the error increases due to rotation is as follows.

第5図に実線H或いは破線工で示す如くとなる。It will be as shown by the solid line H or broken line in FIG.

しかしながら、帯状物体201例えば厚板の回転は、多
くて=64onの板長妊に対して2501klK程度、
即ち−〇=ta、n ’ (250/40000)=0
.36°ぐらいである。従って、このような回転が中心
線、プロフィール測定中に生じても、ずれ距離DLから
中心線プロフィールを求める場合は、実際の中心線プロ
フィールと計算で求めた中心線プロフィールの差が、殆
んどOであるので、全体としては大きな影響を与えない
。更に一厚板が15°回転したとしても一誤差は8〜1
4闘程度増加するのみである。¥際の工程においては、
このような大きな回転は絶対に起こり得ないし、仮シに
起ったとしても、その影I#は軽微である。
However, the rotation of the belt-shaped object 201, for example, a thick plate, is approximately 2501 klK for a plate length of 64 on at most.
That is, -〇=ta, n' (250/40000)=0
.. It is about 36°. Therefore, even if such a rotation occurs during centerline and profile measurement, when calculating the centerline profile from the deviation distance DL, the difference between the actual centerline profile and the calculated centerline profile will be very small. Since it is O, it does not have a big influence as a whole. Furthermore, even if one thick plate is rotated by 15 degrees, the error will be 8 to 1.
It only increases by about 4 fights. In the process of ¥,
Such a large rotation can never occur, and even if it were to occur, its impact I# would be slight.

他方、ずれ距離Mから中心線プロフィールを求めるよう
にした方法に寂いて(−1:、第5図から、回転角θ=
 0..36°ぐらいの回転に対しては、誤差が殆んど
生じていないことが明らかである。又−5゜の回転に対
しても、誤差の増加は2闘以内で、その影響は椿めて小
さい。このように、本発明は、帯状物体20の回転の影
響も殆んど受けない。
On the other hand, I am disappointed in the method of determining the center line profile from the deviation distance M (-1:, from Fig. 5, the rotation angle θ =
0. .. It is clear that almost no error occurs for a rotation of about 36°. Also, even for a rotation of -5 degrees, the increase in error is within 2 degrees, and its influence is extremely small. In this way, the present invention is also almost unaffected by the rotation of the strip-shaped object 20.

以下図面を参照して、本発明に係る帯状物体の中心線プ
ロフィール測定中法の実施例全詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for measuring the centerline profile of a strip-shaped object according to the present invention will be described in detail below with reference to the drawings.

第6図+d +厚板圧延工場における、ずれ距離DL又
はMから中心線プロフィール全測定する装置の概略奢示
したものである、この装置にお℃・ては。
Figure 6 d + This is a schematic diagram of an apparatus for measuring the entire center line profile from the deviation distance DL or M in a plate rolling mill.

ミル後方に設置した。中心位置測定が可能な幅計22−
24−26により厚板IOの中心線11の位置を測九二
する。中心線Itlの位置測定の原点は−y軸方向が、
ライン中心m J −x il!ll+方向が、厚板J
Oの尾端10b付近として還・る。一般に、圧延中の厚
板lOの先端10a及O・尾端10b付近は、クロップ
形状金しているため、厚板lOの中心線l]の位置測定
1.偽所としては不適当である。そこで、ライン中心線
J上で、幅計22.26からそれぞれ1m離れた位置に
、赤外線検出式の先端検出器28及び尾端検出器30を
設置し、先端検出器28が厚板lOの先端10 a ’
<検出した瞬間に、中心線l】の位置測定全開始し、尾
端検出器30が厚板lOの尾A#10 k)’、H検出
した瞬間に、中心線11の位置測定を終了′するように
している。その間(は、グープルローラ32に設置面し
たパルス発据器(図示省略)によシ、0.1m単位でサ
ンプリング長さ全設定し、繰返し測定できるようになっ
ている。
It was installed at the rear of the mill. Width meter 22- that can measure the center position
24-26 to measure the position of the center line 11 of the plank IO. The origin of the position measurement of the center line Itl is in the -y axis direction.
Line center m J −x il! ll+ direction is thick plate J
Return to the vicinity of the tail end 10b of O. In general, the tip 10a and the vicinity of the O/tail end 10b of the thick plate 1O during rolling are cropped, so the position measurement of the center line 1 of the thick plate 10 1. This is inappropriate as a fake place. Therefore, on the line center line J, an infrared detection type tip detector 28 and a tail edge detector 30 are installed at positions 1 m apart from the total width 22.26, and the tip detector 28 is located at the tip of the thick plate lO. 10 a'
<At the moment of detection, the position measurement of the center line 1 starts completely, and the moment the tail end detector 30 detects the tail A#10 k)', H of the thick plate lO, the position measurement of the center line 11 is finished. I try to do that. In the meantime, a pulse generator (not shown) installed on the goop roller 32 is used to set the entire sampling length in units of 0.1 m, making it possible to perform repeated measurements.

以下−まず−ずれ距離DLから中心線プロフィールを求
めるようにした第1実施例の場合全例にとって、作用を
説明する。
Below - first - the operation will be explained for all cases of the first embodiment in which the center line profile is determined from the deviation distance DL.

第7図に示す如く、幅計22.24.26による厚板l
Oの中心線11の位置測定結果を。
As shown in FIG.
The position measurement result of the center line 11 of O.

A(x+に−f(x+k))、B(jc2に−f (X
2k> )、C(xak、f(Xak) )、(ただし
k = l % m−ylは測定1包数)とすると、こ
れらのデータを前出(3)式に代入し、引算すれば、m
個のずれ距離DLが求まる。ところで、厚板lOの場合
には、6次式で中心線e1のプロフィールが精度良く近
似できろことが判明したので、本実施例でQよ、(Xl
に−DLk)(k = 1〜m )の出」で、6次−2
次=4次のし1り耐荀イ丁う工うにした。このときの、
各々の厚板毎に求められた回帰係数’fKi〜Ko (
D L==に4 Xl ’ +Ks Xl ”+ K2
X12+に1 xl+Ko )とすると−厚板lOの中
心線プロフィールを表わす6次式%式% の舖、数は1次のように求なぁ。
A (-f (x+k) to x+), B (-f (X
2k> ), C(xak, f(Xak) ), (where k = l % m-yl is the number of one package measured), then by substituting these data into equation (3) above and subtracting, we get , m
The displacement distance DL is determined. By the way, in the case of thick plate lO, it has been found that the profile of the center line e1 can be accurately approximated by the 6th order equation, so in this example, Q, (Xl
−DLk) (k = 1~m), and the sixth order −2
Next = 4th time. At this time,
The regression coefficient 'fKi~Ko (
D L = = 4 Xl ' +Ks Xl '' + K2
If X12+ is 1xl+Ko), then the number of the 6th order expression % expression % expressing the center line profile of the -thick plate lO can be found as 1st order.

C6=に4/15・Mo   ・・・・・・・・・・・
・・・・ (20)C,=に3/10 M、−2MIC
6・・−=・(21)C4=に2/6M0 5M+Cs
/3−5M2C1,/2 ・−・−・(22)C3==
に1 /3Mo 4HI C4/3−5 H2CV/3
−2M3Co −・・’ (23)C2−Ko/Mo 
MIC3M2C4M3C5H4C11””””””(2
4)ここで、 MO=L、 (L2−L、 ) IA+ =L14−L2 H2=L12+ LIL2 +L2” H3:LI”+ LI2L2 +LI L2”十L2”
H4=I4’+ 143L2+L12L22+LI 1
4’+ L2’である。
C6= 4/15・Mo・・・・・・・・・・・・
... (20) C, = 3/10 M, -2MIC
6・・−=・(21) C4=to 2/6M0 5M+Cs
/3-5M2C1,/2 ・−・−・(22)C3==
ni1/3Mo 4HI C4/3-5 H2CV/3
-2M3Co -...' (23) C2-Ko/Mo
MIC3M2C4M3C5H4C11””””””(2
4) Here, MO=L, (L2-L, ) IA+ =L14-L2 H2=L12+ LIL2 +L2" H3: LI"+ LI2L2 +LI L2"10L2"
H4=I4'+ 143L2+L12L22+LI 1
4'+L2'.

又、係数C8−C,は、中心線11s の最後の位置測
定データCXun−f (X+ m)) −(xam−
f (X3m)) k用いて、次式から、」<める。
Also, the coefficient C8-C is the last position measurement data CXun-f (X+ m)) - (xam-
Using f (X3m)) k, from the following formula, ``<.

C+−(St−83)/ (X+m  xam)  ・
+・・、・−・・・・−・= (25)Co”’ (X
+m °S3  X3m°S1)/(x+m  xam
)−°°°(26)ここで、 5t=f(x+m)−C6x1m” Csxlrn5C
4XB11LC3X1m”−C2X1m”・・・・・・
・・・・・・ (27) 8s=f(xam)−C6X3m’ Csx3m’−C
4xgLCaxp3−c2X3m”・・・・・・・  
(28) である。
C+-(St-83)/ (X+m xam) ・
+・・・・・・・−・= (25)Co”' (X
+m °S3 X3m°S1)/(x+m xam
)−°°°(26) Here, 5t=f(x+m)−C6x1m” Csxlrn5C
4XB11LC3X1m”-C2X1m”・・・・・・
・・・・・・ (27) 8s=f(xam)-C6X3m'Csx3m'-C
4xgLCaxp3-c2X3m"・・・・・・
(28).

第8図に、Ll=23m、 L2=12m、サンプリン
グ長さ’i0.577L毎とした場合の、第1実施例に
よる測定結果の一例を示す。第8図(A)にプロットし
た点が、すれ距離DLの測定値であシ、実線Kが4次の
回帰全行つ7こ結果金示したものでおる。又。
FIG. 8 shows an example of the measurement results according to the first embodiment when Ll=23m, L2=12m, and sampling length 'i is set every 0.577L. The points plotted in FIG. 8(A) are the measured values of the grazing distance DL, and the solid line K shows the result of all the fourth-order regressions. or.

第8図(B)において、実線1hが厚板10c’)実際
の中心線プロフィールケ示したものであシ、破線Nが1
本実施例の6次近似によシ求めた中心線プロフィール會
示したものである。第8図(B)から明らかなように、
実際の中心線プロフィールllト本発明によシ求めた中
心線プロフィールNとの差は、最高25・ill程度で
あり、両者は良く一致している。
In Fig. 8(B), the solid line 1h shows the actual center line profile of the thick plate 10c'), and the broken line N shows 1
This figure shows the centerline profile obtained by the sixth-order approximation of this example. As is clear from Figure 8 (B),
The difference between the actual centerline profile 11 and the centerline profile N determined according to the present invention is about 25·ill at most, and the two agree well.

次に、すれII!12離Mから中心線7′ロフイール會
測楚するようにした、本発明の第2実施例全詳細に説明
する。
Next, Sure II! A second embodiment of the present invention will now be described in full detail, in which the centerline 7' profile is measured from a distance of 12 M.

この第2*施例においても、前記第l実施例と同様の鋏
籠會用いるので、装置についての説明は省略し、第9囚
全参照して一作用を説明する。第9図において、幅計2
2.24.26による厚板ioの中心線JISlの位置
測定結果ケ、 p、(x、に、 f(xsk))、B 
(X2k = f(x2に3− C(x3に、f(xs
k)) −(ただしに=1〜m、mは測定回数)とする
と、これらのデータを前出(15)式に代入し、計算す
れば、m個のずれ距離i〜1が求する。このようにして
求められたずれ距離Mに幻し7で、前6e四】実施例の
コ諷合と同様に、(X+に−Mk) (k=1− ・−
・、m)のhで、6次−2次=4次の回帰を行うように
した。このときの1回帰係数ヲに4〜Ko(Ai = 
K4 x 1’+に3x、3+に2x l’+に+ X
l +Ko )とすると、厚板10の中心線ブロク1−
ル會 式 %式% の係数1・址5次のように水まる1、 C 6 ”” K4/ I 5 HO     ・・・
・・・・・・・・・・・・・・・・・・・・ (29)
C5二に3/ 10 HO  2HI C6    ・
・・・・・・・・・・・・・・・・・・・ (30)C
4二i<2/sHo  5HIC73  5H2Ca/
’2  −−−  (31)C3=に1/3Hoa)(
、 C4,/3  5H2C5/’32)izc6 −
 (32)Cz=Ko/Ho  n,C3)i2c4 
 M3C5−H4C6 ・・−・−(33)ここで。
In this second* embodiment as well, the same scissor cage as in the first embodiment is used, so a description of the device will be omitted and the operation will be explained with reference to the ninth embodiment. In Figure 9, width total 2
2.24.26 Position measurement result of center line JISl of plank io, p, (x, to, f(xsk)), B
(X2k = f(x2 to 3- C(x3 to f(xs
k)) - (where = 1 to m, where m is the number of measurements), by substituting these data into the above equation (15) and calculating, m deviation distances i to 1 are found. The misalignment distance M obtained in this way is 7, and as in the previous example, (-Mk to X+) (k=1- ・-
・, m) h, 6th order - 2nd order = 4th order regression was performed. At this time, 1 regression coefficient is 4~Ko (Ai =
K4 x 3x to 1'+, 2x to 3+ + X to l'+
l +Ko), the center line block 1- of the thick plate 10
The coefficient of the % formula % is 1 and the 5th order is 1, C 6 "" K4/ I 5 HO...
・・・・・・・・・・・・・・・・・・・・・ (29)
C5 2 3/10 HO 2HI C6 ・
・・・・・・・・・・・・・・・・・・・・・ (30)C
42i<2/sHo 5HIC73 5H2Ca/
'2 --- (31)C3=to1/3Hoa)(
, C4,/3 5H2C5/'32) izc6 −
(32) Cz=Ko/Ho n, C3) i2c4
M3C5-H4C6...--(33) Here.

)io:’[、zls  L2) )it = LI + L2 1(2 = LI”+LI L2 +LンHa =L1
”+L+” L2+ LI L22+L2’H4 ” 
LI’+LIJL2+LI” L22+LI L23+
L2’である。
)io:'[, zls L2) )it = LI + L2 1 (2 = LI" + LI L2 + Ln Ha = L1
"+L+" L2+ LI L22+L2'H4"
LI'+LIJL2+LI" L22+LI L23+
It is L2'.

一方、係a C6−C,は、中心線l】の最後の位置測
定データ(xlm−f(xtm))、(Xprn−f 
(xyn))’を用いて、前記第1実廁1タトと同様に
、前出(25)式及び(26)式から求d)る。
On the other hand, the coefficient a C6-C is the last position measurement data (xlm-f(xtm)), (Xprn-f
(xyn))' is used to calculate d) from the above-mentioned equations (25) and (26) in the same way as in the first actual calculation.

第1O図に、L1=23m−L2==12rn、サンプ
リング長さ金(L5mvJとした場せの、第2実施例に
ょ7: tal1足結米の一例を示ア。第10図(AJ
に10ツトした点が−ノーれ距離Mの611j定1直で
あジー実線0が4次の回〕imを行った結果を示したも
のである。又、第10図!(B)に2いて、東線で1が
厚板loの実際の中心線プロフィール上水したものであ
り、破線Pが5本実弗例の6次近似により求めた中心線
プロア ”I−ルを示したも(・℃心る。第10図(B
)から明らかなように、火成の中心線プロフィール11
と本発明によシ求め゛た中心線プロフィールとの差は、
最鍋25節程反であり、両省は良く一致している。
Figure 10 shows an example of the second embodiment where L1 = 23m - L2 = = 12rn and the sampling length is L5mvJ. Figure 10 (AJ
The points drawn by 10 are the 611j constant straight line with the -no-run distance M, and the solid line 0 indicates the result of performing the 4th-order im. Also, Figure 10! In (B) 2, 1 is the actual centerline profile of the thick plate LO on the east line, and the broken line P is the centerline profile obtained by the 6th approximation of the 5 actual examples. Figure 10 (B
), the igneous centerline profile 11
The difference between the center line profile and the center line profile obtained according to the present invention is
The two ministries are in good agreement, with 25 sections being the same.

な2前記火砲例は、いずれも1本発明を一厚板の中心軸
ン’ Ll ニア /l’−ルの測冗に適用したもので
あるが、本発明の適用範囲は、これに限定されず、熱延
銅版等の他の帯状物体の中心線プロフィールの沖1定、
或いは、型鋼、棒鋼等の棒状物体の曲9訓足にも同様に
適用できることは明らかである。
2. In each of the above examples of firearms, the present invention is applied to the measurement of the central axis of one thick plate, but the scope of application of the present invention is not limited to this. First, the center line profile of other strip objects such as hot-rolled copper plates, etc.
Alternatively, it is clear that the present invention can be similarly applied to the curve 9 of bar-shaped objects such as shaped steel and steel bars.

以上説明し7た通り一本発明によれば、帯状物体の横振
れの影響?受けることなく、帯状物体の中心線プロフィ
ール?精度良く詳細に求めることができる。父、同時に
一製造ライン上によ・ける帯状゛物体の位置関係を知る
ことができる等の優れた効果ケ有する。
As explained above, according to the present invention, what is the effect of lateral vibration of the belt-shaped object? Centerline profile of a band-shaped object without receiving? It is possible to obtain detailed information with high accuracy. Moreover, it has excellent effects such as being able to know the positional relationship of strip-like objects that are moved on one production line at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2従来から、〃板の曲り?制御するために4(
11定されているキャンバの定義葡示す平面図、卯2図
は一隣接した2個所で抑j足された中心位置を結ぶ直線
の延長線と、残りの1個所で測定された手心位置とのず
れか離DLから、帯状物体の中心線プロフィールケ測定
する場合における、本発明の詳細な説明するための線図
、第3図は、同じく斜視図−第4図は1両端の2個所で
測定された中心位置を結ぶ75 MA I−中央の1個
所で測定された中心位置とのずれ距[Mから、帯状物体
の中心線プロフィール全測定する場合におシブる一本発
明の詳細な説明するための線図、第5図1は、同じく、
帯状物体の[01転角と測定誤差の状態の関係を示す眞
1k(、り((1図は1本発明に係るイ1を状・酸2体
の中心線プロフィール測定方法會笑施するだめの装置の
一例の構成を示す斜視図、身17図は、不発明に係る帯
状物体の中心線ブロフイールホ11定方伝の第l実姉例
により、埋板の中心線プロフィールを測定している状I
μ?示す平面図、第8図(A) (B)は、目jJ g
r7第1実施例における、板長手方向位IUとう゛れ距
離DL及び中ノ+l!lプロフィールの関係の一%j 
7i示1−線図、り179図は、不発明に係る帯状物体
の中心線プロフィール測定方法の第2冥椎例により、J
¥板の中I[461プロフイールケ測定している状態を
示す千1用図、第1O図FA) (B)は、前6ピ第2
実施例における。 板畏手方向位置とずれ距離M及び中心線フ゛ロフイール
の関係のfl、l ’に示す線図である。 io・・厚板、20・・・帯状物体−2124−26・
・・幅計−32・・・デープルローラ。 弗 l 図 弗 2 因 第 3 図 第 4 図 y 第 :5 図 一回転角 第6 回 第  フ  戻]
Figure 1 shows 2. The bending of the board? 4(
11 Definition of camber that is defined The plan view shown in Figure 2 shows the extension of a straight line connecting the center positions suppressed at two adjacent places and the hand center position measured at the remaining one place. Diagrams for explaining the present invention in detail when measuring the center line profile of a strip-shaped object from the deviation distance DL. FIG. 75 MA I - The deviation distance from the center position measured at one point in the center [M], which is useful when measuring the entire center line profile of a strip-shaped object.Detailed explanation of the present invention The diagram for FIG. 5, 1, is also
Figure 1 shows the relationship between the [01 rotation angle and the measurement error state of a strip-shaped object. Fig. 17 is a perspective view showing the configuration of an example of the device, and Fig. 17 shows a state in which the centerline profile of a buried board is measured using the first example of the centerline profile of a band-shaped object according to the present invention.
μ? The plan views shown in FIGS. 8(A) and 8(B) are
r7 In the first embodiment, the plate longitudinal direction IU, the curl distance DL and the center +l! 1% of the relationships in the profile
Fig. 7i shows 1-diagram and Fig. 179 shows J.
Inside the board I
In the example. It is a line diagram shown in fl, l' of the relationship between the position in the direction of the plate, the deviation distance M, and the centerline profile. io...Thick plate, 20...Striped object-2124-26.
...Width total -32...Dipple roller. Figure 1 Rotation angle 6th F Return]

Claims (3)

【特許請求の範囲】[Claims] (1)帯状物体の中心線プロフィ−/L全求めるに際し
て、帯状物体長手方向に平行な基準線と帯状物体中心位
置との距離を、帯状物体長手方向の3個Rrで測定し、
そのうち2個所で測定された中心位置を結ぶ直線と残シ
の1個所で測定された中心位置とのずれ距1iI11.
ケ求め、帯状物体長手方向位置で繰返し求められたずれ
距離と帯状物体長手方向位置との関係を回帰演算によ、
9n−2次の多項式として求め、前記n  2次多項式
の各係数及び@gじ回帰演算を行う際に用いたデータの
うち任意の2組のデータと帯状物体の中心線プロフィー
ルをn次多項式として近似した揚台の各係数との間に成
立する関係音用いて前記n次多項式の各係数を求d〕て
、帯状物体の中心線プロフィール’ff1n次多項式と
して近似するようにしたことを特徴とする帯状物体の中
心線プロフィール測定方法。
(1) When determining the center line profile/L of the strip-shaped object, measure the distance between the reference line parallel to the longitudinal direction of the strip-shaped object and the center position of the strip-shaped object at three points Rr in the longitudinal direction of the strip-shaped object,
Disparity distance 1iI11 between the straight line connecting the center positions measured at two of the points and the center position measured at the remaining one point.
The relationship between the displacement distance repeatedly determined at the longitudinal position of the strip-shaped object and the longitudinal position of the strip-shaped object is calculated by regression calculation.
9n-2nd degree polynomial, and each coefficient of the n2nd degree polynomial, any two sets of data used in @gji regression calculation, and the center line profile of the band-shaped object as an nth degree polynomial. Each coefficient of the n-th degree polynomial is determined using a related sound established between each coefficient of the approximated lifting platform, and the centerline profile of the strip-shaped object is approximated as an n-th degree polynomial. A method for measuring the centerline profile of a strip-shaped object.
(2)前配すれ距離を、隣接した2個所で測定された中
心位置を結ぶ直線の延長線と、残シの1個所で測定され
た中心位1なとのずれ距離とした特許請求の範囲第L 
* K @6載の帯状物体の中心線プロフィール測定方
法。
(2) The scope of claims where the front alignment distance is defined as the deviation distance between the extension of a straight line connecting the center positions measured at two adjacent locations and the center position 1 measured at one location on the left side. No. L
*Method for measuring the centerline profile of a strip-shaped object as described in K@6.
(3)  前記ずれ距離ケ、内端の2個所で測定された
中心位イ〆を結ぶ直線と、中央の1個所で測定された中
心位置とのすれ距離とした特許請求の範囲第1項に8じ
載の帯状物体の中心線プロフィール測定方法。
(3) The deviation distance K is defined as the distance between a straight line connecting the center position A and the center position measured at two points on the inner edge and the center position measured at one point in the center. Method for measuring the centerline profile of a strip-shaped object as described in 8th Edition.
JP17669782A 1982-10-07 1982-10-07 Measurement for center line profile of belt-shaped matter Pending JPS5965710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17669782A JPS5965710A (en) 1982-10-07 1982-10-07 Measurement for center line profile of belt-shaped matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17669782A JPS5965710A (en) 1982-10-07 1982-10-07 Measurement for center line profile of belt-shaped matter

Publications (1)

Publication Number Publication Date
JPS5965710A true JPS5965710A (en) 1984-04-14

Family

ID=16018154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17669782A Pending JPS5965710A (en) 1982-10-07 1982-10-07 Measurement for center line profile of belt-shaped matter

Country Status (1)

Country Link
JP (1) JPS5965710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274806A (en) * 1987-05-01 1988-11-11 Nippon Steel Corp Detection of shape of slip in continuous annealing furnace
JPH0196505A (en) * 1987-10-08 1989-04-14 Matsushita Electric Ind Co Ltd Measuring instrument for three-dimensional object
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274806A (en) * 1987-05-01 1988-11-11 Nippon Steel Corp Detection of shape of slip in continuous annealing furnace
JPH0196505A (en) * 1987-10-08 1989-04-14 Matsushita Electric Ind Co Ltd Measuring instrument for three-dimensional object
JP2006234540A (en) * 2005-02-24 2006-09-07 Jfe Steel Kk H-section steel shape measuring method

Similar Documents

Publication Publication Date Title
CN105115976B (en) A kind of rail abrasion defect detecting system and method
US10755132B2 (en) Methods for extracting surface deformation feature of object based on linear scanning three-dimensional point cloud
CN101422787B (en) Strip-steel flatness measuring method based on single-step phase-shift method
US11506481B2 (en) Apparatus and a method for rolling weight deflection measurement
CN109596075A (en) A kind of straightness or curvature on-line measurement device and method
CN104457603A (en) Object deformation measurement method under high-temperature environment
WO2014090555A1 (en) Flatness measuring and measuring of residual stresses for a metallic flat product
CN103758017A (en) Detection method and detection system for three-dimensional pavement elevation grid numerical value
CN102749623B (en) Method for testing ground sampling distance of high-accuracy remote sensing satellite based on target
CN103605135A (en) Road feature extracting method based on fracture surface subdivision
CN106080661A (en) Train guide rail profile undulatory wear measuring method
CN101655506A (en) Method for contactless measurement of speed and/or the length of a string, especially a cable, moving lengthways
CN111895962A (en) Method for monitoring deformation of operation subway station
CN105447817A (en) Edge contour-based hot-rolled intermediate billet flat image stitching method
CN108253930A (en) One kind has runed more river subway tunnel TERM DEFORMATION monitoring method
CN103240283B (en) Automatic band steel width detecting method
JPS5965710A (en) Measurement for center line profile of belt-shaped matter
CN106758714A (en) The scaling method of beam rut detection device and cross section determine method to a kind of multiple spot altogether
CN209230563U (en) A kind of straightness or curvature on-line measurement device
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
CN106040750B (en) Position compensation device and its position compensation method in the processing of looping mill rolling part
Zhao et al. Slope surface displacement monitoring based on a photogrammetric system
CN111398906B (en) Method for positioning external invasion position of subway tunnel based on TDOA
JP2975053B2 (en) Detection method of welding point in continuous rolling
Li et al. Research on the measurement of the large-components flatness based on gravitational straightedge method of adaptive two-end growth