JPS63273020A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS63273020A
JPS63273020A JP62106984A JP10698487A JPS63273020A JP S63273020 A JPS63273020 A JP S63273020A JP 62106984 A JP62106984 A JP 62106984A JP 10698487 A JP10698487 A JP 10698487A JP S63273020 A JPS63273020 A JP S63273020A
Authority
JP
Japan
Prior art keywords
amplifier circuit
sheet
detector
infrared
pyroelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106984A
Other languages
Japanese (ja)
Inventor
Hiroshi Tokuda
浩 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP62106984A priority Critical patent/JPS63273020A/en
Publication of JPS63273020A publication Critical patent/JPS63273020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a highly sensitive detector with few noises by using specific frequency bands and combining an amplifier circuit for the frequency bands and a composite pyroelectric element with each other. CONSTITUTION:Lead titanate ceramic powder is arranged on a polyamide imide varnish sheet in single scattering and, after the solvent of the varnish is removed, applied with a pressure and heated to obtain a sheet. After both surfaces of the sheet are polished to expose the ceramic powder on both the surfaces, copper is formed by sputtering to make an electrode. One surface of the electrode is blackened as a light receiving surface to make a composite pyroelectric element. The element is connected to an FET and accommodated in a stainless steel casing together with a signal take-out resistor. A polyethylene foam with an independent bubble structure is adhered to the wall surfaces of the casing except an infrared transmission window to perform a thermal insulation. In this case, signals have a frequency band from 0.01Hz-0.5Hz to be amplified and the signals are led to an amplifier circuit having an amplification factor of 40dB or above in afore-mentioned region. The amplifier circuit constitutes a detector.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は緩慢な動作をも確実に捕らえることのできる赤
外線検出器に関するものであり、さらには対人赤外線検
出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detector that can reliably detect even slow movements, and more particularly to an infrared detector for people.

〔従来技術〕[Prior art]

従来、焦電素子を用いた対人赤外線検出器は、人体以外
の自然の発生する赤外線エネルギー(ノイズ)を極力除
去し、しかも人体から発生する微弱な赤外線エネルギー
を捕捉することが必要であり、このために赤外線感知部
に凹面鏡を用い、該凹面鏡のビーム径と通常予想される
歩行速度などの観点から増幅回路は0.511zから5
Hzの周波帯に対して40dllないし80dB程度の
増幅率を有するものが使用されていた。
Conventionally, interpersonal infrared detectors using pyroelectric elements have to remove as much as possible the infrared energy (noise) generated by nature other than the human body, and also capture the weak infrared energy generated by the human body. Therefore, a concave mirror is used for the infrared sensing part, and the amplifier circuit is designed to
Those having an amplification factor of about 40 dll to 80 dB for the Hz frequency band were used.

しかしながらこのような増幅回路では極めてゆっくりと
した赤外線エネルギー源の変化に対しては感応せず、こ
の点が従来の焦電素子を用いた赤外線検出器の最大の欠
点であった。
However, such an amplifier circuit is not sensitive to extremely slow changes in the infrared energy source, which has been the biggest drawback of conventional infrared detectors using pyroelectric elements.

即ち焦電素子が赤外線エネルギーを感知し信号を発する
のは、赤外線エネルギー源が凹面鏡のビーム径を横切る
時間の大小に支配され、緩慢な動作に充分追従するため
には回路の増幅率0.5Hz以下の低周波域に於いても
高いレベルで維持させておく必要があるにもかかわらず
、ノイズ等の関係からこのような低周波帯域は全く無視
されてきており、いままでこのような低周波帯域の増幅
率を高レベルとした赤外線検出器は見当たらなかった。
In other words, the fact that the pyroelectric element senses infrared energy and emits a signal is governed by the amount of time it takes for the infrared energy source to cross the beam diameter of the concave mirror, and in order to sufficiently follow the slow motion, the amplification factor of the circuit is 0.5 Hz. Although it is necessary to maintain a high level in the following low frequency ranges, these low frequency bands have been completely ignored due to noise etc. No infrared detector with high band amplification was found.

〔発明の目的〕[Purpose of the invention]

本発明は、従来捕捉できなかった赤外線エネルギー源の
緩慢な動作を捕捉できる赤外線検出器を得んとして鋭意
研究した結果、従来考えられていなかった低周波帯域の
増幅率を高レベルにすることによって緩慢な動作に対す
る信号を大きく取り出すことが可能であるとの知見を得
、種々検討を加え完成に至っ、たちのであり、その目的
とするところは緩慢な動作に対しても感度が非常に優れ
、かつノイズが少ない赤外線検出器を得るにある。
As a result of extensive research into an infrared detector capable of capturing the slow motion of infrared energy sources that could not be detected in the past, the present invention was developed by increasing the amplification factor in the low frequency band to a high level, which was previously unthinkable. After gaining the knowledge that it was possible to extract a large signal for slow movements, we conducted various studies and completed the process. The object of the present invention is to obtain an infrared detector with less noise.

〔発明の構成) 本願発明は、 赤外線感知素子と、増幅回路からなる赤外線検出器系に
おいて、該回路の増幅率が0.01Hzから0.511
2の周波数帯において40dB以上である増幅回路と、
赤外線感知素子が複合焦電体素子からなることを特徴と
する赤外線検出器に関するものである。
[Structure of the Invention] The present invention provides an infrared detector system consisting of an infrared sensing element and an amplifier circuit, in which the amplification factor of the circuit is from 0.01Hz to 0.511Hz.
an amplifier circuit having an output of 40 dB or more in the frequency band of No. 2;
The present invention relates to an infrared detector characterized in that the infrared sensing element is composed of a composite pyroelectric element.

従来の赤外線検出器においては、焦電素子の出力は赤外
線エネルギー源が、焦電体素子の視野を横切る時間の大
小で支配される。
In conventional infrared detectors, the output of the pyroelectric element is determined by the amount of time the infrared energy source traverses the field of view of the pyroelectric element.

一方、この視野を横切る人体の歩行速度は0.1m1s
ecないしl m/sec と設計されていたので、焦
電素子の受光する赤外線エネルギー変化は周波数にして
0.511z以上と見積ることができ、増幅回路の増幅
率は0.5Hz以上の周波数帯域で高いレベルを維持す
るように設計されていた。
On the other hand, the walking speed of a human body crossing this field of view is 0.1 m1s
ec to l m/sec, the change in infrared energy received by the pyroelectric element can be estimated to be 0.511 z or more in frequency, and the amplification factor of the amplifier circuit is 0.5 Hz or more in the frequency band. It was designed to maintain a high standard.

このため従来の赤外線検出器でも歩行速度が0.1m+
/sec以上であれば充分な出力が得られるが、歩行速
度が0.1濃ハec以下の緩慢な動作に対しては、回路
の増幅率が不足して殆ど出力が得られなかった。
Therefore, even with conventional infrared detectors, the walking speed is 0.1 m+
Sufficient output can be obtained if the walking speed is 0.1 ec or more, but for slow movements where the walking speed is 0.1 ec or less, the amplification factor of the circuit is insufficient and almost no output can be obtained.

これに対して本願発明の回路は0.01112から0.
58Zの周波数帯で40dB以上である増幅率を有する
ことが必要である。
In contrast, the circuit of the present invention ranges from 0.01112 to 0.0.
It is necessary to have an amplification factor of 40 dB or more in the 58Z frequency band.

本発明の回路においては増幅回路の周波数帯域の低周波
側は直流に近い程、静止に近い極めて緩慢な動作まで追
従でき好ましい、しかじ焦電素子は温度変化に対して信
号を出力するので、通常は無信号時の動作点(バイアス
電圧)を定め、信号はこのバイアス電圧値を中心に上下
に出力できるように設計しなければならず、このため直
流部分まで増幅すればバイアス電圧骨だけで回路の出力
が飽和してしまい好ましくない、したがって直流のごく
近傍で増幅率をカットする必要があるが、現実的な電気
的フィルターの傾斜特性や回路の安定性などから0.0
1Hzが限界である。また、増幅回路の周波数帯域の高
周波側は0.5Hzまでとれば充分であり、これ以上周
波数帯域を高周波側へ拡張しても、緩慢な動作に対する
出力には殆んど寄与しないだけでなく、次第にハムの影
響も目立ち始め好ましくない。
In the circuit of the present invention, it is preferable that the lower frequency side of the frequency band of the amplifier circuit is closer to direct current, as it can follow even extremely slow movements that are close to stationary.However, since the pyroelectric element outputs a signal in response to temperature changes, Normally, the operating point (bias voltage) when there is no signal is determined, and the design must be such that the signal can be output up and down around this bias voltage value. The output of the circuit becomes saturated, which is undesirable.Therefore, it is necessary to cut the amplification factor very close to DC, but from the perspective of the slope characteristics of practical electrical filters and the stability of the circuit, it is not desirable to cut the amplification factor to 0.0.
1Hz is the limit. Furthermore, it is sufficient to keep the frequency band of the amplifier circuit up to 0.5 Hz, and even if the frequency band is extended further to the high frequency side, not only will it hardly contribute to the output for slow operation, Gradually, the influence of hum starts to become noticeable, which is not desirable.

増幅された信号は、しきい値回路に導びかれ信号処理さ
れるのが普通であるが、信号処理を行なうにあたっては
、しきい値電圧設定の精度から、増幅された信号は0.
5ボルト以上のレベルを維持することが望ましい、赤外
線エネルギーを受光することによる焦電素子の信号は極
めて僅かであるために、本願発明の増幅回路では、少な
くとも40dB以上の増幅率が必要である。これ以下の
増幅率ではS/Nが低下し、信頬性が乏しくなるため好
ましくない。
The amplified signal is normally guided to a threshold circuit and subjected to signal processing, but when carrying out signal processing, the amplified signal must be 0.0.
Since the signal of the pyroelectric element by receiving infrared energy, which is preferably maintained at a level of 5 volts or more, is extremely small, the amplifier circuit of the present invention requires an amplification factor of at least 40 dB. An amplification factor lower than this is not preferable because the S/N ratio decreases and reliability becomes poor.

本願発明で使用する複合焦電体素子は、強誘電体セラミ
ック粉末と高分子樹脂との複合体であり、セラミック単
体、単結晶などの焦電素子に比較して薄く加工すること
可能なため、素子の熱容量を小さく抑え、感度の向上を
はかることが可能となる。特に、セラミック粉末が高分
子樹脂の厚み方向に単一分散状に配置され、しかもその
両面は樹脂を介することなく露出し、厚み方向に形成さ
れた電極に直接接触している構造は、焦電体素子の一層
の感度向上を実現するうえで好ましい。
The composite pyroelectric element used in the present invention is a composite of ferroelectric ceramic powder and polymer resin, and can be processed to be thinner than pyroelectric elements such as single ceramic or single crystal. It becomes possible to suppress the heat capacity of the element and improve the sensitivity. In particular, a structure in which ceramic powder is arranged in a monodisperse manner in the thickness direction of a polymer resin, exposed on both sides without intervening resin, and in direct contact with electrodes formed in the thickness direction, is a pyroelectric This is preferable in order to further improve the sensitivity of the body element.

また本願発明による赤外線検出器では、増幅回路の増幅
率は低周波帯域で高いレベルを維持するため、検出器の
おかれた環境で緩慢な温度ユラギがあった場合これに感
応し、S/Nの低下を招くことがある0通常、検出器に
於いてはS/Nが3以上なければ誤動作も多く、信鯨性
に乏しい、すなわちこのような外乱の影響を除去し、S
/Nの向上をはかることが本願発明の赤外線検出器には
効果的であり、焦電体素子のまわりを外界から断熱し、
温度ユラギを抑制することが信頼性向上の観点から一層
好ましい。
In addition, in the infrared detector according to the present invention, the amplification factor of the amplifier circuit is maintained at a high level in the low frequency band, so if there is a slow temperature fluctuation in the environment in which the detector is placed, it will be sensitive to this and the S/N will increase. 0 Normally, in a detector, if the S/N ratio is not 3 or higher, there are many malfunctions and the reliability is poor.
/N is effective for the infrared detector of the present invention, by insulating the area around the pyroelectric element from the outside world,
It is more preferable to suppress temperature fluctuations from the viewpoint of improving reliability.

断熱方法としては、焦電体素子を収納した筐体を熱伝導
率が小さい系で包埋するのが望ましく、例えばウレタン
フオーム、ポリエチレンフオーム、スチレンフオームな
ど発泡高分子シートの貼付けや高分子樹脂による注型包
埋、あるいは筐体を2重構造にし、筐体間を真空に排気
して保持する方法などが有効である。
As a heat insulation method, it is desirable to embed the casing containing the pyroelectric element in a system with low thermal conductivity. Effective methods include casting embedding, or a method in which the housing is made into a double structure and the space between the housings is evacuated and maintained.

〔発明の効果〕〔Effect of the invention〕

本願発明は従来考えられてもいなかった周波数帯をもち
いて、これらの増幅回路と複合焦電素子とを組み合わせ
ることによって、今まで捕らえることのできなかった赤
外線エネルギー源の緩慢な動作をも補捉できるものであ
り、更には人体検出器として用いることにより防犯分野
に於いても非常に威力を発揮することができる赤外線検
出器である。
The present invention utilizes a frequency band that has not been considered in the past, and by combining these amplifier circuits and a composite pyroelectric element, it can also capture the slow motion of infrared energy sources that has not been able to be detected until now. Furthermore, by using it as a human body detector, it is an infrared detector that can be extremely effective in the crime prevention field.

(実施例〕 本願発明による赤外線検出器の実施例を以下に示す。(Example〕 Examples of the infrared detector according to the present invention are shown below.

スJLLL 誘電率200のチタン酸鉛系セラミック粉末(平均粒径
100μ、)をポリアミドイミドワニスシートに単−分
散状に配置させ、フェスの溶剤を除去したのち加圧、加
熱してシートを得た。このシートの両面を研磨し、セラ
ミック粉末をシートの両面に露出させたのち、スパッタ
リングで銅を形成して電極とし、180°C,8KV/
amテ15分間分極した。この後電極の片面を受光面と
して黒色化し、4■角に切出して厚さ50μ糟の複合焦
電体素子とした。素子を電界効果型トランジスタ(以下
FETと略す)に結線し、信号取出し用抵抗とともにス
テンレス製筐体に収納した。なお筐体は赤外線透過用の
窓を形成し、窓には6μ涌カツトオン干渉フイルターを
装着した。
Lead titanate ceramic powder (average particle size 100μ) with a dielectric constant of 200 was arranged in a monodisperse state on a polyamide-imide varnish sheet, and after removing the solvent from the face, the sheet was obtained by applying pressure and heating. . Both sides of this sheet were polished to expose the ceramic powder on both sides of the sheet, and then copper was formed by sputtering to form electrodes.
Polarization was performed for 15 minutes. Thereafter, one side of the electrode was blackened to serve as a light-receiving surface, and the electrode was cut into four square pieces to obtain a composite pyroelectric element having a thickness of 50 μm. The device was wired to a field effect transistor (hereinafter abbreviated as FET) and housed in a stainless steel casing together with a signal extraction resistor. The housing formed a window for transmitting infrared rays, and a 6μ cut-on interference filter was attached to the window.

この筐体の透過窓以外の壁面に厚さ3ffIg+、熱伝
導率0.04にcal/+*、hr、”C独立気泡構造
のポリエチレンフオームを貼付け、断熱化を行なった。
A closed-cell polyethylene foam having a thickness of 3ffIg+ and a thermal conductivity of 0.04 cal/+*,hr,"C was attached to the wall surface of this housing other than the transparent window to provide heat insulation.

信号は、増幅する周波数帯域が0.0IHzから0.5
11zであり、この領域での増幅率80dB、fIi衰
特性が24dB10ctの増幅回路に導いて赤外線検出
器とした。この検出器の前方3mの距離を、歩行速度0
.05 m/secで人体が横断したときの検出器の出
力信号を測定した。
The signal is amplified in a frequency band of 0.0IHz to 0.5IHz.
11z, and an infrared detector was constructed by introducing an amplifier circuit with an amplification factor of 80 dB and an fIi attenuation characteristic of 24 dB10 ct in this region. The distance 3m in front of this detector is determined by walking speed 0.
.. The output signal of the detector was measured when a human body crossed at a speed of 0.05 m/sec.

結果を第1表に示す。The results are shown in Table 1.

11■主 断熱化を施こさなうたこと以外は実施例1と同様な検出
器に対し、実施例1と同様な測定を行なった。
11) The same measurements as in Example 1 were carried out using the same detector as in Example 1 except that the main insulation was not applied.

結果を第1表に示す。The results are shown in Table 1.

11■工 増幅回路の増幅率が45dllであること以外は実施例
1と同様な検出器に対し、実施例1と同様な測定を行な
った。
11. The same measurements as in Example 1 were carried out on the same detector as in Example 1 except that the amplification factor of the engineering amplifier circuit was 45 dll.

結果を第1表に示す。The results are shown in Table 1.

、比」L医」− チタン酸鉛系セラミックス(誘電率200.厚さ0.1
m+a)に銅をスパッタリングで電極形成し、180℃
、  8KV/M T215 分間分Fi シタ、 :
: 0)後電極の片面を受光面として黒色化し、2薗φ
に切出して焦電体素子とした。素子とFET、ならびに
信号取出し用抵抗を結線し、全体を6μ鋼カツトオン干
渉フイルターが装着された赤外線透過窓を有するステン
レス筐体に収納した0次いで集光用凹面鏡(外形50I
IIIlφ)を、その焦点が焦電体素子の位置に一致す
るように配置して固定した。
, ratio "L doctor" - lead titanate ceramics (dielectric constant 200, thickness 0.1
Form copper electrodes on m+a) by sputtering and heat at 180°C.
, 8KV/M T215 minutes Fi:
: 0) Blacken one side of the rear electrode as a light-receiving surface, and
It was cut out to make a pyroelectric element. The element, FET, and signal extraction resistor are wired together, and the whole is housed in a stainless steel housing with an infrared transmission window equipped with a 6μ steel cut-on interference filter.
IIIlφ) was placed and fixed so that its focal point coincided with the position of the pyroelectric element.

信号は、増幅する周波数帯域が0.5Hzから5Hzで
あること以外は実施例1と同様な増幅回路に導いて赤外
線検出器とした。この検出器に対し、実施例1と同様な
測定を行なった。
The signal was guided to an amplification circuit similar to that of Example 1, except that the frequency band to be amplified was from 0.5 Hz to 5 Hz, to form an infrared detector. The same measurements as in Example 1 were performed on this detector.

結果を第1表に示す。The results are shown in Table 1.

、比Jし医」− 増幅回路の増幅率が35dBであること以外は実施例1
と同様な検出器に対し、実施例1と同様な測定を行なっ
た。
, ``Philippine Doctor'' - Example 1 except that the amplification factor of the amplifier circuit is 35 dB
The same measurements as in Example 1 were carried out using a detector similar to the above.

結果を第1表に示す。The results are shown in Table 1.

これらのことから、本願発明による赤外線検出器は従来
見地できなかった緩慢な動作をも確実にとらえることの
できるものであることが分る。
From these facts, it can be seen that the infrared detector according to the present invention can reliably detect even slow movements that could not be detected conventionally.

第1表;実施例と比較例Table 1; Examples and comparative examples

Claims (1)

【特許請求の範囲】[Claims] 赤外線感知素子と、増幅回路からなる赤外線検出系にお
いて、該回路の増幅率0.01Hzから0.5Hzの周
波数帯において40dB以上である増幅回路と、赤外線
感知素子が複合焦電体素子からなることを特徴とする赤
外線検出器。
In an infrared detection system consisting of an infrared sensing element and an amplifier circuit, the amplifier circuit has an amplification rate of 40 dB or more in the frequency band from 0.01 Hz to 0.5 Hz, and the infrared sensing element is comprised of a composite pyroelectric element. An infrared detector featuring
JP62106984A 1987-04-30 1987-04-30 Infrared detector Pending JPS63273020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106984A JPS63273020A (en) 1987-04-30 1987-04-30 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106984A JPS63273020A (en) 1987-04-30 1987-04-30 Infrared detector

Publications (1)

Publication Number Publication Date
JPS63273020A true JPS63273020A (en) 1988-11-10

Family

ID=14447527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106984A Pending JPS63273020A (en) 1987-04-30 1987-04-30 Infrared detector

Country Status (1)

Country Link
JP (1) JPS63273020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164217A (en) * 1990-10-26 1992-06-09 Asanumagumi:Kk Pyroelectric type infra-red radiation sensor
JPH04269635A (en) * 1991-02-25 1992-09-25 Matsushita Electric Works Ltd Hot-wire type detector
JP2006048524A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Vehicle detection system
JP2010204114A (en) * 2010-05-06 2010-09-16 Panasonic Electric Works Co Ltd Infrared detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164217A (en) * 1990-10-26 1992-06-09 Asanumagumi:Kk Pyroelectric type infra-red radiation sensor
JPH04269635A (en) * 1991-02-25 1992-09-25 Matsushita Electric Works Ltd Hot-wire type detector
JP2006048524A (en) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd Vehicle detection system
JP2010204114A (en) * 2010-05-06 2010-09-16 Panasonic Electric Works Co Ltd Infrared detector

Similar Documents

Publication Publication Date Title
US4441023A (en) High output differential pyroelectric sensor
TWI421475B (en) Infrared Flame Detector
ES8700471A1 (en) Dual spectrum frequency responding fire sensor.
CN106644036A (en) Sound wave detector based on polymer thin film and dual-wavelength demodulation method
JPS58213396A (en) Ommateal type burglarproof sensor system
CA2459268A1 (en) Radiological image pickup apparatus
US7335885B2 (en) Ultra low power NDIR gas sensor fire detector
US3955184A (en) Passive infrared room intrusion detector
JPS6146768B2 (en)
US3733499A (en) Pyroelectric detector
JPS63273020A (en) Infrared detector
DE69806404T2 (en) PARTICLE DETECTION WITH HIGH SENSITIVITY
JPS6147540A (en) Infrared gas analyzer
US5352895A (en) Pyroelectric device
US3453434A (en) Infrared ray detector utilizing ferroelectric single crystal
US3405273A (en) Detector arrangement having a collector with electrically insulating porous material thereon
US3926522A (en) Far-infrared radiant intensity meter
JP2753920B2 (en) Pyroelectric element
CN219038188U (en) Pyroelectric infrared protection detection device circuit
JPH055291B2 (en)
JPH0145119B2 (en)
JPH0447634Y2 (en)
JPH0412434Y2 (en)
JPS63273019A (en) Infrared detector
GB2161341A (en) Laser microphone