JP2006048524A - Vehicle detection system - Google Patents

Vehicle detection system Download PDF

Info

Publication number
JP2006048524A
JP2006048524A JP2004231252A JP2004231252A JP2006048524A JP 2006048524 A JP2006048524 A JP 2006048524A JP 2004231252 A JP2004231252 A JP 2004231252A JP 2004231252 A JP2004231252 A JP 2004231252A JP 2006048524 A JP2006048524 A JP 2006048524A
Authority
JP
Japan
Prior art keywords
sensor
infrared rays
vehicle
value
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004231252A
Other languages
Japanese (ja)
Other versions
JP4789057B2 (en
Inventor
Hideaki Shironaga
英晃 白永
Yuichi Taniguchi
裕一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004231252A priority Critical patent/JP4789057B2/en
Publication of JP2006048524A publication Critical patent/JP2006048524A/en
Application granted granted Critical
Publication of JP4789057B2 publication Critical patent/JP4789057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle detection system with lighter weight and excellent in detection accuracy. <P>SOLUTION: The vehicle detection system 1 detects a vehicle which passes through a monitoring range on a road and is provided with a sensor 2 which senses infrared rays generated by an object to be detected, an infrared transmission lens 3 arranged in front of the detecting direction of the sensor 2 and a heat alleviation member 4 which alleviates change in an amount of infrared rays except the infrared rays which pass through the lens 3 among the infrared rays to be transmitted to the sensor 2 by external environment. The heat alleviation member 4 is formed of materials with low heat conductivity so that the amount of infrared rays to be irradiated is hard to change by the external environment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、道路上の監視範囲を通過する車両を検知する車両検知システムに関するものである。特に、センサを収納する筐体の温度変化に影響されにくく、高精度に車両を検知することができ、より軽量な車両検知システムに関するものである。   The present invention relates to a vehicle detection system that detects a vehicle passing through a monitoring range on a road. In particular, the present invention relates to a lighter vehicle detection system that is less affected by temperature changes in a housing that houses a sensor, can detect a vehicle with high accuracy, and is lighter.

従来、交通量や占有率などの交通流を調べるために車両を検知する車両検知器として、ループ検知器や超音波検知器などがよく知られている。しかし、ループ検知器は、ループコイルを道路に埋設する作業が必要である他、埋設スペースが確保しにくい橋梁などでは適用できないことがあった。また、超音波検知器は、車両のほぼ真上に位置するように配置する必要があり美観を損なう他、検知器自体が超音波を発するアクティブセンサを利用するため、消費電力が大きい傾向にあった。   Conventionally, loop detectors, ultrasonic detectors, and the like are well known as vehicle detectors that detect vehicles in order to examine traffic flow such as traffic volume and occupation rate. However, the loop detector is not applicable to bridges where it is difficult to secure a buried space in addition to the need to bury the loop coil in the road. In addition, the ultrasonic detector needs to be arranged so as to be located almost directly above the vehicle, which is detrimental to the appearance, and because the detector itself uses an active sensor that emits ultrasonic waves, power consumption tends to be large. It was.

そこで、本発明者らは、上記従来の検知器の不具合を解消するべく、パッシブセンサである赤外線感知センサを利用した車両検知システムを提案している(特許文献1)。この車両検知システムは、サーモパイル素子などの赤外線を感知するセンサにより、車両が発する赤外線及び車両以外の物体(道路など)が発する赤外線をそれぞれ測定し、これら赤外線の量に基づいて、車両の有無を判定する構成である。また、赤外線を感知するエリアを絞り、赤外線をセンサに効率よく集光すると共に、透過させる波長を赤外線領域に絞るために、センサの検知方向前方に赤外線透過レンズを配置することを提案している(特許文献1図17参照)。   In view of this, the present inventors have proposed a vehicle detection system using an infrared detection sensor which is a passive sensor in order to eliminate the problems of the conventional detector described above (Patent Document 1). This vehicle detection system measures infrared rays emitted from vehicles and infrared rays emitted from objects other than vehicles (such as roads) by sensors that sense infrared rays, such as thermopile elements, and the presence or absence of vehicles is determined based on the amount of these infrared rays. It is the structure which determines. In addition, it is proposed to arrange an infrared transmission lens in front of the detection direction of the sensor in order to condense the infrared detection area, condense the infrared light efficiently on the sensor, and limit the transmitted wavelength to the infrared region. (See Patent Document 1 FIG. 17).

特開2003-317186号公報JP2003-317186A

上記本発明者らが提案した車両検知システムについて種々検討した結果、赤外線を感知するセンサを収納している筐体に大きな温度変化が生じた際、車両の検知を適正に行えない場合があることがわかった。本発明者らが調べたところ、センサは、レンズを透過した赤外線以外の赤外線、具体的には、センサの周囲に存在する筐体やレンズの支持部などから放射される赤外線も感知するため、筐体や支持部を熱伝導率が高いアルミニウムなどの金属材料で形成した場合、筐体や支持部の厚みによっては、筐体外部の環境変化によって筐体や支持部の温度が変化すると、その影響を強く受けることがわかった。   As a result of various investigations on the vehicle detection system proposed by the present inventors, there is a case where the vehicle detection may not be performed properly when a large temperature change occurs in the housing that houses the infrared sensor. I understood. When the present inventors investigated, the sensor senses infrared rays other than infrared rays that have passed through the lens, specifically infrared rays emitted from a casing or a lens support portion that exists around the sensor. When the case or support part is made of a metal material such as aluminum with high thermal conductivity, depending on the thickness of the case or support part, if the temperature of the case or support part changes due to environmental changes outside the case, It was found to be strongly affected.

そこで、本発明の主目的は、車両の検知率の悪化を低減して検知精度をより高くすることができる車両検知システムを提供することにある。   Therefore, a main object of the present invention is to provide a vehicle detection system capable of reducing the deterioration of the vehicle detection rate and increasing the detection accuracy.

本発明は、センサの検知面に伝達される赤外線のうち、レンズを透過した赤外線以外の赤外線の量をほぼ一定に保持することができる構成とすることで上記目的を達成する。   This invention achieves the said objective by setting it as the structure which can hold | maintain substantially constant the quantity of infrared rays other than the infrared rays which permeate | transmitted the lens among the infrared rays transmitted to the detection surface of a sensor.

即ち、本発明は、道路上の監視範囲を通過する車両を検知する車両検知システムであって、検知対象が発する赤外線を感知するセンサと、前記センサの検知方向前方に配置される赤外線透過レンズと、前記センサに伝達される赤外線のうち、前記レンズを透過した赤外線以外の赤外線の量が外部環境によって変化するのを緩和する熱緩和材とを具えることを特徴とする。   That is, the present invention is a vehicle detection system that detects a vehicle that passes through a monitoring range on a road, a sensor that detects infrared rays emitted from a detection target, and an infrared transmission lens that is disposed in front of the detection direction of the sensors. A heat relaxation material is provided for reducing the amount of infrared light transmitted to the sensor other than infrared light transmitted through the lens, depending on the external environment.

本発明者らは、車両検知システムの軽量化を図るべく、筐体や赤外線透過レンズの支持部をアルミニウムで形成してみた。そして、より軽量化を図るべく、筐体や支持部の厚みをできるだけ薄くしたところ、太陽光などで筐体や支持部が温められたり、風が吹くことで筐体や支持部が冷やされたりするなどして、筐体や支持部の温度が大きく変化した際、センサがこの温度変化に伴う赤外線量の変化を検知することで、車両の有無の判定が適切に行えない場合があることがわかった。熱伝導率が高いアルミニウムにて筐体や支持部を形成しても、厚みをある程度厚くすれば、太陽光や風などによって筐体の内側や支持部の内側、即ち、筐体や支持部においてセンサと向き合う面の温度が変化しにくいため、筐体や支持部の内側から放射される赤外線量は、太陽光や風などによらずほぼ一定に保持される。従って、外部環境によらず、適正に車両の有無を検知できる。即ち、厚みを大きくすることで、筐体や支持部の内側から放射される赤外線量の外部環境に起因する変化を小さくすることができ、センサも、この赤外線による影響をほとんど受けなくて済む。しかし、厚みを大きくすることで、重量が増加してしまう。そこで、本発明者らは、更なる軽量化を実現すると共に、センサが受ける筐体などから放射される赤外線による影響を低減するべく、同赤外線量の外部環境による変化を緩和する熱緩和材を具えることを規定する。以下、本発明をより詳しく説明する。   In order to reduce the weight of the vehicle detection system, the present inventors tried to form the casing and the support portion of the infrared transmission lens with aluminum. And in order to further reduce the weight, when the thickness of the housing and the support portion is made as thin as possible, the housing and the support portion are warmed by sunlight or the case and the support portion are cooled by blowing wind. For example, when the temperature of the housing or the support changes greatly, the sensor may detect the change in the amount of infrared rays accompanying the temperature change, and the vehicle presence / absence may not be properly determined. all right. Even if the case and the support are formed of aluminum with high thermal conductivity, if the thickness is increased to some extent, the inside of the case or the inside of the support, ie, the case or the support, Since the temperature of the surface facing the sensor is unlikely to change, the amount of infrared radiation radiated from the inside of the housing or the support portion is held almost constant regardless of sunlight or wind. Therefore, the presence or absence of the vehicle can be detected properly regardless of the external environment. That is, by increasing the thickness, it is possible to reduce the change caused by the external environment of the amount of infrared rays emitted from the inside of the housing or the support portion, and the sensor is hardly affected by the infrared rays. However, increasing the thickness increases the weight. Therefore, the present inventors have achieved a further reduction in weight and a thermal relaxation material that reduces the change in the amount of infrared rays due to the external environment in order to reduce the influence of infrared rays radiated from the housing received by the sensor. To provide Hereinafter, the present invention will be described in more detail.

本発明車両検知システムは、物体が発する赤外線の量を測定し、この赤外線の量に基づいて車両の有無を検知する。物体が発する赤外線の量は、ステファン・ボルツマンの法則により、物体の絶対温度のほぼ4乗に比例すると共に、物体の放射率εに比例する。道路上の物体、例えば、道路面や道路を走行する車両の放射率εは、通常、ほぼ同等(通常0.9以上)であり大差がないことが多い。そのため、赤外線を感知するセンサを道路面の方向に向けて設置しておけば、道路などの車両以外の物体と温度が異なる車両が道路面を通過した際、センサが感知する赤外線の量が変化することで、車両を検知することができる。このようなセンサとして、本発明では、センサ自体が赤外線を積極的に放出せず、検知対象が発する赤外線を感知するいわゆるパッシブセンサを具えることを規定する。このセンサは、赤外線が有する熱効果によって温められて温度の上昇によって生じる電気的性質の変化を検出できるものが好ましく、例えば、赤外線により熱電対に発生した温度変化を熱起電力として出力するサーモパイル素子が挙げられる。特に、熱起電力の出力が大きいサーモパイル素子を用いると、焦電センサなどの他のセンサを用いることなく、サーモパイル素子のみでも十分に赤外線の感知を行って、車両を検知することができる。   The vehicle detection system of the present invention measures the amount of infrared rays emitted from an object, and detects the presence or absence of a vehicle based on the amount of infrared rays. The amount of infrared rays emitted by an object is proportional to the fourth power of the absolute temperature of the object and proportional to the emissivity ε of the object according to Stefan-Boltzmann law. The emissivity ε of an object on the road, for example, a road surface or a vehicle traveling on the road, is usually substantially the same (usually 0.9 or more), and there is often no significant difference. Therefore, if a sensor that detects infrared rays is installed in the direction of the road surface, the amount of infrared light detected by the sensor changes when a vehicle with a temperature different from that of an object other than a vehicle such as a road passes through the road surface. By doing so, the vehicle can be detected. As such a sensor, the present invention stipulates that the sensor itself does not actively emit infrared rays but includes a so-called passive sensor that senses infrared rays emitted from a detection target. This sensor is preferably one that can detect a change in electrical properties caused by a rise in temperature that is warmed by the thermal effect of infrared rays. For example, a thermopile element that outputs a temperature change generated in a thermocouple by infrared rays as a thermoelectromotive force Is mentioned. In particular, when a thermopile element having a large thermoelectromotive force output is used, the vehicle can be detected by sufficiently sensing infrared rays using only the thermopile element without using another sensor such as a pyroelectric sensor.

また、本発明では、上記センサにおける赤外線を感知するエリアを適当な範囲に調整でき、かつ赤外線をセンサに効率よく集光するために、センサの検知方向前方に、赤外線透過レンズを配置する。赤外線透過レンズは、赤外線を透過するものであればよく、特に形状は問わない。例えば、一面が球面状でもよい。また、赤外線透過レンズは、特に、ZnSから形成されるものが好ましい。赤外線透過レンズとして、従来Ge(ゲルマニウム)などから形成されるものが知られているが、従来のレンズでは、ガラス系やシリコン系の補助材が必要である。これに対し、ZnSからなるレンズは、耐候性に優れており、レンズ自体を外部に露出させても十分使用に耐え得るため好ましい。   Further, in the present invention, an infrared transmission lens is disposed in front of the detection direction of the sensor in order to adjust the infrared detection area in the sensor to an appropriate range and to efficiently collect the infrared light on the sensor. The infrared transmitting lens is not particularly limited as long as it transmits infrared light. For example, one surface may be spherical. The infrared transmitting lens is particularly preferably made of ZnS. Conventional infrared transmission lenses made of Ge (germanium) or the like are known, but conventional lenses require glass-based or silicon-based auxiliary materials. On the other hand, a lens made of ZnS is preferable because it has excellent weather resistance and can withstand sufficient use even if the lens itself is exposed to the outside.

そして、本発明の最も特徴とするところは、センサに伝達される赤外線のうち、上記赤外線透過レンズを透過した赤外線以外の赤外線(以下、第二赤外線と呼ぶ)の量が気温や風などの外部環境によって変化するのを緩和する熱緩和材を具えることにある。本発明では、システム全体の軽量化を図ると共に、筐体の温度変化に伴う車両検知率の悪化を効果的に抑制するべく、熱緩和材を配置して、センサが感知する赤外線を規制する。即ち、熱緩和材は、センサに伝達される第二赤外線の量を外部環境により変化しにくくし、ほぼ一定に保持する。このような熱緩和材は、アルミニウムなどの熱伝導率が高い材料に比較して熱伝導率が低い材料から形成することが挙げられる。具体的には、10W/mK以下の非金属材料からなるものが挙げられる。熱伝導率は、低いほど好ましく、特に、1.5W/mK以下が好ましい。このような非金属材料としては、例えば、ゴム、セラミックス、紙、プラスチックから選択される少なくとも1種が挙げられる。特に、ゴム、紙、プラスチックは、比較的安価であり、コストを低減できる。具体的なゴムとしては、軟質ゴム(熱伝導率0.14〜0.16W/mK)、硬質ゴム(熱伝導率0.17W/mK)などが挙げられる。具体的なセラミックスとしては、アルミナ、ジルコニアなどが挙げられる。熱伝導率が低い材料にて熱緩和材を形成することで、例えば、太陽光により筐体が温められて、筐体が放射する赤外線量が増加していても、熱緩和材は、温まりにくい、即ち、温度変化が生じにくい。従って、熱緩和材の内側に配置されるセンサに伝達される熱緩和材から放射される赤外線量を少なくすることができる。即ち、センサに伝達される熱緩和材から放射される赤外線量を外部環境によらずほぼ一定に保持することができる。   The most characteristic feature of the present invention is that, among infrared rays transmitted to the sensor, the amount of infrared rays other than the infrared rays transmitted through the infrared transmission lens (hereinafter referred to as second infrared rays) is the outside such as temperature and wind. The purpose is to provide a thermal relaxation material that mitigates changes caused by the environment. In the present invention, in order to reduce the weight of the entire system and to effectively suppress the deterioration of the vehicle detection rate due to the temperature change of the casing, a thermal relaxation material is arranged to restrict infrared rays detected by the sensor. That is, the heat relaxation material makes the amount of the second infrared ray transmitted to the sensor difficult to change depending on the external environment, and keeps it almost constant. Such a heat relaxation material may be formed of a material having a low thermal conductivity compared to a material having a high thermal conductivity such as aluminum. Specific examples include those made of a non-metallic material of 10 W / mK or less. The thermal conductivity is preferably as low as possible, and particularly preferably 1.5 W / mK or less. Examples of such a nonmetallic material include at least one selected from rubber, ceramics, paper, and plastic. In particular, rubber, paper, and plastic are relatively inexpensive and can reduce costs. Specific rubbers include soft rubber (thermal conductivity 0.14 to 0.16 W / mK), hard rubber (thermal conductivity 0.17 W / mK), and the like. Specific ceramics include alumina and zirconia. By forming the heat relaxation material with a material having low thermal conductivity, for example, even if the housing is warmed by sunlight and the amount of infrared rays emitted from the housing increases, the heat relaxation material is difficult to warm. That is, the temperature change hardly occurs. Therefore, the amount of infrared rays radiated from the heat relaxation material transmitted to the sensor disposed inside the heat relaxation material can be reduced. That is, the amount of infrared rays radiated from the heat relaxation material transmitted to the sensor can be kept substantially constant regardless of the external environment.

上記熱緩和材の形状は、赤外線透過レンズを透過した赤外線がセンサの検知面に伝達されるのを妨げることがなければ、特に形状は問わない。例えば、筒状にして、一方の開口部でセンサを囲むようにし、他方の開口部をレンズに当接させるようにして配置させる、即ち、センサとレンズ間に亘って配置させることが挙げられる。このとき、赤外線透過レンズを透過した赤外線は、筒状の熱緩和材内を通過してセンサの検知面に伝達される。一方、筒状の熱緩和材の外周からの赤外線、例えば、筐体からの赤外線は、熱緩和材に遮られるため、センサの検知面に直接伝達されることがほとんどない。このような熱緩和材は、センサにできるだけ近接して配置することが好ましく、筐体内、特に、赤外線透過レンズの支持部の内側に配置することが好ましい。例えば、筐体に赤外線透過レンズを取り付けるレンズ孔を設け、筐体自体をレンズの支持部とする構成にすると、筐体内に上記熱緩和材を配置することで、レンズの支持部の内側に熱緩和材を配置することになる。   The shape of the heat relaxation material is not particularly limited as long as it does not prevent the infrared rays transmitted through the infrared transmission lens from being transmitted to the detection surface of the sensor. For example, it is possible to form a cylinder so that the sensor is surrounded by one opening, and the other opening is in contact with the lens, that is, between the sensor and the lens. At this time, the infrared light transmitted through the infrared transmission lens passes through the cylindrical heat relaxation material and is transmitted to the detection surface of the sensor. On the other hand, infrared rays from the outer periphery of the cylindrical heat relaxation material, for example, infrared rays from the housing are shielded by the heat relaxation material, and are hardly transmitted directly to the detection surface of the sensor. Such a thermal relaxation material is preferably disposed as close as possible to the sensor, and is preferably disposed inside the housing, particularly inside the support portion of the infrared transmission lens. For example, if a lens hole for attaching an infrared transmission lens is provided in the housing and the housing itself is used as a lens support portion, the heat relaxation material is disposed in the housing, so that heat can be generated inside the lens support portion. Mitigating material will be placed.

本発明車両検知システムを構成する上記センサ、赤外線透過レンズ、熱緩和材、その他後述する車両有無の判定手段は、筐体に収納するとよい。筐体は、軽量のアルミニウムなどから形成されるものが好ましい。また、赤外線透過レンズの支持部を設けておく。この支持部は、上記のように筐体にレンズ孔を設けた筐体と一体構成としてもよいし、別途設けてもよい。前者の場合、筐体内には、赤外線透過レンズと焦点距離が合う位置にセンサの固定部を設けることが好ましい。後者の場合、赤外線透過レンズの支持部は、センサをも配置できる形状とし、支持部にセンサ及びレンズを配置した際、センサ、レンズ、支持部が一体の部材となるようにすると、筐体への設置作業が容易にできて好ましい。また、この支持部は、センサ及び赤外線レンズを配置した際、適切な焦点距離となるように形成すると、筐体の所定の場所に配置するとき、焦点距離の調整を行う必要がなく、好ましい。   The sensor, the infrared transmitting lens, the heat relaxation material, and other vehicle presence / absence determining means described later constituting the vehicle detection system of the present invention may be housed in a casing. The casing is preferably made of lightweight aluminum or the like. In addition, a support portion for the infrared transmitting lens is provided. As described above, the support portion may be integrated with the housing in which the lens hole is provided in the housing, or may be provided separately. In the former case, it is preferable to provide a sensor fixing portion in the housing at a position where the focal length matches the infrared transmission lens. In the latter case, the support part of the infrared transmission lens is shaped so that the sensor can be arranged, and when the sensor and the lens are arranged in the support part, the sensor, the lens, and the support part are integrated into the housing. It is preferable that the installation work can be easily performed. In addition, it is preferable that the support portion be formed so as to have an appropriate focal length when the sensor and the infrared lens are arranged, because it is not necessary to adjust the focal length when the support portion is arranged at a predetermined position of the housing.

上記筐体には、赤外線透過レンズの指向角を目的の方向に合わせるための照準部を具えていてもよい。照準部は、指向角を目的の方向に合わせることができるものであればよく、例えば、凹状突起と、凸状突起とを組み合わせた突起などの目印を設けたり、レーザポインタなどを設ける構成が挙げられる。   The casing may include an aiming unit for adjusting the directivity angle of the infrared transmission lens in a target direction. The aiming unit may be any unit that can adjust the directivity angle in a target direction. For example, the aiming unit may be provided with a mark such as a combination of a concave projection and a convex projection, or a laser pointer. It is done.

その他、本発明車両検知システムには、上記センサから得られた入力レベル値を用いて車両の有無の判定を行う判定手段を具えておく。また、センサとしてサーモパイル素子を用いる場合、素子の起電力を増幅するアンプを具えてもよい。更に、判定結果を信号制御機や管理センターなどに有線や無線にて送信する構成を具えていてもよい。   In addition, the vehicle detection system of the present invention includes determination means for determining the presence or absence of a vehicle using the input level value obtained from the sensor. Moreover, when using a thermopile element as a sensor, you may provide the amplifier which amplifies the electromotive force of an element. Furthermore, a configuration may be provided in which the determination result is transmitted to a signal controller, a management center, or the like by wire or wirelessly.

本発明において車両の有無の判定は、上記センサから得られた入力レベル値を用いて行う。この入力レベル値は、そのまま用いるよりも、適当な演算を行った演算値を用いることが好ましい。例えば、車両以外の物体が発する赤外線量に基づく値を背景レベルとし、この背景レベルと入力レベル値との差に基づく値を比較値とし、判定手段は、比較値が閾値以上の場合、車両有りと判定し、比較値が閾値未満の場合、車両無しと判定する構成としてもよい。   In the present invention, the presence / absence of the vehicle is determined using the input level value obtained from the sensor. As the input level value, it is preferable to use a calculated value obtained by performing an appropriate calculation rather than using it as it is. For example, a value based on the amount of infrared rays emitted from an object other than a vehicle is used as a background level, and a value based on the difference between the background level and the input level value is used as a comparison value. If the comparison value is less than the threshold value, it may be determined that there is no vehicle.

上記背景レベルは、上記センサで車両以外からの赤外線の量を随時検出しておき、この検出した赤外線の量に基づく値とすると、実際の環境の値に近似して、より精密な検知を行うことができる。例えば、車両以外からの赤外線を複数回検出したデータの平均値や、指数平滑法による演算値を用いてもよい。指数平滑法は、一般にf0=α×d-1+(1-α)f-1=f-1+α×(d-1-f-1)と表され(f0:次期予測値、α:平滑係数、d-1:前期の実績値、f-1:前期の予測値)、前期の実績値(ここでは、入力レベル値)を反映できるため、背景レベルを実際の環境(路面状況)に即したより的確な値となり得る。特に、平滑係数αを前回の車両判定結果に応じて変化させると、車両の赤外線の量(温度)に左右されずに背景レベルをより確実に把握することができる。なお、背景レベルの検出用のセンサと車両の検知用のセンサとを同一のものを用いると、背景レベルの検出用のセンサを設ける必要がない。 As for the background level, the amount of infrared rays from other than the vehicle is detected at any time by the sensor, and if the value is based on the detected amount of infrared rays, it is approximated to the value of the actual environment and more precise detection is performed. be able to. For example, you may use the average value of the data which detected the infrared rays from those other than vehicles in multiple times, and the calculated value by an exponential smoothing method. The exponential smoothing method is generally expressed as f 0 = α × d −1 + (1-α) f −1 = f −1 + α × (d −1 −f −1 ) (f 0 : next predicted value, α: Smoothing coefficient, d -1 : Actual value of the previous term, f -1 : Predicted value of the previous term), Actual value of the previous term (here, input level value) can be reflected, so the background level is the actual environment (road surface condition) ) Can be more accurate value. In particular, when the smoothing coefficient α is changed according to the previous vehicle determination result, the background level can be more reliably grasped regardless of the amount (temperature) of the infrared rays of the vehicle. If the same sensor for detecting the background level and the sensor for detecting the vehicle are used, it is not necessary to provide a sensor for detecting the background level.

背景レベルと入力レベル値との差に基づく値、即ち閾値と比較する比較値としては、入力レベル値と背景レベルとの差をそのまま用いるよりも、一定時間内の入力レベル値を積算した値を用いると、赤外線の放射量の変化における本質的な傾向を把握でき、車両の検知をより精度よく行えて好ましい。また、背景レベルと入力レベル値との差に加えて、入力レベル値の単位時間当たりの変化量を比較値として併用することが好ましい。この変化量は、背景レベルを加味していないことから、背景レベルによる影響を受けないため、入力レベル値と背景レベルとの差が小さくとも、入力レベル値が変化している間車両が存在しているとの判定を得易く、車両の認識できない場合などを低減する。この変化量は、直前よりも、少し前の入力レベル値と現在の入力レベル値との差とする方がより有効である。   The value based on the difference between the background level and the input level value, that is, the comparison value to be compared with the threshold value, is a value obtained by integrating the input level values within a certain time rather than using the difference between the input level value and the background level as it is. When used, it is preferable because an essential tendency in the change in the amount of infrared radiation can be grasped and the vehicle can be detected with higher accuracy. In addition to the difference between the background level and the input level value, it is preferable to use the amount of change per unit time of the input level value as a comparison value. Since this amount of change does not take into account the background level, it is not affected by the background level.Therefore, even if the difference between the input level value and the background level is small, there is a vehicle while the input level value is changing. It is easy to obtain the determination that the vehicle is in the vehicle, and the case where the vehicle cannot be recognized is reduced. It is more effective that the amount of change is the difference between the input level value just before and the current input level value than immediately before.

判定に用いる閾値(スレッショルド)は、実際の環境に応じて変化させることが好ましく、例えば、赤外線の量の変化(温度変化)が大きい(即ち、分散が大きい)とき、比較的大きな値とし、同小さい(即ち、分散が小さい)とき、比較的小さな値としてもよい。これらの閾値は、演算により求めてもよく、例えば、閾値を設定値+補正値として、補正値を変化させることで閾値を変化させてもよい。   The threshold (threshold) used for the determination is preferably changed according to the actual environment.For example, when the change in the amount of infrared rays (temperature change) is large (that is, the dispersion is large), the threshold is set to a relatively large value. When it is small (that is, the variance is small), a relatively small value may be used. These threshold values may be obtained by calculation. For example, the threshold value may be changed by setting the threshold value as a set value + correction value and changing the correction value.

上記車両有無の判定を行うアルゴリズムは、特許文献1と同様の構成してもよい。   The algorithm for determining the presence or absence of the vehicle may be configured in the same manner as in Patent Document 1.

このような本発明車両検知システムは、道路際に設けられている支柱に対し、いわゆるサイドファイア式に設置して、赤外線の感知を道路の側方から行うこともできる。   Such a vehicle detection system of the present invention can be installed in a so-called side fire type with respect to a support provided on the road, and can detect infrared rays from the side of the road.

上記構成を具える本発明車両検知システムは、熱緩和材を配置することで、レンズを透過した赤外線以外の赤外線の量が外部環境により変化しにくくなり、センサの検知面に伝達される同赤外線量が外部環境によらずほぼ一定に保持することができる。そのため、筐体の温度変化による車両の検知率の悪化を低減することができる。また、ゴムやセラミックスなどからなる熱緩和材を用いることで、筐体やレンズの支持部を構成するアルミニウムなどの金属材料を低減することができるため、更なる軽量化を実現する。   In the vehicle detection system of the present invention having the above-described configuration, by arranging the heat relaxation material, the amount of infrared rays other than infrared rays transmitted through the lens is hardly changed by the external environment, and the infrared rays transmitted to the detection surface of the sensor The amount can be kept almost constant regardless of the external environment. Therefore, it is possible to reduce the deterioration of the vehicle detection rate due to the temperature change of the housing. Further, by using a heat relaxation material made of rubber, ceramics, or the like, it is possible to reduce the metal material such as aluminum constituting the support portion of the housing or the lens, thereby realizing further weight reduction.

更に、本発明車両検知システムは、自ら発した赤外線を感知することなく検知対象が発する赤外線を感知するセンサを用いているため、車両の側方に設置されても、風雨などの影響を受ける恐れが少なく車両の誤認を低減できる。即ち、美観の向上と検知精度の向上の双方を実現する。加えて、本発明システムは、パッシブセンサを用いるため、従来の超音波検知器に用いられているようなアクティブセンサと比較して、消費電力が少ない。そのため、例えば、太陽電池などで十分電力を供給することができる。   Furthermore, since the vehicle detection system of the present invention uses a sensor that detects infrared rays emitted from a detection target without sensing infrared rays emitted by itself, there is a risk of being affected by wind and rain even when installed on the side of the vehicle. The number of vehicle misidentifications can be reduced. That is, both improvement in aesthetics and detection accuracy are realized. In addition, since the system of the present invention uses a passive sensor, it consumes less power than an active sensor used in a conventional ultrasonic detector. Therefore, for example, sufficient power can be supplied by a solar cell or the like.

以下、本発明の実施の形態を説明する。
図1は、本発明車両検知システムを道路傍の支柱に取り付けた状態を示す概略図、図2は、本発明車両検知システムの構成を示す断面模式図である。本例に示す車両検知システム1は、道路100傍に配置される支柱130に取り付けられて、道路100の監視範囲110を通過する車両120をその側方から検知するものである。具体的には、このシステム1は、車両120からの赤外線、道路100などの車両120以外からの赤外線を感知して、これら赤外線の量に基づき車両の有無を調べるものであり、車両120や道路100などの検知対象が発する赤外線を感知するセンサ2と、このセンサ2の検知方向前方に配置される赤外線透過レンズ3とを具える(図2参照)。そして、本発明の最も特徴とすべき点は、レンズ3を透過した赤外線以外の赤外線の量を外部環境により変化するのを緩和する熱緩和材4を具える点にある。以下、より詳しく説明する。
Embodiments of the present invention will be described below.
FIG. 1 is a schematic view showing a state in which the vehicle detection system of the present invention is attached to a column near a road, and FIG. 2 is a schematic cross-sectional view showing the configuration of the vehicle detection system of the present invention. A vehicle detection system 1 shown in the present example is attached to a support column 130 disposed near a road 100 and detects a vehicle 120 passing through a monitoring range 110 of the road 100 from its side. Specifically, the system 1 detects infrared rays from the vehicle 120, infrared rays from other than the vehicle 120 such as the road 100, and checks the presence or absence of the vehicle based on the amount of these infrared rays. A sensor 2 that senses infrared rays emitted from a detection target such as 100, and an infrared transmission lens 3 disposed in front of the detection direction of the sensor 2 (see FIG. 2). The most characteristic feature of the present invention is that it includes a heat relaxation material 4 for relaxing the amount of infrared light other than the infrared light transmitted through the lens 3 due to an external environment. This will be described in more detail below.

本例においてセンサ2は、立方体状の筐体5内に収納させており、車両有無の判定手段を有する回路基板6に配置し、筐体5内に設けた固定部5aにネジなどの固定部材を用いて、筐体5内に固定している。赤外線透過レンズ3は、筐体5の一面(センサ2と対向する面)にレンズ3を嵌合するためのレンズ孔を設け、この孔に嵌め込み、レンズ押え5bを介し、ネジなどの固定部材にて筐体5に固定している。本例では、センサ2及びレンズ3を筐体5に固定した際、適切な焦点距離となるように、固定部5aを設けている。   In this example, the sensor 2 is housed in a cubic housing 5 and is disposed on a circuit board 6 having vehicle presence / absence judging means, and a fixing member such as a screw is fixed to a fixing portion 5a provided in the housing 5. It is fixed in the housing 5 using The infrared transmitting lens 3 is provided with a lens hole for fitting the lens 3 on one surface of the housing 5 (the surface facing the sensor 2), and is fitted into this hole and is attached to a fixing member such as a screw via the lens presser 5b. And fixed to the housing 5. In this example, when the sensor 2 and the lens 3 are fixed to the housing 5, the fixing portion 5a is provided so as to have an appropriate focal length.

また、本例においてセンサ2はサーモパイル素子を、赤外線透過レンズ3はZnSから形成される一面が球面状のレンズを用いた。筐体5は、アルミニウムにて形成した。回路基板6は、車両の有無の判定やセンサ2からの入力レベル値や演算値を記憶するメモリ、入力レベル値を用いて種々の演算を行う中央処理装置(CPU)と、センサ2からの入力レベル値を増幅するアンプとを具える。なお、図2では省略しているが、太陽電池10(図1参照)からの電力を供給できるように電力用配線、及び回路基板6の判定結果を信号制御機や管理センタに送信するべく、送信部(図示せず)への信号を伝送可能なように信号用配線が回路基板6に接続される。   In this example, the sensor 2 is a thermopile element, and the infrared transmission lens 3 is a lens having a spherical surface formed of ZnS. The housing 5 was made of aluminum. The circuit board 6 has a memory for storing the presence / absence of a vehicle, a memory for storing an input level value and a calculation value from the sensor 2, a central processing unit (CPU) for performing various calculations using the input level value, and an input from the sensor 2. It includes an amplifier that amplifies the level value. Although omitted in FIG. 2, in order to transmit power wiring from the solar cell 10 (see FIG. 1) and the determination result of the circuit board 6 to the signal controller and the management center, Signal wiring is connected to the circuit board 6 so that a signal to a transmission unit (not shown) can be transmitted.

上記構成を具える車両検知システムでは、レンズ3の支持部が筐体5と一体になっており、別途支持部を設けていないことから、システム全体の軽量化を実現している。しかし、例えば、風が吹きつけるなどして、筐体5に急激な温度変化が生じた場合や、気温が高いことで筐体5が温められた場合などで、その温度変化によってセンサ2に伝わる赤外線量が変化する。この温度変化に伴う赤外線量の変化によって起電力が生じて、車両が監視範囲を通過していないのに車両有りと判定することがある。これは、レンズ3を透過した赤外線以外の赤外線(この例では筐体5からの赤外線)がセンサ2の検知面に伝達されるからである(図2破線矢印参照)。そこで、本発明では、レンズ3を透過した赤外線以外の赤外線の量が気温や風などの外部環境により変化するのを緩和して、センサ2の検知面に伝達される同赤外線量を安定させるために熱緩和材4を配置する。   In the vehicle detection system having the above-described configuration, the support portion of the lens 3 is integrated with the casing 5, and no separate support portion is provided, so that the weight of the entire system is reduced. However, for example, when a sudden temperature change occurs in the casing 5 due to wind blowing or when the casing 5 is heated due to high air temperature, the temperature is transmitted to the sensor 2 due to the temperature change. The amount of infrared rays changes. An electromotive force is generated due to the change in the amount of infrared rays accompanying the temperature change, and it may be determined that the vehicle is present even though the vehicle has not passed the monitoring range. This is because infrared rays other than infrared rays transmitted through the lens 3 (in this example, infrared rays from the housing 5) are transmitted to the detection surface of the sensor 2 (see the broken line arrows in FIG. 2). Therefore, in the present invention, the amount of infrared light other than the infrared light transmitted through the lens 3 is reduced by the external environment such as air temperature and wind, and the amount of infrared light transmitted to the detection surface of the sensor 2 is stabilized. The heat relaxation material 4 is disposed on the side.

本例において熱緩和材4は、円筒状の軟質ゴムからなるものを用いており、図2に示すように、一方の開口部を基板6に接するように、かつセンサ2を囲むように配置し、他方の開口部をレンズ3に接するように配置している。即ち、本例では、基板6とレンズ3間に亘って熱緩和材4を配置している。このように基板6とレンズ3間に隙間がないように熱緩和材4を配置することで、筐体5からの赤外線がセンサ2に直接伝わることを抑制することができる。また、本例では、熱伝導率が低い材料にて熱緩和材4を形成しているため、例えば、気温が高い場合、筐体5が温められることで筐体5から放射される赤外線量が増加したとしても、熱緩和材4は温まりにくいため、熱緩和材4から放射される赤外線量の変化を少なくすることができる。従って、センサ2に伝達される赤外線のうち、レンズ3を透過した赤外線以外の赤外線量は、気温などの外部環境によらずほとんど変化しない。   In this example, the heat relaxation material 4 is made of cylindrical soft rubber, and is arranged so that one opening is in contact with the substrate 6 and surrounds the sensor 2 as shown in FIG. The other opening is arranged in contact with the lens 3. That is, in this example, the heat relaxation material 4 is disposed between the substrate 6 and the lens 3. By arranging the heat relaxation material 4 so that there is no gap between the substrate 6 and the lens 3 in this way, it is possible to suppress the infrared rays from the housing 5 from being directly transmitted to the sensor 2. In this example, since the heat relaxation material 4 is formed of a material having low thermal conductivity, for example, when the temperature is high, the amount of infrared rays radiated from the housing 5 is increased by heating the housing 5. Even if it increases, since the heat relaxation material 4 is not easily heated, the change in the amount of infrared rays emitted from the heat relaxation material 4 can be reduced. Therefore, among the infrared rays transmitted to the sensor 2, the amount of infrared rays other than the infrared rays transmitted through the lens 3 hardly changes regardless of the external environment such as the temperature.

上記構成により、本発明車両検知システムは、熱緩和材により、センサの検知面に伝達される赤外線のうち、レンズを透過した赤外線以外の赤外線の量の変化を効果的に低減することができる。従って、レンズを透過した赤外線以外の赤外線による車両有無の誤認を低減する。   By the said structure, this invention vehicle detection system can reduce effectively the change of the quantity of infrared rays other than the infrared rays which permeate | transmitted the lens among the infrared rays transmitted to the detection surface of a sensor with a thermal relaxation material. Therefore, misidentification of the presence or absence of the vehicle by infrared rays other than the infrared rays that have passed through the lens is reduced.

なお、本発明車両検知システムは、検出対象が発する赤外線をセンサ(本例ではサーモパイル素子)で感知し、素子に生じた起電力をアンプにて増幅し、A/D変換器にてデジタル信号に変換して、入力レベル値を得る。そして、この入力レベル値と背景レベルとの差に基づく値(比較値)を演算し、この比較値が閾値以上かどうかで、車両の有無を判定する。判定結果は、集計して信号制御機や交通管理センターなどに送る。   The vehicle detection system of the present invention senses infrared rays emitted from a detection target with a sensor (a thermopile element in this example), amplifies an electromotive force generated in the element with an amplifier, and converts it into a digital signal with an A / D converter. Convert to get the input level value. Then, a value (comparison value) based on the difference between the input level value and the background level is calculated, and whether or not the vehicle is present is determined based on whether the comparison value is equal to or greater than a threshold value. The judgment results are aggregated and sent to a signal controller or a traffic management center.

車両検知の操作手順を具体的に説明する。まず、センサを作動させ、背景レベルと閾値の初期学習を行う。このとき、車両の判定を行わないことが好ましい。初期学習により背景レベル及び閾値をより実際の環境により即した値とすることができる。得られた背景レベル及び閾値は、メモリに保存する。   The operation procedure for vehicle detection will be specifically described. First, the sensor is activated to perform initial learning of the background level and threshold value. At this time, it is preferable not to determine the vehicle. By the initial learning, the background level and the threshold value can be set to values more suitable for the actual environment. The obtained background level and threshold value are stored in a memory.

上記初期学習の後、車両の有無の判定を始める。まず、センサから得られた起電力をアンプで増幅して入力レベル値を得て、この入力レベル値を基に比較値及び閾値を演算する。そして、入力レベル値に基づき演算された比較値と閾値とを比較し、比較値が閾値以上の場合、車両有りと判定し、感知集計結果に「車両有り」と書き込み、メモリに保存する。比較値は、入力レベル値と背景レベルとの差に基づき演算した値を用いる。具体的には、入力レベル値bnと前回の背景レベルan-1との差分(背景差分と呼ぶ)を求め、この背景差分の一定時間における積算値を比較値とする。この積算値だけでなく、積算値と入力レベル値の単位時間当たりの変化量とを用いた演算値を利用してもよい。具体的には、上記と同様に入力レベル値と前回の背景レベルとの差分(背景差分)を求め、この背景差分の一定時間における積算値を求める。次に、変化量を求め、更に、この変化量の平均値を求める。この平均値を定数倍したものを今回の積算差分に加えて比較値とする。このように積算値だけでなく、変化量をも用いて演算した値を比較値とすることで、車両の誤認や認識できない場合などを更に低減する。また、このように変化量をも考慮した値をアルゴリズムに用いることで、焦電センサなどの他のセンサを用いることなく、サーモパイル素子のみでも十分に赤外線の感知を行って、車両の有無を判定することができる。 After the initial learning, the determination of the presence or absence of the vehicle is started. First, an electromotive force obtained from the sensor is amplified by an amplifier to obtain an input level value, and a comparison value and a threshold value are calculated based on the input level value. Then, the comparison value calculated based on the input level value is compared with a threshold value, and if the comparison value is equal to or greater than the threshold value, it is determined that there is a vehicle, “Vehicle presence” is written in the sensing total result, and stored in the memory. As the comparison value, a value calculated based on the difference between the input level value and the background level is used. Specifically, a difference (referred to as a background difference) between the input level value b n and the previous background level an n−1 is obtained, and the integrated value of this background difference over a fixed time is used as a comparison value. In addition to this integrated value, a calculated value using the integrated value and the amount of change per unit time of the input level value may be used. Specifically, the difference between the input level value and the previous background level (background difference) is obtained in the same manner as described above, and the integrated value of this background difference for a certain time is obtained. Next, a change amount is obtained, and an average value of the change amounts is obtained. A value obtained by multiplying the average value by a constant is added to the current integrated difference to obtain a comparison value. In this way, by using not only the integrated value but also the value calculated using the amount of change as the comparison value, cases where the vehicle is misidentified or cannot be recognized are further reduced. In addition, by using a value that also takes into account the amount of change in this way, it is possible to detect the presence of a vehicle by sufficiently sensing infrared rays using only a thermopile element without using other sensors such as pyroelectric sensors. can do.

閾値も実際の環境に応じて変化させるべく、本例では、赤外線量の変化、即ち、温度変化の大小で閾値を異ならせる。具体的には、閾値を設定値と補正値との和とし、設定値を最低値とし、設定値に種々の補正値を加えることで、環境に追従させる。   In this example, the threshold value is changed depending on the change in the amount of infrared rays, that is, the temperature change so that the threshold value can be changed according to the actual environment. Specifically, the threshold value is set to the sum of the set value and the correction value, the set value is set to the minimum value, and various correction values are added to the set value to follow the environment.

一方、比較値が閾値未満の場合、車両無しと判定し、同様に感知集計結果に「車両無し」と書き込み、メモリに保存する。このとき、センサは、道路などの背景を検出したことになる。そこで、この判定に用いた入力レベル値は、演算に用いるために保存し、この入力レベル値を用いて背景レベルの演算を行う。本例では、指数平滑法による演算値を背景レベルとして用いる。具体的には、入力レベル値をbn、次回の判定に用いる背景レベルをan、平滑係数をαとするとき、an=an-1+α×(bn-an-1)を背景レベルとして用いる(an-1は前回の車両判定に用いた背景レベル)。 On the other hand, if the comparison value is less than the threshold value, it is determined that there is no vehicle, and similarly, “no vehicle” is written in the sensing count result and stored in the memory. At this time, the sensor has detected a background such as a road. Therefore, the input level value used for this determination is stored for use in calculation, and the background level is calculated using this input level value. In this example, an arithmetic value by exponential smoothing is used as the background level. Specifically, when the input level value is b n , the background level used for the next determination is a n , and the smoothing coefficient is α, a n = a n-1 + α × (b n -a n-1 ) Is used as the background level (a n-1 is the background level used in the previous vehicle determination).

本発明車両検知システムは、交通量や占有率などの交通流を調べるのに好適である。   The vehicle detection system of the present invention is suitable for examining traffic flow such as traffic volume and occupation rate.

本発明車両検知システムを道路傍の支柱に取り付けた状態を示す概略図である。It is the schematic which shows the state which attached this invention vehicle detection system to the support | pillar of the roadside. 本発明車両検知システムの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of this invention vehicle detection system.

符号の説明Explanation of symbols

1 車両検知システム 2 センサ 3 赤外線透過レンズ 4 熱緩和材
5 筐体 5a 固定部 5b レンズ押え 6 回路基板 10 太陽電池
100 道路 110 監視範囲 120 車両 130 支柱
1 Vehicle detection system 2 Sensor 3 Infrared transmitting lens 4 Thermal relaxation material
5 Housing 5a Fixed part 5b Lens holder 6 Circuit board 10 Solar cell
100 Road 110 Monitoring range 120 Vehicle 130 Prop

Claims (4)

道路上の監視範囲を通過する車両を検知する車両検知システムであって、
検知対象が発する赤外線を感知するセンサと、
前記センサの検知方向前方に配置される赤外線透過レンズと、
前記センサに伝達される赤外線のうち、前記レンズを透過した赤外線以外の赤外線の量が外部環境によって変化するのを緩和する熱緩和材とを具えることを特徴とする車両検知システム。
A vehicle detection system for detecting a vehicle passing through a monitoring range on a road,
A sensor for detecting infrared rays emitted by the detection target;
An infrared transmitting lens disposed in front of the detection direction of the sensor;
A vehicle detection system comprising: a heat relaxation material that relieves changes in the amount of infrared light transmitted through the lens other than infrared light transmitted to the sensor, depending on an external environment.
熱緩和材は、熱伝導率が10W/mK以下の非金属材料からなることを特徴とする請求項1に記載の車両検知システム。   2. The vehicle detection system according to claim 1, wherein the heat relaxation material is made of a non-metallic material having a thermal conductivity of 10 W / mK or less. 熱緩和材は、ゴム、セラミックス、紙、プラスチックから選択される少なくとも1種からなることを特徴とする請求項1に記載の車両検知システム。   2. The vehicle detection system according to claim 1, wherein the heat relaxation material is made of at least one selected from rubber, ceramics, paper, and plastic. センサとして、サーモパイル素子を用いることを特徴とする請求項1〜3のいずれかに記載の車両検知システム。   The vehicle detection system according to claim 1, wherein a thermopile element is used as the sensor.
JP2004231252A 2004-08-06 2004-08-06 Vehicle detection system Active JP4789057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231252A JP4789057B2 (en) 2004-08-06 2004-08-06 Vehicle detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231252A JP4789057B2 (en) 2004-08-06 2004-08-06 Vehicle detection system

Publications (2)

Publication Number Publication Date
JP2006048524A true JP2006048524A (en) 2006-02-16
JP4789057B2 JP4789057B2 (en) 2011-10-05

Family

ID=36026992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231252A Active JP4789057B2 (en) 2004-08-06 2004-08-06 Vehicle detection system

Country Status (1)

Country Link
JP (1) JP4789057B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273020A (en) * 1987-04-30 1988-11-10 Sumitomo Bakelite Co Ltd Infrared detector
JPH03202733A (en) * 1989-12-29 1991-09-04 Toyota Central Res & Dev Lab Inc Infrared-ray thermometer
JPH0815007A (en) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd Infrared sensor and manufacture thereof
JPH11132855A (en) * 1997-11-04 1999-05-21 Matsushita Electric Ind Co Ltd Power-collection-type infrared sensor
JP2001281053A (en) * 2000-03-31 2001-10-10 Sumitomo Electric Ind Ltd Ceramics infrared sensor
JP2003317186A (en) * 2002-02-20 2003-11-07 Sumitomo Electric Ind Ltd Vehicle detection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273020A (en) * 1987-04-30 1988-11-10 Sumitomo Bakelite Co Ltd Infrared detector
JPH03202733A (en) * 1989-12-29 1991-09-04 Toyota Central Res & Dev Lab Inc Infrared-ray thermometer
JPH0815007A (en) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd Infrared sensor and manufacture thereof
JPH11132855A (en) * 1997-11-04 1999-05-21 Matsushita Electric Ind Co Ltd Power-collection-type infrared sensor
JP2001281053A (en) * 2000-03-31 2001-10-10 Sumitomo Electric Ind Ltd Ceramics infrared sensor
JP2003317186A (en) * 2002-02-20 2003-11-07 Sumitomo Electric Ind Ltd Vehicle detection system

Also Published As

Publication number Publication date
JP4789057B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US10829125B2 (en) Processing method, program, processing apparatus, and detection system
JP3719438B2 (en) Vehicle detection system
TWI327713B (en) Vehicle detection system
JP2008501963A (en) Sensor
US10545052B2 (en) Pyranometer with forced airflow
KR102393439B1 (en) Lidar apparatus for vehicle
JP4789057B2 (en) Vehicle detection system
US11543348B2 (en) Condensation prevention in an aspirating smoke detection system
JP2004302699A (en) Vehicle detector
JP2007073058A (en) Vehicle sensing device
NL2014382B1 (en) Thermal sensor having two dome-shaped windows.
JP2828258B2 (en) Radiation thermometer
JP2006190247A (en) Vehicle detecting system
JP3100857B2 (en) Fire alarm sensor
JP2999534B2 (en) Object detector
JP4005581B2 (en) Mirror surface dew point meter
US10024722B2 (en) Temperature detection device for a vehicle heater
JP5643599B2 (en) Mirror surface cooling type sensor
US9134181B2 (en) Flame detector
JP2002310488A (en) Temperature detecting device and air conditioner employing the same
JP2010060484A (en) Gas cell, gas sample chamber and concentration measuring instrument
KR100380325B1 (en) Apparatus for Controlling Machinery and Tools using Sensor
JP2000266664A (en) Clouding-detecting apparatus
JP2012173167A (en) Infrared camera
US20170131729A1 (en) Thermostat with thermal radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110710

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250