JPS63274747A - Manufacture of heat-resisting metallic material - Google Patents

Manufacture of heat-resisting metallic material

Info

Publication number
JPS63274747A
JPS63274747A JP11024487A JP11024487A JPS63274747A JP S63274747 A JPS63274747 A JP S63274747A JP 11024487 A JP11024487 A JP 11024487A JP 11024487 A JP11024487 A JP 11024487A JP S63274747 A JPS63274747 A JP S63274747A
Authority
JP
Japan
Prior art keywords
heat
aging treatment
aging
temperature
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11024487A
Other languages
Japanese (ja)
Inventor
Toushi Shibata
柴田 闘志
Susumu Yamamoto
進 山本
Kazuyoshi Sato
和良 佐藤
Mitsunobu Ota
太田 充宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Sumitomo Electric Industries Ltd
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Sumitomo Electric Industries Ltd
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Sumitomo Electric Industries Ltd, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP11024487A priority Critical patent/JPS63274747A/en
Publication of JPS63274747A publication Critical patent/JPS63274747A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce a material excellent in heat resistance by simplified means, by applying solution heat treatment to an Ni-Cr-Fe-type heat- resisting stock to which Nb is added and by subjecting the above to area- reducing cold working and then to aging treatment under specific conditions. CONSTITUTION:A heat-resisting metal stock having a composition consisting of, by weight ratio, 45-60% Ni, 15-25% Cr, 3-7% (Nb+Ta), 2-5% Mo, <0.1% C, and the balance Fe with inevitable impurities or to which 0.1-1.0% Al and/or 0.1-1.5% Ti is further added is subjected to solution heat treatment at 900-1,250 deg.C, which is then subjected to cold working accompanied by 10-80% reduction in area. Subsequently, aging treatment is applied at a temp. in range represented by an equation, t=2.5d+C [where (t) means aging temp., (d) means reduction in area attendant upon cold working before aging treatment, and C means a constant of 770-820), for 0.5-8hr. In this way, the heat-resisting metallic material such as spring material can be efficiently manufactured by means of the existing equipment.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は原子力用、航空闘用、自動車用などに使用さ
れる耐熱性が高度に要求される金属材料の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing metal materials that are used for nuclear power, air combat, automobiles, etc. and require a high degree of heat resistance.

〈従来の技術〉 高温環境下で高応力を受ける耐熱部材として従来は、合
金元素の種類および含有量の多い高合金あるいは超合金
とよばれる金属材料が使用されている。
<Prior Art> Conventionally, metal materials called high alloys or superalloys, which contain many types and contents of alloying elements, have been used as heat-resistant members that are subjected to high stress in high-temperature environments.

このような材料として最初に実用化されたのはGo基合
金であったが、加工性に劣るために敬遠され、次第に析
出強化型Ni基合金が主流を占めるようになってきた。
Go-based alloys were the first to be put to practical use as such materials, but they were avoided due to poor workability, and precipitation-strengthened Ni-based alloys gradually became mainstream.

この型の合金は、一般に硬質であるNi3#。This type of alloy is generally hard Ni3#.

Ni3Tjを主な析出相とし、これを溶体化処理後時効
処理を施すことによりマトリックス中に均一微細に析出
させることで高温強度を高めたものである。従って、析
出強化処理前は比較的加工性がよいことも特徴である。
The main precipitated phase is Ni3Tj, which is subjected to solution treatment and then aging treatment to uniformly and finely precipitate it in the matrix, thereby increasing high-temperature strength. Therefore, it is also characterized by relatively good workability before precipitation strengthening treatment.

従来、この種の合金は原子力用部品などに一部使用され
る程度であったが、近年航空■用橢体部品、エンジン部
品、自動車部品などの耐熱ばね材料として市場が急速に
広まっている。
In the past, this type of alloy was only used in parts for nuclear power plants, but in recent years the market has been rapidly expanding as a heat-resistant spring material for aircraft shell parts, engine parts, automobile parts, etc.

また、性能向上にのニーズも高まり、従来のM1L添加
に加えて陽を添加し、新たに陳3陽の析出相によりさら
に強化したものも使用されている。
In addition, the need for performance improvement has increased, and in addition to the conventional addition of M1L, yang is added, and products further strengthened by a new precipitated phase of Chen 3yang are also being used.

なかでも隆および陽との分離が困難なTaを含む添加量
が3重量%を越える高隆型、陳基析出強化型合金は高温
強度がすぐれ注目されている。
Among these, high-temperature alloys and precipitation-strengthened alloys containing Ta, which is difficult to separate from high-temperature alloys, in excess of 3% by weight, are attracting attention because of their excellent high-temperature strength.

〈発明が解決しようとする問題点〉 ところが、この種合金は所望の性能を得るために、従来
は高Nb添加の陳基合金の時効処理として、fil  
700〜800℃で10時間程度保持し、析出相の核を
均一微細に出現させる。
<Problems to be Solved by the Invention> However, in order to obtain the desired performance of this type of alloy, conventionally, as an aging treatment for a high Nb-added alloy, a filtration process was performed.
The temperature is maintained at 700 to 800°C for about 10 hours to cause the nuclei of the precipitated phase to appear uniformly and finely.

(2炉冷により80〜150℃降瀉、炉冷時間を含め、
約10時間保持を行ない、時効析出を促進させる。
(2 furnace cooling to 80-150℃, including furnace cooling time,
Holding is performed for about 10 hours to promote aging precipitation.

紗 などの長時間におよぶ時誠処理がなされていた。gauze There was a long period of time spent dealing with the matter.

しかし、この種合金の時効反応の機構は明確に解明され
ておらず、上記の時効条件も経験的要素の強いものであ
る。また、溶体化処理後に強化のだめの冷間加工を施す
場合、その後の時効98理条件は冷間加工時の断面減少
率の影響を考慮する必要がある。
However, the mechanism of the aging reaction of this type of alloy has not been clearly elucidated, and the aging conditions described above also have strong empirical elements. Furthermore, when performing cold working for strengthening after solution treatment, it is necessary to consider the influence of the area reduction rate during cold working on the subsequent aging conditions.

〈問題点を解決するための手段〉 この発明は上記従来法の問題点を解決すべく検討の結果
、綿密な実験と統計的手法に基づいて見出された耐熱性
にすぐれた高陽添加のN、基合金の製造方法であって、
従来法にない簡便な方法で従来法におけると遜色のない
耐熱強度を有する金属材料が得られるものである。
<Means for Solving the Problems> The present invention aims to solve the problems of the above-mentioned conventional methods, and as a result of studies, it was discovered based on detailed experiments and statistical methods that a highly positive additive N having excellent heat resistance was used. , a method for producing a base alloy, comprising:
A metal material having heat resistance strength comparable to that of the conventional method can be obtained using a simple method not available in the conventional method.

即ち、この発明は重量比でNi45〜60%、Cr15
〜25%、陽+Ta 3〜7%、−2〜5%を含有し、
不可避的に混入されるCを0.1%未満に制限し、残部
がFeおよび不可避的不純物からなる耐熱金属素材、ま
たは、さらにN001〜1.0%、TL O11〜1.
5%の1種または2種を添加した耐熱金属′fA44を
900〜1250℃にて溶体化処理したのち、10〜8
0%の断面減少を伴う冷間加工を行ない、次いでt =
 −2,56+ C (@シ、t:時効処理温度、d:時効処理前の冷間加工
に伴う断面減少率であって10〜80、Cニア70〜8
20の定数) の式で示される範囲の温度で0.5〜8時間時効処理を
施すことを特徴とする耐熱金属材料の製造方法を提供す
るものである。
That is, this invention uses 45 to 60% Ni and 15% Cr by weight.
~25%, positive + Ta 3~7%, -2~5%,
A heat-resistant metal material in which unavoidably mixed C is limited to less than 0.1%, and the remainder is Fe and unavoidable impurities, or further N001-1.0%, TL O11-1.
After solution treatment of heat-resistant metal 'fA44 with 5% of one or two added at 900-1250°C, 10-8
Cold working with 0% cross-section reduction and then t =
-2,56+ C (@shi, t: aging treatment temperature, d: area reduction rate due to cold working before aging treatment, 10 to 80, C near 70 to 8
The present invention provides a method for producing a heat-resistant metal material, which is characterized in that an aging treatment is performed for 0.5 to 8 hours at a temperature within the range shown by the equation (constant of 20).

〈作用〉 この種の合金は溶体化処理後、耐熱強度を高めるために
冷間加工を施すことが多い。この場合の断面減少率は、
大きいほど時効処理後の耐熱強度が^いが、反面靭性が
低下するので使用環境に応じて適当な断面減少率をとる
必要がある。
<Function> After solution treatment, this type of alloy is often subjected to cold working in order to increase its heat resistance strength. The cross-sectional reduction rate in this case is
The larger the size, the higher the heat resistance strength after aging treatment, but on the other hand, the toughness decreases, so it is necessary to take an appropriate area reduction rate depending on the usage environment.

その断面減少率の範囲は10〜80%が適当であって、
これが80%を越える強加工は脆化を伴い、また10%
未満では冷間加工による耐熱強度の向上効果が薄い。
The appropriate range of the area reduction rate is 10 to 80%,
Strong processing in which this value exceeds 80% is accompanied by embrittlement, and 10%
If it is less than that, the effect of improving heat resistance strength by cold working is weak.

この発明は下記の考察手順の下に見出されたものである
ため、上記した断面減少率の範囲ならば任意の断面減少
率においても簡便な時効処理で、従来の煩雑でしかも長
l1間にわたる時効処理によるものに比べても遜色のな
いすぐれた耐熱強度の金属材料が得られるのである。
Since this invention was discovered based on the following consideration procedure, it is possible to use a simple aging treatment for any area reduction rate within the above-mentioned area reduction rate range, and it can be used in a simple aging treatment, which is conventionally complicated and takes a long time. It is possible to obtain a metal material with excellent heat resistance and strength comparable to that obtained by aging treatment.

以下にその考察手順に基づいて説明する。The following is an explanation based on the examination procedure.

(1)  まず素材として下記第1表に示す組成の*5
C2JW#効処理前の断面減少率、時効処理の温度およ
び時間を第2表の工程図に示す製造条件の組合せで実施
し、同一サイズで製造条件の異なる試料を作成した。な
おこの発明は簡便な時効処理条件ですぐれた耐熱強度を
得ることを狙いとしているため、時効温度は一定のいわ
ゆる一段時効処理とした。
(1) First, as a material, *5 with the composition shown in Table 1 below.
The cross-section reduction rate before C2JW# effect treatment, the temperature and time of aging treatment were carried out under the combination of manufacturing conditions shown in the process chart in Table 2, and samples of the same size but under different manufacturing conditions were created. Since this invention aims to obtain excellent heat resistance strength under simple aging treatment conditions, a so-called one-stage aging treatment in which the aging temperature is constant is used.

第    211 なお、比較のために第2図に示す従来法の工程による時
効処理を施した試料もあわせて作成した。
211 For comparison, a sample subjected to aging treatment according to the conventional process shown in FIG. 2 was also prepared.

(3]  (21の手順で作成した試料を、比較試料と
ともに400℃、500℃、600℃および700℃の
試験温度で高温引張試験を実施した。
(3) (The samples prepared in step 21 were subjected to high-temperature tensile tests along with comparative samples at test temperatures of 400°C, 500°C, 600°C, and 700°C.

(41[3]で得られたデータをもとに、重回帰分析を
実施し、試Mfi度ごとに断面減少率1時効部度、時効
時間と高温引張強度の関係を数量化した。
(Based on the data obtained in 41 [3], multiple regression analysis was carried out to quantify the relationship between area reduction rate 1 aging degree, aging time and high temperature tensile strength for each test Mfi degree.

この結果、t= −2,5d−+−C (@シ、t:時効処理温度、d:時効処理前の冷間加工
に伴う断面減少率で10〜80、Cニア70〜820の
定数) の式で示される範囲の温度で0.5〜8時間時効処理を
施すならば、従来の時効処理に′よるものと遜色のない
耐熱強度が得られることが明らかとなった。
As a result, t = -2,5d-+-C (@shi, t: aging treatment temperature, d: area reduction rate due to cold working before aging treatment, constant of 10 to 80, C near 70 to 820) It has become clear that if the aging treatment is carried out for 0.5 to 8 hours at a temperature within the range shown by the formula, a heat resistance strength comparable to that obtained by conventional aging treatment can be obtained.

上記の考察手順で得られたデータの一部は第3図および
第4図の通りである。いずれも等高線図で示されており
、図中の数字は試験温度500℃における高温引張強度
であって、第3図は時効処理前の冷間加工による断面減
少率が40%の場合の時効時間、時効温度と高温強度の
関係を示すものである。
Part of the data obtained through the above consideration procedure is shown in FIGS. 3 and 4. All are shown in contour diagrams, and the numbers in the diagram are the high-temperature tensile strength at a test temperature of 500°C, and Figure 3 shows the aging time when the area reduction rate due to cold working before aging treatment is 40%. , which shows the relationship between aging temperature and high temperature strength.

また、第4図は時効51!L浬時間が4時間の場合の時
効処理前の冷間加工に伴う断面減少率、時効温度と高温
強度の関係を示すものである。
Also, Figure 4 shows that the statute of limitations is 51! This figure shows the relationship between the cross-section reduction rate due to cold working before aging, aging temperature, and high-temperature strength when the L-drilling time is 4 hours.

第3図は時効処理時間が少なくとも0.5時間は必要で
あり、8時間も実施してやれば十分であることを示すも
のである。第4図は時効処理前の断面減少に伴う断面減
少率と時効温度の関係が前述の式の関係にある場合に高
温強度のピーク値が得られていることを示すものである
FIG. 3 shows that at least 0.5 hours of aging treatment time is required, and that 8 hours is sufficient. FIG. 4 shows that the peak value of high-temperature strength is obtained when the relationship between the area reduction rate due to area reduction before aging treatment and the aging temperature is expressed by the above-mentioned formula.

他の試験温度により得られたデータも同様に上記条件で
従来の時効処理によるものと遜色のない耐熱強度が得ら
れた。
Similarly, data obtained at other test temperatures showed that under the above conditions, heat resistance strength comparable to that obtained by conventional aging treatment was obtained.

次にこの発明で使用する耐熱金属素材における成分組成
(重儲比)の限定理由について説明する。
Next, the reasons for limiting the component composition (weight ratio) of the heat-resistant metal material used in this invention will be explained.

素材成分中のNiの吊を45〜60%とするのは、45
%未満では所望量の析出相を得るのに不十分であり、ま
た60%を越えると過剰で経済上好ましくないからであ
る。
Setting the Ni content in the material components to 45 to 60% is 45%.
If it is less than 60%, it is insufficient to obtain the desired amount of precipitated phase, and if it exceeds 60%, it is excessive and economically unfavorable.

Crは15%未満では十分な耐高温酸化性が得られず、
また25%を越えると加工性が低下するので15〜25
%が適当である。
If Cr is less than 15%, sufficient high temperature oxidation resistance cannot be obtained.
Also, if it exceeds 25%, the workability will decrease, so 15 to 25%
% is appropriate.

陽+1の量は3%未満では陽添加による析出強化への寄
与が低く、7%を越えると経済上好ましくない。
If the amount of +1 is less than 3%, the contribution to precipitation strengthening due to positive addition is low, and if it exceeds 7%, it is economically unfavorable.

比は粒界強化元素として必要であるが、その童が2%未
満では効果が低く、また経済性を考慮すると2〜5%が
適当である。
The ratio is necessary as a grain boundary strengthening element, but if it is less than 2%, the effect is low, and in consideration of economic efficiency, 2 to 5% is appropriate.

Nは析出相構成元素として有効であり、ただし、1%を
越える添加は加工性が劣るので好ましくない。また0、
1%未満では効果が薄い。
N is effective as an element constituting the precipitate phase, but addition of more than 1% is not preferable because processability deteriorates. 0 again,
If it is less than 1%, the effect is weak.

■、も析出相構成元素として有効であるが、そのΦが1
.5%を越えると耐高温酸化性が低下するので好ましく
ない。0.1%未満では効果が薄い。
■ is also effective as a constituent element of the precipitate phase, but its Φ is 1
.. If it exceeds 5%, high temperature oxidation resistance decreases, which is not preferable. If it is less than 0.1%, the effect will be weak.

またCは比と結合して粒界強化に寄与するほかは有害で
あり、従って0.1%以上の添加は耐熱強度を大きく低
下させるため好ましくない。
Further, C is harmful other than contributing to grain boundary strengthening by combining with carbon, and therefore, addition of 0.1% or more is not preferable because it greatly reduces heat resistance strength.

〈実施例〉 以下、この発明を実施例により詳細に説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

素材として第1表に示した組成の素線を用意し、2.8
0 rmφ、1.98 #Iφ、1.61闇φ、1.4
0順φの4つのサイズに線径調整を行ない、次いで10
50℃で3分間、H2ガス雰囲気ガス中で加熱保持の後
室温まで急冷してからいずれも1.25 sφまで伸線
加工を施し、次いで溶体化処理後、夫々20%、40%
、60%、80%の断面減少率を伴う冷間加工を施した
。そして断面が1.25 aφの同一サイズで断面減少
率の異なる4種類の試料を作成した。
Prepare a wire with the composition shown in Table 1 as a material, and 2.8
0 rmφ, 1.98 #Iφ, 1.61 darknessφ, 1.4
Adjust the wire diameter to four sizes in order of φ, then 10
After heating and holding in an H2 gas atmosphere at 50°C for 3 minutes, the wires were rapidly cooled to room temperature and then wire-drawn to 1.25 sφ, followed by solution treatment and then 20% and 40%, respectively.
, 60%, and 80% of the area were cold worked. Then, four types of samples with the same cross-sectional size of 1.25 aφ but different cross-sectional reduction ratios were prepared.

これらの試料を夫々以下に示す温度で4時間の時効処理
を施した。第1図にこの発明の製造工程の模式図を示し
た。
Each of these samples was subjected to an aging treatment for 4 hours at the temperatures shown below. FIG. 1 shows a schematic diagram of the manufacturing process of this invention.

伸線加工による断面減少率と時効温度 また、比較のため第2図に示す従来法の製造工程による
時効処理を施した試料も作成した。
For comparison, a sample subjected to aging treatment according to the conventional manufacturing process shown in FIG. 2 was also prepared.

上記で得たこの発明の方法と従来法によるものの試料に
ついて500℃および700℃の試験温度で引張試験を
行なった。その結果は第5図に示した。
Tensile tests were conducted on the samples obtained above using the method of the present invention and the conventional method at test temperatures of 500°C and 700°C. The results are shown in Figure 5.

この図からこの発明の簡便な時効処理を行なったもので
も従来法によるものと遜色のない耐熱強度が得られるこ
とが実証された。
This figure proves that the simple aging treatment of the present invention can provide a heat resistance strength comparable to that obtained by the conventional method.

〈発明の効果〉 以上説明したように、この発明の方法によれば、すぐれ
た耐熱性を有する1N&ll添加N1基合金材が従来に
なく簡便な製造方法により得ることができ、しかも既存
の設面で効率のよい生産が可能であることが認められた
<Effects of the Invention> As explained above, according to the method of the present invention, a 1N&ll-added N1-base alloy material having excellent heat resistance can be obtained by a simpler manufacturing method than ever before, and moreover, it can be produced using an existing installation surface. It was recognized that efficient production is possible.

従って、価格面での制約が駁和され、市場規模の拡大を
図ることができるという大きな効果を有するものである
Therefore, it has the great effect of eliminating price constraints and expanding the market scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法における時効5[!L理工程の
一例を示す模式図、第2図は従来法の時効処理工程を示
す模式図、第3図は断面減少率を特定した場合の時効時
間、時効温度と高温強度の関係を示す図表、第4図は時
効処理時間を特定した場合の断面減少率、時効温度と高
温強度の関係を示す図表、第5図はこの発明の方法と従
来法による金属材料の高温強度の比較図表である。 r−−−7゜ 1 。 1、−、:l l l・□゛ 出願人代理人  弁理士  和 1)昭   しユニ第
114         第2図 (−ZSd+&)OFCX4Hr         7
2(FCX8Hr4\発明仏            
#東法第4図 第3ンS ひ1@詩@ (Hrs、) 第514 断面η、少牟(・ム)
FIG. 1 shows the statute of limitations 5[! Figure 2 is a schematic diagram showing an example of the L-treatment process. Figure 2 is a schematic diagram showing the aging treatment process of the conventional method. Figure 3 is a diagram showing the relationship between aging time, aging temperature, and high-temperature strength when the area reduction rate is specified. , Fig. 4 is a chart showing the relationship between cross-section reduction rate, aging temperature and high-temperature strength when aging treatment time is specified, and Fig. 5 is a chart comparing high-temperature strength of metal materials according to the method of this invention and the conventional method. . r---7゜1. 1, -, :l l l・□゛Applicant's agent Patent attorney Kazu 1) Showa Uni No. 114 Figure 2 (-ZSd+&)OFCX4Hr 7
2 (FCX8Hr4\Inventor Buddha
#Toho No. 4 Figure 3 S Hi1 @ Poetry @ (Hrs,) No. 514 Section η, Shao Mu (・mu)

Claims (1)

【特許請求の範囲】 重量比でNi45〜60%、Cr15〜25%、Na+
Ta3〜7%、Mo2〜5%を含有し、不可避的に混入
されるCを0.1%未満に制限し、残部がFeおよび不
可避的不純物からなる耐熱金属素材、または、さらにA
l0.1〜1.0%、Ti0.1〜1.5%の1種また
は2種を添加した耐熱金属素材を900〜1250℃に
て溶体化処理したのち、10〜80%の断面減少を伴う
冷間加工を行ない、次いで下式 t=−2.5d+C (但し、t:時効処理温度、d:時効処理前の冷間加工
に伴う断面減少率であって10〜80、C:770〜8
20の定数) の範囲の温度で0.5〜8時間時効処理を施すことを特
徴とする耐熱金属材料の製造方法。
[Claims] Weight ratio: 45 to 60% Ni, 15 to 25% Cr, Na+
A heat-resistant metal material containing 3 to 7% Ta and 2 to 5% Mo, with the unavoidably mixed C being limited to less than 0.1%, and the remainder consisting of Fe and unavoidable impurities, or
A heat-resistant metal material containing one or two of 0.1-1.0% Ti and 0.1-1.5% Ti is solution-treated at 900-1250°C, resulting in a 10-80% cross-section reduction. Then, the following formula t=-2.5d+C (where t: aging treatment temperature, d: area reduction rate due to cold working before aging treatment, 10 to 80, C: 770 to 8
A method for producing a heat-resistant metal material, characterized in that aging treatment is performed at a temperature in the range of 0.5 to 8 hours (a constant of 20).
JP11024487A 1987-05-06 1987-05-06 Manufacture of heat-resisting metallic material Pending JPS63274747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024487A JPS63274747A (en) 1987-05-06 1987-05-06 Manufacture of heat-resisting metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024487A JPS63274747A (en) 1987-05-06 1987-05-06 Manufacture of heat-resisting metallic material

Publications (1)

Publication Number Publication Date
JPS63274747A true JPS63274747A (en) 1988-11-11

Family

ID=14530762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024487A Pending JPS63274747A (en) 1987-05-06 1987-05-06 Manufacture of heat-resisting metallic material

Country Status (1)

Country Link
JP (1) JPS63274747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328827B1 (en) * 1994-07-13 2001-12-11 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Method of manufacturing sheets made of alloy 718 for the superplastic forming of parts therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328827B1 (en) * 1994-07-13 2001-12-11 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Method of manufacturing sheets made of alloy 718 for the superplastic forming of parts therefrom

Similar Documents

Publication Publication Date Title
US8551265B2 (en) Cobalt-base alloy with high heat resistance and high strength and process for producing the same
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
EP0235075B1 (en) Ni-based alloy and method for preparing same
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
US3898109A (en) Heat treatment of nickel-chromium-cobalt base alloys
US3676225A (en) Thermomechanical processing of intermediate service temperature nickel-base superalloys
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
US4668312A (en) Turbine blade superalloy I
US2430306A (en) Precipitation hardenable copper, nickel, tantalum (or columbium) alloys
JPS5834129A (en) Heat-resistant metallic material
US6328827B1 (en) Method of manufacturing sheets made of alloy 718 for the superplastic forming of parts therefrom
JPS58120758A (en) High strength nickel base superalloy product
JPS63274747A (en) Manufacture of heat-resisting metallic material
JP2004197161A (en) Working and heat treatment method for niobium carbide-containing iron-manganese-silicon base shape-memory alloy
US3420716A (en) Method of fabricating and heat-treating precipitation-hardenable nickel-base alloy
JPH1025557A (en) Method for heat treating nickel base superalloy
JPH07233432A (en) Shape memory alloy and its production
CN113025848A (en) Iron-nickel-based precipitation strengthening type high-temperature alloy and preparation method and application thereof
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JP3794999B2 (en) Nickel-base alloy, nickel-base alloy heat treatment method, and nuclear component using nickel-base alloy
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPS62167839A (en) Ni base alloy and its manufacture
JP3409077B2 (en) High-temperature lightweight high-strength titanium alloy
JPS61143567A (en) Manufacture of high temperature spring
EP0194683A1 (en) Nickel-chromium alloys having a dispersed phase