JP4005581B2 - Mirror surface dew point meter - Google Patents

Mirror surface dew point meter Download PDF

Info

Publication number
JP4005581B2
JP4005581B2 JP2004101423A JP2004101423A JP4005581B2 JP 4005581 B2 JP4005581 B2 JP 4005581B2 JP 2004101423 A JP2004101423 A JP 2004101423A JP 2004101423 A JP2004101423 A JP 2004101423A JP 4005581 B2 JP4005581 B2 JP 4005581B2
Authority
JP
Japan
Prior art keywords
light
mirror
mirror surface
dew point
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101423A
Other languages
Japanese (ja)
Other versions
JP2005283510A (en
Inventor
良之 金井
一雅 井端
研 岩切
竜 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2004101423A priority Critical patent/JP4005581B2/en
Priority to US11/097,696 priority patent/US7736051B2/en
Publication of JP2005283510A publication Critical patent/JP2005283510A/en
Application granted granted Critical
Publication of JP4005581B2 publication Critical patent/JP4005581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、鏡の鏡面を冷却し、鏡の鏡面上に水分が生じたときの鏡の温度を測定することにより露点を検出する鏡面冷却式露点計に関するものである。
The present invention relates to a mirror-cooled dew point meter that detects the dew point by cooling the mirror surface of the mirror and measuring the temperature of the mirror when moisture is generated on the mirror surface of the mirror .

従来より、湿度測定法として、被測定気体の温度を低下させ、その被測定気体に含まれる水蒸気の一部を結露させたときの温度を測定することにより露点を検出する露点検出法が知られている。例えば、非特許文献1には、寒剤、冷凍機、電子冷却器などを用いて鏡を冷却し、この冷却した鏡の鏡面上の反射光の強度の変化を検出し、この時の鏡面の温度を測定することによって、被測定気体中の水分の露点を検出する鏡面冷却式露点計について説明されている。   Conventionally, as a humidity measurement method, a dew point detection method is known in which a dew point is detected by measuring the temperature when the temperature of a gas to be measured is reduced and a part of water vapor contained in the gas to be measured is condensed. ing. For example, in Non-Patent Document 1, a mirror is cooled using a cryogen, a refrigerator, an electronic cooler, or the like, a change in the intensity of reflected light on the mirror surface of the cooled mirror is detected, and the temperature of the mirror surface at this time is detected. A mirror-cooled dew point meter that detects the dew point of the moisture in the gas to be measured is described.

この鏡面冷却式露点計には、利用する反射光の種類によって、2つのタイプがある。1つは、正反射光を利用する正反射光検出方式(例えば、特許文献1参照)、もう1つは、散乱光を利用する散乱光検出方式(例えば、特許文献2参照)である。   There are two types of mirror-cooled dew point meters depending on the type of reflected light used. One is a specularly reflected light detection method that uses specularly reflected light (see, for example, Patent Document 1), and the other is a scattered light detection method that uses scattered light (see, for example, Patent Document 2).

〔正反射光検出方式〕
図9に正反射光検出方式を採用した従来の鏡面冷却式露点計の要部を示す。この鏡面冷却式露点計101は、被測定気体が流入されるチャンバ1と、このチャンバ1の内部に設けられた熱電冷却素子(ペルチェ素子)2を備えている。熱電冷却素子2の冷却面2−1には銅製ブロック3を介してボルト4が取り付けられており、熱電冷却素子2の加熱面2−2には放熱フィン5が取り付けられている。銅製ブロック3に取り付けられたボルト4の上面4−1は鏡面とされている。銅製ブロック3の側部には巻線式測温抵抗体(温度検出素子)6が埋め込まれている(図13参照)。また、チャンバ1の上部には、ボルト4の上面(鏡面)4−1に対して斜めに光を照射する発光素子7と、この発光素子7から鏡面4−1に対して照射された光の正反射光を受光する受光素子8とが設けられている。熱電冷却素子2の周囲には断熱材40が設けられている。
[Specular reflection detection method]
FIG. 9 shows a main part of a conventional mirror-cooled dew point meter adopting a regular reflection light detection method. The specular cooling dew point meter 101 includes a chamber 1 into which a gas to be measured is introduced and a thermoelectric cooling element (Peltier element) 2 provided inside the chamber 1. Bolts 4 are attached to the cooling surface 2-1 of the thermoelectric cooling element 2 via copper blocks 3, and radiating fins 5 are attached to the heating surface 2-2 of the thermoelectric cooling element 2. An upper surface 4-1 of the bolt 4 attached to the copper block 3 is a mirror surface. A winding type resistance temperature detector (temperature detection element) 6 is embedded in a side portion of the copper block 3 (see FIG. 13). Further, on the upper portion of the chamber 1, a light emitting element 7 that irradiates light obliquely to the upper surface (mirror surface) 4-1 of the bolt 4, and light emitted from the light emitting element 7 to the mirror surface 4-1. A light receiving element 8 for receiving the specularly reflected light is provided. A heat insulating material 40 is provided around the thermoelectric cooling element 2.

この鏡面冷却式露点計101において、チャンバ1内の鏡面4−1は、チャンバ1内に流入される被測定気体に晒される。鏡面4−1に結露が生じていなければ、発光素子7から照射された光はそのほゞ全量が正反射し、受光素子8で受光される。したがって、鏡面4−1に結露が生じていない場合、受光素子8で受光される反射光の強度は大きい。   In this mirror-cooled dew point meter 101, the mirror surface 4-1 in the chamber 1 is exposed to the gas to be measured that flows into the chamber 1. If there is no condensation on the mirror surface 4-1, almost all of the light emitted from the light emitting element 7 is regularly reflected and received by the light receiving element 8. Therefore, when there is no condensation on the mirror surface 4-1, the intensity of the reflected light received by the light receiving element 8 is high.

熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面4−1に結露し、その水の分子に発光素子7から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子8で受光される反射光(正反射光)の強度が減少する。この鏡面4−1における正反射光の変化を検出することにより、鏡面4−1上の状態の変化、すなわち鏡面4−1上に水分(水滴)が付着したことを知ることができる。さらに、この時の鏡面4−1の温度を温度検出素子6で間接的に測定することにより、被測定気体中の水分の露点を知ることができる。   When the current to the thermoelectric cooling element 2 is increased and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, water vapor contained in the gas to be measured condenses on the mirror surface 4-1, and the water molecules Part of the light emitted from the light emitting element 7 is absorbed or diffusely reflected. Thereby, the intensity of the reflected light (regular reflected light) received by the light receiving element 8 is reduced. By detecting the change in the specularly reflected light on the mirror surface 4-1, it is possible to know the change in the state on the mirror surface 4-1, that is, that moisture (water droplets) has adhered to the mirror surface 4-1. Further, by indirectly measuring the temperature of the mirror surface 4-1 at this time with the temperature detecting element 6, it is possible to know the dew point of moisture in the gas to be measured.

〔散乱光検出方式〕
図10に散乱光検出方式を採用した従来の鏡面冷却式露点計の要部を示す。この鏡面冷却式露点計102は、正反射光検出方式を採用した鏡面冷却式露点計101とほゞ同構成であるが、受光素子8の取り付け位置が異なっている。この鏡面冷却式露点計102において、受光素子8は、発光素子7から鏡面4−1に対して照射された光の正反射光を受光する位置ではなく、散乱光を受光する位置に設けられている。
(Scattered light detection method)
FIG. 10 shows a main part of a conventional mirror-cooled dew point meter adopting the scattered light detection method. This mirror-cooled dew point meter 102 has substantially the same configuration as the mirror-cooled dew point meter 101 employing the specular reflection light detection method, but the mounting position of the light receiving element 8 is different. In this mirror-cooled dew point meter 102, the light receiving element 8 is provided at a position for receiving scattered light, not at a position for receiving regular reflection light of light emitted from the light emitting element 7 to the mirror surface 4-1. Yes.

この鏡面冷却式露点計102において、鏡面4−1は、チャンバ1内に流入される被測定気体に晒される。鏡面4−1に結露が生じていなければ、発光素子7から照射された光はそのほゞ全量が正反射し、受光素子8での受光量は極微量である。したがって、鏡面4−1に結露が生じていない場合、受光素子8で受光される反射光の強度は小さい。   In this mirror-cooled dew point meter 102, the mirror surface 4-1 is exposed to the gas to be measured that flows into the chamber 1. If there is no condensation on the mirror surface 4-1, almost all of the light emitted from the light emitting element 7 is regularly reflected, and the amount of light received by the light receiving element 8 is extremely small. Therefore, when no condensation occurs on the mirror surface 4-1, the intensity of the reflected light received by the light receiving element 8 is small.

熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面4−1に結露し、その水の分子に発光素子7から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子8で受光される乱反射された光(散乱光)の強度が増大する。この鏡面4−1における散乱光の変化を検出することにより、鏡面4−1上の状態の変化、すなわち鏡面4−1上に水分(水滴)が付着したことを知ることができる。さらに、この時の鏡面4−1の温度を温度検出素子6で間接的に測定することにより、被測定気体中の水分の露点を知ることができる。   When the current to the thermoelectric cooling element 2 is increased and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, water vapor contained in the gas to be measured condenses on the mirror surface 4-1, and the water molecules Part of the light emitted from the light emitting element 7 is absorbed or diffusely reflected. Thereby, the intensity of the irregularly reflected light (scattered light) received by the light receiving element 8 increases. By detecting the change in the scattered light on the mirror surface 4-1, it is possible to know a change in the state on the mirror surface 4-1, that is, that moisture (water droplets) has adhered to the mirror surface 4-1. Further, by indirectly measuring the temperature of the mirror surface 4-1 at this time with the temperature detecting element 6, it is possible to know the dew point of moisture in the gas to be measured.

なお、上述した露点計においては、鏡面4−1に生じる結露(水分)を検出する例で説明したが、同様の構成によって鏡面4−1に生じる結霜(水分)を検出することも可能である。
また、図11や図12に示すように構成すれば、すなわち熱電冷却素子2や温度検出素子6などをなくし、チャンバ1内に鏡9のみを設け、チャンバ1上面に開口部を設けた構成とすれば、雨や雪などの降り始めに鏡面9−1に付着する水分を検出する鏡面上状態検出装置(天気計)として使用することも可能である。この天気計103や104では、雨や雪などがチャンバ1内に引き込まれ、鏡9の鏡面9−1に付着すると、その付着が受光素子8で受光される反射光の強度に基づいて検出される。
In addition, in the dew point meter mentioned above, it demonstrated by the example which detects the dew condensation (water | moisture content) which arises on the mirror surface 4-1, However, It is also possible to detect the frost (water | moisture content) which arises on the mirror surface 4-1 with the same structure. is there.
11 and FIG. 12, that is, the thermoelectric cooling element 2 and the temperature detecting element 6 are eliminated, only the mirror 9 is provided in the chamber 1, and the opening is provided on the upper surface of the chamber 1. Then, it can be used as an on-mirror state detection device (weather meter) that detects moisture adhering to the mirror surface 9-1 at the beginning of rain or snow. In the weather gauges 103 and 104, when rain or snow is drawn into the chamber 1 and adheres to the mirror surface 9-1 of the mirror 9, the adhesion is detected based on the intensity of reflected light received by the light receiving element 8. The

特開昭61−75235号公報JP-A-61-75235 特公平7−104304号公報Japanese Examined Patent Publication No. 7-104304 工業計測ハンドブック、昭和51.9.30、朝倉書店、P297。Industrial Measurement Handbook, Showa 51.9.30, Asakura Shoten, P297.

しかしながら、上述した従来の鏡面冷却式露点計101や102、天気計103や104では、外乱光による誤動作防止(遮光)のためにチャンバ1が設けられており、大型化が避けられなかった。特に、鏡面冷却式露点計101や102では、チャンバ1内に被測定気体を引き込むための吸引ポンプや吸引用チューブ、排気用チューブ、流量計などを必要とし、部品点数が多く、組立性が悪いという問題があった。また、センサ部が大型化し、重くなり、持ち運びが不便であった。   However, in the conventional mirror-cooled dew point meters 101 and 102 and the weather meters 103 and 104 described above, the chamber 1 is provided to prevent malfunction (shielding) due to ambient light, and the increase in size cannot be avoided. In particular, the mirror-cooled dew point meters 101 and 102 require a suction pump, a suction tube, an exhaust tube, a flow meter and the like for drawing the gas to be measured into the chamber 1, and have a large number of parts and poor assembly. There was a problem. In addition, the sensor portion is large, heavy, and inconvenient to carry.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、部品点数が少なく、小型で、組立性が良く、持ち運びにも便利な鏡面冷却式露点計を提供することにある。
The present invention has been made to solve such problems, and its object is to provide a mirror-cooled dew point meter with a small number of parts, a small size, good assembly, and convenient to carry. There is to do.

このような目的を達成するために、本発明の鏡面冷却式露点計は、鏡面が被測定気体に晒される鏡と、鏡を冷却する手段と、鏡面に対して所定の周期でパルス光を照射する発光手段と、発光手段から鏡面に対して照射されたパルス光の反射光を受光する受光手段と、この受光手段が受光する反射光に基づいて前記冷却手段によって冷却された前記鏡の鏡面上に生じる水分を検出する手段と、前記鏡の温度を検出する温度検出素子とを備えた鏡面冷却式露点計において、受光手段が受光する反射光の1パルスごとの上限値と下限値との差に基づいて前記冷却手段によって冷却された前記鏡の鏡面上に生じる水分を検出する手段を備え、外乱光を遮断するチャンバ部を備えていないことを特徴とするものである。
この発明によれば、発光手段から鏡の鏡面に対して所定の周期でパルス光が照射され、この照射されたパルス光の鏡面からの反射光(正反射光検出方式の場合は正反射光、散乱光検出方式の場合は散乱光)が受光手段で受光され、この受光手段が受光する反射光(反射パルス光)の1パルスごとの上限値と下限値との差に基づいて、冷却手段によって冷却された鏡の鏡面上に生じる水分(例えば、結露や結霜)が検出される。この場合、反射光の1パルスの上限値と下限値との差をとることにより、反射光に含まれる外乱光が除去される。また、外乱光を遮断するためのチャンバ部が不要となる。
In order to achieve such an object, the mirror-cooled dew point meter of the present invention includes a mirror whose mirror surface is exposed to the gas to be measured, means for cooling the mirror, and pulse light is irradiated to the mirror surface at a predetermined cycle. On the mirror surface of the mirror cooled by the cooling means on the basis of the reflected light received by the light receiving means, the light receiving means for receiving the reflected light of the pulsed light emitted from the light emitting means to the mirror surface Difference between an upper limit value and a lower limit value for each pulse of reflected light received by the light receiving means in a mirror-cooled dew point meter having means for detecting moisture generated in the mirror and a temperature detecting element for detecting the temperature of the mirror And a means for detecting moisture generated on the mirror surface of the mirror cooled by the cooling means, and a chamber portion for blocking ambient light is not provided.
According to this invention, pulse light is emitted from the light emitting means to the mirror surface of the mirror at a predetermined period, and the reflected light from the mirror surface of the irradiated pulse light (regular reflection light in the case of the regular reflection light detection method), In the case of the scattered light detection method, scattered light) is received by the light receiving means, and based on the difference between the upper limit value and the lower limit value for each pulse of the reflected light (reflected pulse light) received by the light receiving means, the cooling means Moisture (for example, condensation or frost) generated on the mirror surface of the cooled mirror is detected. In this case, disturbance light included in the reflected light is removed by taking the difference between the upper limit value and the lower limit value of one pulse of the reflected light. Moreover, the chamber part for interrupting disturbance light becomes unnecessary.

本発明によれば、発光手段から鏡の鏡面に対して所定の周期でパルス光を照射し、この照射したパルス光の鏡面からの反射光を受光手段で受光し、この受光手段が受光する反射光(反射パルス光)の1パルスごとの上限値と下限値との差に基づいて鏡面上に生じる水分を検出するようにしたので、チャンバを用いることなく反射光に含まれる外乱光を除去することができるようになり、部品点数の削減、小型化、組立性の向上を図ることができ、持ち運びも容易となる。 According to the present invention, the light emitting means irradiates the mirror surface of the mirror with a predetermined cycle, the reflected light of the irradiated pulsed light from the mirror surface is received by the light receiving means, and the light receiving means receives the reflected light. Since the moisture generated on the mirror surface is detected based on the difference between the upper limit value and the lower limit value for each pulse of light (reflected pulsed light), disturbance light contained in the reflected light is removed without using a chamber. Thus, the number of parts can be reduced, the size can be reduced, the assemblability can be improved, and the carrying can be facilitated.

以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1:鏡面冷却式露点計(散乱光検出方式)〕
図1はこの発明に係る鏡面冷却式露点計の一実施の形態を示す鏡面冷却式露点計の概略構成図である。この鏡面冷却式露点計201はセンサ部201Aとコントロール部201Bとを有している。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1: Mirror surface dew point meter (scattered light detection method)]
FIG. 1 is a schematic configuration diagram of a mirror-cooled dew point meter showing an embodiment of a mirror-cooled dew point meter according to the present invention. The mirror-cooled dew point meter 201 has a sensor unit 201A and a control unit 201B.

センサ部201Aでは、熱電冷却素子(ペルチェ素子)2の冷却面2−1に鏡10を取り付けている。鏡10は、例えばシリコンチップとされ、その表面10−1が鏡面とされている。また、鏡10と熱電冷却素子2の冷却面2−1との接合面に、例えば白金による薄膜測温抵抗体(温度検出素子)11を形成している。また、熱電冷却素子2の加熱面2−2に円柱状のヒートシンク18を接合し、このヒートシンク18に沿ってその上端部をJ字型に湾曲させたステンレス製のチューブ17を設けている。   In the sensor unit 201 </ b> A, the mirror 10 is attached to the cooling surface 2-1 of the thermoelectric cooling element (Peltier element) 2. The mirror 10 is a silicon chip, for example, and the surface 10-1 is a mirror surface. Further, a thin film resistance temperature detector (temperature detection element) 11 made of, for example, platinum is formed on the joint surface between the mirror 10 and the cooling surface 2-1 of the thermoelectric cooling element 2. Further, a cylindrical heat sink 18 is joined to the heating surface 2-2 of the thermoelectric cooling element 2, and a stainless steel tube 17 whose upper end is bent in a J shape along the heat sink 18 is provided.

チューブ17としては図2に示すような種々の形で光ファイバを収容したチューブ16を使用することができる。図2(a)では、チューブ16中に、発光側の光ファイバ16−1と受光側の光ファイバ16−2とを同軸に設けている。図2(b)では、チューブ16中に、発光側(あるいは受光側)の光ファイバ16−1と受光側(あるいは発光側)の光ファイバ16−21〜16−24を同軸に設けている。図2(c)では、チューブ16中の左半分を発光側の光ファイバ16a、右半分を受光側の光ファイバ16bとしている。図2(d)では、チューブ16中に、発光側の光ファイバ16cと受光側の光ファイバ16dとを混在させている。図2(e)では、チューブ16中の中心部を発光側(あるいは受光側)の光ファイバ16e、光ファイバ16eの周囲を受光側(あるいは発光側)の光ファイバ16fとしている。   As the tube 17, a tube 16 containing optical fibers in various forms as shown in FIG. 2 can be used. In FIG. 2A, a light emitting side optical fiber 16-1 and a light receiving side optical fiber 16-2 are coaxially provided in a tube 16. In FIG. 2B, a light emitting side (or light receiving side) optical fiber 16-1 and a light receiving side (or light emitting side) optical fiber 16-21 to 16-24 are coaxially provided in a tube 16. In FIG. 2C, the left half of the tube 16 is the light-emitting side optical fiber 16a, and the right half is the light-receiving side optical fiber 16b. In FIG. 2D, the light emitting side optical fiber 16 c and the light receiving side optical fiber 16 d are mixed in the tube 16. In FIG. 2E, the central portion in the tube 16 is a light emitting side (or light receiving side) optical fiber 16e, and the periphery of the optical fiber 16e is a light receiving side (or light emitting side) optical fiber 16f.

図1に示した鏡面冷却式露点計201では、チューブ17として図2(a)に示されたタイプのチューブ16を使用しており、その内部に発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容している。発光側の光ファイバ17−1と受光側の光ファイバ17−2のJ字型に湾曲された先端部(発光部、受光部)は、鏡10の鏡面10−1に向けられ、この鏡面10−1に対して所定の傾斜角で傾けられている。この結果、光ファイバ17−1からの光の照射方向(光軸)と光ファイバ17−2での光の受光方向(光軸)とが平行とされ、また隣接して同一の傾斜角とされる。   In the mirror-cooled dew point meter 201 shown in FIG. 1, the tube 16 of the type shown in FIG. 2A is used as the tube 17, and the light-emitting side optical fiber 17-1 and the light-receiving side of the tube 16 are contained therein. The optical fiber 17-2 is accommodated. The tip portions (light emitting portion and light receiving portion) of the light emitting side optical fiber 17-1 and the light receiving side optical fiber 17-2 which are curved in a J-shape are directed to the mirror surface 10-1 of the mirror 10, and this mirror surface 10 -1 with a predetermined inclination angle. As a result, the irradiation direction (optical axis) of the light from the optical fiber 17-1 and the light receiving direction (optical axis) of the light from the optical fiber 17-2 are made parallel, and the same inclination angle is set adjacently. The

コントロール部201Bには、露点温度表示部12と、結露検知部13と、ペルチェ出力制御部14と、信号変換部15とが設けられている。露点温度表示部12には温度検出素子11が検出する鏡10の温度が表示される。結露検知部13は、光ファイバ17−1の先端部より鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させるとともに、光ファイバ17−2を介して受光される反射パルス光(散乱光)の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度に応じた信号S1をペルチェ出力制御部14へ送る。ペルチェ出力制御部14は、結露検知部13からの信号S1を受けて、反射パルス光の強度と予め定められている閾値とを比較し、反射パルス光の強度が閾値に達していない場合には、熱電冷却素子2への電流を信号S1の値に応じて増大させる制御信号S2を、反射パルス光の強度が閾値を超えている場合には、熱電冷却素子2への電流を信号S1の値に応じて減少させる制御信号S2を信号変換部15へ出力する。信号変換部15は、ペルチェ出力制御部14からの制御信号S2で指示される電流S3を熱電冷却素子2へ供給する。   The control unit 201B is provided with a dew point temperature display unit 12, a dew condensation detection unit 13, a Peltier output control unit 14, and a signal conversion unit 15. The dew point temperature display unit 12 displays the temperature of the mirror 10 detected by the temperature detection element 11. The dew condensation detection unit 13 irradiates the mirror surface 10-1 of the mirror 10 with pulse light obliquely at a predetermined period from the tip of the optical fiber 17-1, and receives light reflected through the optical fiber 17-2. The difference between the upper limit value and the lower limit value of the pulsed light (scattered light) is obtained as the intensity of the reflected pulsed light, and a signal S 1 corresponding to the intensity of the reflected pulsed light is sent to the Peltier output control unit 14. The Peltier output control unit 14 receives the signal S1 from the dew condensation detection unit 13, compares the intensity of the reflected pulse light with a predetermined threshold value, and if the intensity of the reflected pulse light has not reached the threshold value. The control signal S2 for increasing the current to the thermoelectric cooling element 2 according to the value of the signal S1, and when the intensity of the reflected pulse light exceeds the threshold value, the current to the thermoelectric cooling element 2 is set to the value of the signal S1. The control signal S <b> 2 that decreases in response to the signal is output to the signal converter 15. The signal conversion unit 15 supplies the thermoelectric cooling element 2 with a current S3 indicated by the control signal S2 from the Peltier output control unit 14.

この鏡面冷却式露点計201において、センサ部201Aは被測定気体中に置かれる。また、結露検知部13は、光ファイバ17−1の先端部より、鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させる(図3(a)参照)。鏡面10−1は被測定気体に晒されており、鏡面10−1に結露が生じていなければ、光ファイバ17−1の先端部から照射されたパルス光はそのほゞ全量が正反射し、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(散乱光)の量は極微量である。したがって、鏡面10−1に結露が生じていない場合、光ファイバ17−2を介して受光される反射パルス光の強度は小さい。   In this mirror-cooled dew point meter 201, the sensor unit 201A is placed in the gas to be measured. Further, the dew condensation detector 13 irradiates the mirror surface 10-1 of the mirror 10 with pulsed light obliquely at a predetermined cycle from the tip of the optical fiber 17-1 (see FIG. 3A). If the mirror surface 10-1 is exposed to the gas to be measured and no condensation occurs on the mirror surface 10-1, almost all of the pulsed light irradiated from the tip of the optical fiber 17-1 is regularly reflected. The amount of reflected pulsed light (scattered light) from the mirror surface 10-1 received through the optical fiber 17-2 is extremely small. Accordingly, when no condensation occurs on the mirror surface 10-1, the intensity of the reflected pulse light received through the optical fiber 17-2 is small.

結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、反射パルス光の強度に応じた信号S1をペルチェ出力制御部14へ送る。この場合、反射パルス光の強度はほゞ零であり、閾値に達していないので、ペルチェ出力制御部14は、熱電冷却素子2への電流を増大させる制御信号S2を信号変換部15へ送る。これにより、信号変換部15からの熱電冷却素子2への電流S3が増大し、熱電冷却素子2の冷却面2−1の温度が下げられて行く。   In the dew condensation detection unit 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received through the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and the signal S1 corresponding to the intensity of the reflected pulse light is obtained from the Peltier. This is sent to the output control unit 14. In this case, since the intensity of the reflected pulse light is almost zero and has not reached the threshold value, the Peltier output control unit 14 sends a control signal S2 for increasing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Thereby, the current S3 from the signal converter 15 to the thermoelectric cooling element 2 increases, and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered.

熱電冷却素子2の冷却面2−1の温度、すなわち鏡10の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡10の鏡面10−1に結露し、その水の分子に光ファイバ17−1の先端部から照射されたパルス光の一部が吸収されたり、乱反射したりする。これにより、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(散乱光)の強度が増大する。   When the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, that is, the temperature of the mirror 10, the water vapor contained in the gas to be measured is condensed on the mirror surface 10-1 of the mirror 10, and the water molecules are optical fiber. Part of the pulsed light irradiated from the tip portion of 17-1 is absorbed or irregularly reflected. Thereby, the intensity | strength of the reflected pulsed light (scattered light) from the mirror surface 10-1 light-received via the optical fiber 17-2 increases.

結露検知部13は、受光される反射パルス光の1パルス毎に、その1パルスの上限値と下限値との差を求め、これを反射パルス光の強度とする。すなわち、図3(b)に示すように、反射パルス光の1パルスの上限値Lmaxと下限値Lminとの差ΔLを求め、このΔLを反射パルス光の強度とする。この結露検知部13での処理により、反射パルス光に含まれる外乱光ΔXが除去され、外乱光による誤動作が防止される。この結露検知部13でのパルス光を用いた外乱光による誤動作防止の処理方式をパルス変調方式と呼ぶ。この処理によって、この鏡面冷却式露点計201では、センサ部201Aからチャンバをなくすことができている。   The dew condensation detection unit 13 obtains the difference between the upper limit value and the lower limit value of each pulse of the received reflected pulse light, and uses this difference as the intensity of the reflected pulse light. That is, as shown in FIG. 3B, a difference ΔL between the upper limit value Lmax and the lower limit value Lmin of one pulse of the reflected pulse light is obtained, and this ΔL is used as the intensity of the reflected pulse light. By the process in the dew condensation detection unit 13, the disturbance light ΔX included in the reflected pulse light is removed, and malfunction due to the disturbance light is prevented. A processing method for preventing malfunction by disturbance light using pulsed light in the dew condensation detection unit 13 is referred to as a pulse modulation method. With this process, the mirror cooled dew point meter 201 can eliminate the chamber from the sensor unit 201A.

ここで、光ファイバ17−2を介して受光される反射パルス光の強度が閾値を超えると、ペルチェ出力制御部14は、熱電冷却素子2への電流を減少させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2の冷却面2−1の温度の低下が抑えられ、結露の発生が抑制される。この結露の抑制により、光ファイバ17−2を介して受光される反射パルス光の強度が小さくなり、閾値を下回ると、ペルチェ出力制御部14から熱電冷却素子2への電流を増大させる制御信号S2が信号変換部15へ送られる。この動作の繰り返しによって、光ファイバ17−2を介して受光される反射パルス光の強度が閾値とほゞ等しくなるように、熱電冷却素子2の冷却面2−1の温度が調整される。この調整された温度、すなわち鏡面10−1に生じた結露が平衡状態に達した温度(露点温度)が、露点温度として露点温度表示部12に表示される。   Here, when the intensity of the reflected pulse light received through the optical fiber 17-2 exceeds the threshold value, the Peltier output control unit 14 transmits the control signal S2 for reducing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Send to. Thereby, the fall of the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is suppressed, and generation | occurrence | production of dew condensation is suppressed. By controlling the condensation, the intensity of the reflected pulse light received via the optical fiber 17-2 is reduced, and when the intensity falls below the threshold, the control signal S2 increases the current from the Peltier output control unit 14 to the thermoelectric cooling element 2. Is sent to the signal converter 15. By repeating this operation, the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is adjusted so that the intensity of the reflected pulse light received through the optical fiber 17-2 is approximately equal to the threshold value. The adjusted temperature, that is, the temperature at which the dew condensation that has occurred on the mirror surface 10-1 has reached an equilibrium state (dew point temperature) is displayed on the dew point temperature display unit 12 as the dew point temperature.

この鏡面冷却式露点計201では、発光側の光ファイバ17−1と受光側の光ファイバ17−2の取り付け部が1箇所にまとめられており、検出部201Aの小型化に貢献している。また、発光側の光ファイバ17−1と受光側の光ファイバ17−2とがチューブ17に収容されているので、発光側の光ファイバ17−1と受光側の光ファイバ17−2との間での位置決めは必要なく、組立時の作業性がよくなる。   In this mirror-cooled dew point meter 201, the attachment portions of the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are gathered in one place, which contributes to the downsizing of the detection unit 201A. Further, since the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are accommodated in the tube 17, the space between the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2. There is no need for positioning at this point, and the workability during assembly is improved.

また、この鏡面冷却式露点計201では、センサ部201Aからチャンバをなくし、吸引ポンプや吸引用チューブ、排気用チューブ、流量計など省略することができているので、部品点数が削減され、センサ部201Aのさらなる小型化が図られ、組立性が向上し、コストもダウンする。また、吸引ポンプや吸引用チューブ、排気用チューブ、流量計などを装着しなくてもよいので、測定雰囲気中への設置も容易となる。また、センサ部201Aには吸引ポンプや吸引用チューブ、排気用チューブ、流量計などの装着が伴わず、センサ部201Aとコントロール部201Bとの2つの構成となるので、持ち運びが容易となる。   Further, in this mirror-cooled dew point meter 201, the chamber is eliminated from the sensor unit 201A, and the suction pump, the suction tube, the exhaust tube, the flow meter, and the like can be omitted. Further downsizing of 201A is achieved, the assembling property is improved, and the cost is also reduced. Further, since it is not necessary to attach a suction pump, a suction tube, an exhaust tube, a flow meter, etc., installation in a measurement atmosphere is facilitated. The sensor unit 201A is not accompanied by a suction pump, a suction tube, an exhaust tube, a flow meter, or the like, and has two configurations of the sensor unit 201A and the control unit 201B.

図4にコントロール部201Bをコントロールボックス21に収容した鏡面冷却式露点計201の構成を示す。コントロールボックス21において、収容されたコントロール部201Bへの電源は電池とされており、コントロールボックス21とセンサ部201Aを1組にして現場に赴き、センサ部201Aを測定雰囲気中に設置することにより、すぐに測定を始めることができる。この例では、コントロールボックス21とセンサ部201Aとを別体としているが、センサ部201Aをコントロールボックス21に設け、一体化するようにしてもよい。   FIG. 4 shows the configuration of a mirror-cooled dew point meter 201 in which the control unit 201B is accommodated in the control box 21. In the control box 21, the power supply to the accommodated control unit 201B is a battery. By placing the control box 21 and the sensor unit 201A in one set and going to the site, the sensor unit 201A is installed in a measurement atmosphere. You can start measuring immediately. In this example, the control box 21 and the sensor unit 201A are separate, but the sensor unit 201A may be provided in the control box 21 and integrated.

なお、図1に示した鏡面冷却式露点計201では、センサ部201Aにおいて発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容したチューブ17を用いたが、図5に示すセンサ部201A’のように、発光側の光ファイバ17−1に代えて発光ダイオード19を、受光側の光ファイバ17−2に代えてフォトカプラ20を設けるようにしてもよい。   In the mirror-cooled dew point meter 201 shown in FIG. 1, the tube 17 containing the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 is used in the sensor unit 201A. As shown in the sensor unit 201A ′, a light emitting diode 19 may be provided instead of the light-emitting side optical fiber 17-1, and a photocoupler 20 may be provided instead of the light-receiving side optical fiber 17-2.

〔実施の形態2:鏡面冷却式露点計(正反射光検出方式)〕
図6はこの発明に係る水分検出装置の他の実施の形態を示す鏡面冷却式露点計の概略構成図である。この鏡面冷却式露点計202では、発光側の光ファイバ17−1と受光側の光ファイバ17−2とを同軸ではなく、鏡10を挾んでその左右に対称に設けている。発光側の光ファイバ17−1と受光側の光ファイバ17−2のJ字型に湾曲された先端部は、鏡10の鏡面10−1に向けられ、この鏡面10−1に対して左右対称に所定の傾斜角で傾けられている。
[Embodiment 2: Mirror Surface Cooling Dew Point Meter (Specular Reflection Light Detection Method)]
FIG. 6 is a schematic configuration diagram of a mirror-cooled dew point meter showing another embodiment of the moisture detection device according to the present invention. In the mirror-cooled dew point meter 202, the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are not coaxial, but are provided symmetrically on the left and right sides of the mirror 10. The tips of the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2, which are curved in a J-shape, are directed to the mirror surface 10-1 of the mirror 10 and symmetrical with respect to the mirror surface 10-1. Is inclined at a predetermined inclination angle.

この鏡面冷却式露点計202において、センサ部202Aは被測定気体中に置かれる。また、結露検知部13は、光ファイバ17−1の先端部より、鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させる。鏡面10−1は被測定気体に晒されており、鏡面10−1に結露が生じていなければ、光ファイバ17−1の先端部から照射されたパルス光はそのほゞ全量が正反射し、光ファイバ17−2を介して受光される。したがって、鏡面10−1に結露が生じていない場合、光ファイバ17−2を介して受光される反射パルス光の強度は大きい。   In this mirror-cooled dew point meter 202, the sensor unit 202A is placed in the gas to be measured. In addition, the dew condensation detection unit 13 irradiates the mirror surface 10-1 of the mirror 10 with pulsed light obliquely at a predetermined cycle from the tip of the optical fiber 17-1. If the mirror surface 10-1 is exposed to the gas to be measured and no condensation occurs on the mirror surface 10-1, almost all of the pulsed light irradiated from the tip of the optical fiber 17-1 is regularly reflected. Light is received through the optical fiber 17-2. Therefore, when no condensation occurs on the mirror surface 10-1, the intensity of the reflected pulse light received through the optical fiber 17-2 is high.

結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度に応じた信号S1をペルチェ出力制御部14へ送る。この場合、反射パルス光の強度は大きく、閾値を超えているので、ペルチェ出力制御部14は、熱電冷却素子2への電流を増大させる制御信号S2を信号変換部15へ送る。これにより、信号変換部15からの熱電冷却素子2への電流S3が増大し、熱電冷却素子2の冷却面2−1の温度が下げられて行く。   In the dew condensation detector 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received through the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and a signal S1 corresponding to the intensity of the reflected pulse light is obtained. The data is sent to the Peltier output control unit 14. In this case, since the intensity of the reflected pulse light is large and exceeds the threshold value, the Peltier output control unit 14 sends a control signal S2 for increasing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Thereby, the current S3 from the signal converter 15 to the thermoelectric cooling element 2 increases, and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered.

熱電冷却素子2の冷却面2−1の温度、すなわち鏡10の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡10の鏡面10−1に結露し、その水の分子に光ファイバ17−1の先端部から照射されたパルス光の一部が吸収されたり、乱反射したりする。これにより、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(正反射光)の強度が減少する。   When the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, that is, the temperature of the mirror 10, the water vapor contained in the gas to be measured is condensed on the mirror surface 10-1 of the mirror 10, and the water molecules are optical fiber. Part of the pulsed light irradiated from the tip portion of 17-1 is absorbed or irregularly reflected. Thereby, the intensity | strength of the reflected pulsed light (regular reflected light) from the mirror surface 10-1 light-received via the optical fiber 17-2 reduces.

ここで、光ファイバ17−2を介して受光される反射パルス光の強度が閾値を下回ると、ペルチェ出力制御部14は、熱電冷却素子2への電流を減少させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2の冷却面2−1の温度の低下が抑えられ、結露の発生が抑制される。この結露の抑制によって、光ファイバ17−2を介して受光される反射パルス光の強度が大きくなり、閾値を上回ると、ペルチェ出力制御部14から熱電冷却素子2への電流を増大させる制御信号S2が信号変換部15へ送られる。この動作の繰り返しによって、光ファイバ17−2を介して受光される反射パルス光の強度が閾値とほゞ等しくなるように、熱電冷却素子2の冷却面2−1の温度が調整される。この調整された温度、すなわち鏡面10−1に生じた結露が平衡状態に達した温度(露点温度)が、露点温度として露点温度表示部12に表示される。   Here, when the intensity of the reflected pulsed light received through the optical fiber 17-2 falls below the threshold value, the Peltier output control unit 14 sends the control signal S2 for reducing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Send to. Thereby, the fall of the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is suppressed, and generation | occurrence | production of dew condensation is suppressed. By suppressing the dew condensation, the intensity of the reflected pulse light received through the optical fiber 17-2 increases. When the intensity exceeds the threshold, the control signal S2 increases the current from the Peltier output control unit 14 to the thermoelectric cooling element 2. Is sent to the signal converter 15. By repeating this operation, the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is adjusted so that the intensity of the reflected pulse light received through the optical fiber 17-2 is approximately equal to the threshold value. The adjusted temperature, that is, the temperature at which the dew condensation that has occurred on the mirror surface 10-1 has reached an equilibrium state (dew point temperature) is displayed on the dew point temperature display unit 12 as the dew point temperature.

この鏡面冷却式露点計202においても、パルス変調方式によって結露検知部13において外乱光による誤動作が防止されるので、センサ部202Aからチャンバをなくすことができている。
なお、上述した実施の形態1や2では、鏡面10−1に生じる結露(水分)を検出するものとしたが、同様の構成によって鏡面10−1に生じる結霜(水分)を検出することも可能である。
また、上述した実施の形態1や2では、鏡10を冷却する冷却手段として熱電冷却素子(ペルチェ素子)2を用いたが、ヘリウム冷凍機などを用いてもよい。
Also in this mirror-cooled dew point meter 202, the malfunction is prevented by disturbance light in the dew condensation detection unit 13 by the pulse modulation method, so that the chamber can be eliminated from the sensor unit 202A.
In the first and second embodiments described above, the condensation (moisture) generated on the mirror surface 10-1 is detected. However, the frost (moisture) generated on the mirror surface 10-1 can also be detected by the same configuration. Is possible.
In the first and second embodiments described above, the thermoelectric cooling element (Peltier element) 2 is used as the cooling means for cooling the mirror 10, but a helium refrigerator or the like may be used.

参考例1:天気計(散乱光検出方式)〕
図7はこの発明に係る鏡面冷却式露点計の一参考例を示す天気計の概略構成図である。この天気計203はセンサ部203Aと雨検知部203Bとを有している。センサ部203Aは、鏡10のみを設けた構成とし、実施の形態1と同様にして、上端部をJ字型に湾曲させたチューブ17を設けている。
[ Reference Example 1 : Weather meter (scattered light detection method)]
FIG. 7 is a schematic configuration diagram of a weather meter showing a reference example of a mirror-cooled dew point meter according to the present invention. The weather gauge 203 includes a sensor unit 203A and a rain detection unit 203B. The sensor unit 203A has a configuration in which only the mirror 10 is provided, and a tube 17 whose upper end is curved in a J-shape is provided in the same manner as in the first embodiment.

この天気計203において、雨検知部203Bは、光ファイバ17−1の先端部より鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させるとともに、光ファイバ17−2を介して受光される反射パルス光(散乱光)の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度と予め定められている閾値とを比較し、反射パルス光の強度が閾値を超えると雨が降り始めた(鏡面10−1に雨が付着した)と判断する。   In this weather gauge 203, the rain detection unit 203B irradiates the mirror surface 10-1 of the mirror 10 with pulse light obliquely at a predetermined cycle from the tip of the optical fiber 17-1, and the optical fiber 17-2. The difference between the upper limit value and the lower limit value of the reflected pulse light (scattered light) received through the light source is obtained as the intensity of the reflected pulse light, and the intensity of the reflected pulse light is compared with a predetermined threshold value. When the light intensity exceeds the threshold, it is determined that it has started to rain (rain has been attached to the mirror surface 10-1).

参考例2:天気計(正反射光方式)〕
図8はこの発明に係る鏡面冷却式露点計の他の参考例を示す天気計の概略構成図である。この天気計204はセンサ部204Aと雨検知部204Bとを有している。センサ部204Aは、鏡10のみを設けた構成とし、実施の形態2と同様にして、上端部をJ字型に湾曲させた発行側の光ファイバ17−1と受光側の光ファイバ17−2とを鏡10を挟んで左右対称に設けている。
[ Reference Example 2 : Weather meter (regular reflection light method)]
FIG. 8 is a schematic configuration diagram of a weather meter showing another reference example of the mirror-cooled dew point meter according to the present invention. The weather gauge 204 includes a sensor unit 204A and a rain detection unit 204B. The sensor unit 204A has a configuration in which only the mirror 10 is provided, and in the same manner as in the second embodiment, the issue-side optical fiber 17-1 and the light-receiving side optical fiber 17-2 whose upper ends are curved in a J-shape. Are provided symmetrically with the mirror 10 in between.

この天気計204において、雨検知部204Bは、光ファイバ17−1の先端部より鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させるとともに、光ファイバ17−2を介して受光される反射パルス光(正反射光)の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度と予め定められている閾値とを比較し、反射パルス光の強度が閾値を下回ると雨が降り始めた(鏡面10−1に雨が付着した)と判断する。   In this weather gauge 204, the rain detection unit 204B irradiates the mirror surface 10-1 of the mirror 10 with pulse light obliquely at a predetermined cycle from the tip of the optical fiber 17-1, and the optical fiber 17-2. The difference between the upper limit value and the lower limit value of the reflected pulsed light (regular reflected light) received through the light is obtained as the intensity of the reflected pulsed light, the intensity of the reflected pulsed light is compared with a predetermined threshold value, and the reflected light is reflected. When the intensity of the pulsed light falls below the threshold, it is determined that it has started to rain (rain has been attached to the mirror surface 10-1).

なお、上述した参考例1や2では、鏡面10−1上に付着する雨を検出できるようにしたが、同様の構成によって鏡面10−1上に付着する雪を検出することも可能である。また、同様の構成によって、雨や雪だけではなく、塵なども検出することが可能である。
In the reference examples 1 and 2 described above, rain attached to the mirror surface 10-1 can be detected. However, it is also possible to detect snow attached to the mirror surface 10-1 with the same configuration. In addition, with the same configuration, it is possible to detect not only rain and snow but also dust and the like.

本発明に係る鏡面冷却式露点計の一実施の形態を示す概略構成図(実施の形態1)である。It is a schematic block diagram (Embodiment 1) which shows one Embodiment of the mirror surface cooling-type dew point meter which concerns on this invention. 発光側の光ファイバと受光側の光ファイバとを1つのチューブ中に同軸に設ける構成を例示する図である。It is a figure which illustrates the structure which provides the optical fiber of a light emission side, and the optical fiber of a light reception side coaxially in one tube. 鏡面に対して照射されるパルス光および鏡面から受光される反射パルス光を示す図である。It is a figure which shows the pulsed light irradiated with respect to a mirror surface, and the reflected pulsed light received from a mirror surface. コントロール部をコントロールボックスに収容した鏡面冷却式露点計の構成を示す図である。It is a figure which shows the structure of the mirror surface dew point meter which accommodated the control part in the control box. 実施の形態1の鏡面冷却式露点計のセンサ部の変形例を示す図である。It is a figure which shows the modification of the sensor part of the mirror surface cooling-type dew point meter of Embodiment 1. FIG. 本発明に係る鏡面冷却式露点計の他の実施の形態を示す概略構成図(実施の形態2)である。It is a schematic block diagram (Embodiment 2) which shows other embodiment of the mirror surface cooling type dew point meter which concerns on this invention. 本発明に係る鏡面冷却式露点計の一参考例を示す天気計の概略構成図(実施の形態3)である。It is a schematic block diagram (Embodiment 3) of the weather meter which shows one reference example of the mirror surface cooling-type dew point meter which concerns on this invention. 本発明に係る鏡面冷却式露点計の他の参考例を示す天気計の概略構成図(実施の形態4)である。It is a schematic block diagram (Embodiment 4) of the weather meter which shows the other reference example of the mirror surface cooling dew point meter which concerns on this invention. 正反射光検出方式を採用した従来の鏡面冷却式露点計の要部を示す図である。It is a figure which shows the principal part of the conventional mirror surface cooling type dew point meter which employ | adopted the regular reflection light detection system. 散乱光検出方式を採用した従来の鏡面冷却式露点計の要部を示す図である。It is a figure which shows the principal part of the conventional mirror surface cooling-type dew point meter which employ | adopted the scattered light detection system. 正反射光検出方式を採用した従来の天気計の要部を示す図である。It is a figure which shows the principal part of the conventional weather meter which employ | adopted the regular reflection light detection system. 散乱光検出方式を採用した従来の天気計の要部を示す図である。It is a figure which shows the principal part of the conventional weather meter which employ | adopted the scattered light detection system. 従来の鏡面冷却式露点計における鏡や温度検出素子の取り付け構造を示す斜視図である。It is a perspective view which shows the attachment structure of the mirror and temperature detection element in the conventional mirror surface cooling dew point meter.

符号の説明Explanation of symbols

2…熱電冷却素子(ペルチェ素子)、2−1…冷却面、2−2…加熱面、10…鏡、10−1…鏡面、11…温度検出素子(薄膜測温抵抗体)、12…露点温度表示部、13…結露検知部、14…ペルチェ出力制御部、15…信号変換部、17…チューブ、17−1…発光側の光ファイバ、17−2…受光側の光ファイバ、18…ヒートシンク、19…発光ダイオード、20…フォトカプラ、21…コントロールボックス、40…断熱材、201,202…鏡面冷却式露点計、201A,202A,202A’…センサ部、201B,202B…コントロール部、203,204…天気計、203A,204A…センサ部、203B,204B…雨検知部。
DESCRIPTION OF SYMBOLS 2 ... Thermoelectric cooling element (Peltier element), 2-1 ... Cooling surface, 2-2 ... Heating surface, 10 ... Mirror, 10-1 ... Mirror surface, 11 ... Temperature detection element (thin film resistance thermometer), 12 ... Dew point Temperature display unit, 13 ... dew condensation detection unit, 14 ... Peltier output control unit, 15 ... signal conversion unit, 17 ... tube, 17-1 ... light-emitting side optical fiber, 17-2 ... light-receiving side optical fiber, 18 ... heat sink , 19 ... Light emitting diode, 20 ... Photocoupler, 21 ... Control box, 40 ... Insulation, 201, 202 ... Mirror surface dew point meter, 201A, 202A, 202A '... Sensor unit, 201B, 202B ... Control unit, 203, 204 ... Weather meter, 203A, 204A ... Sensor unit, 203B, 204B ... Rain detection unit.

Claims (1)

鏡面が被測定気体に晒される鏡と、
前記鏡を冷却する冷却手段と、
前記鏡面に対して所定の周期でパルス光を照射する発光手段と、
前記発光手段から前記鏡面に対して照射されたパルス光の反射光を受光する受光手段と、
この受光手段が受光する反射光に基づいて前記冷却手段によって冷却された前記鏡の鏡面上に生じる水分を検出する手段と、
前記鏡の温度を検出する温度検出素子と
を備えた鏡面冷却式露点計において、
前記受光手段が受光する反射光の1パルスごとの上限値と下限値との差に基づいて前記冷却手段によって冷却された前記鏡の鏡面上に生じる水分を検出する手段を備え、
外乱光を遮断するチャンバ部を備えていないことを特徴とする鏡面冷却式露点計。
A mirror whose mirror surface is exposed to the gas to be measured;
Cooling means for cooling the mirror;
A light emitting means for irradiating the mirror surface with pulsed light at a predetermined period;
A light receiving means for receiving the reflected light of the pulsed light emitted from the light emitting means to the mirror surface;
Means for detecting moisture generated on the mirror surface of the mirror cooled by the cooling means based on the reflected light received by the light receiving means;
In the mirror-cooled dew point meter provided with a temperature detecting element for detecting the temperature of the mirror,
Means for detecting moisture generated on the mirror surface of the mirror cooled by the cooling means based on a difference between an upper limit value and a lower limit value for each pulse of reflected light received by the light receiving means;
A mirror-cooled dew point meter, characterized in that it does not include a chamber portion that blocks ambient light.
JP2004101423A 2004-03-30 2004-03-30 Mirror surface dew point meter Expired - Fee Related JP4005581B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004101423A JP4005581B2 (en) 2004-03-30 2004-03-30 Mirror surface dew point meter
US11/097,696 US7736051B2 (en) 2004-03-30 2005-03-30 Thermoelectric device and mirror surface state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101423A JP4005581B2 (en) 2004-03-30 2004-03-30 Mirror surface dew point meter

Publications (2)

Publication Number Publication Date
JP2005283510A JP2005283510A (en) 2005-10-13
JP4005581B2 true JP4005581B2 (en) 2007-11-07

Family

ID=35182036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101423A Expired - Fee Related JP4005581B2 (en) 2004-03-30 2004-03-30 Mirror surface dew point meter

Country Status (1)

Country Link
JP (1) JP4005581B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736051B2 (en) 2004-03-30 2010-06-15 Yamatake Corporation Thermoelectric device and mirror surface state detection device
JP2007127572A (en) * 2005-11-07 2007-05-24 Yamatake Corp Apparatus for detecting state on specular surface, and moisture detector
JP4837777B2 (en) 2007-04-04 2011-12-14 エスペック株式会社 Hygrometer and dew point meter
JP2009139216A (en) * 2007-12-06 2009-06-25 Seiko Instruments Inc Mirror surface cooling type dew point recorder
JP2009186440A (en) * 2008-02-08 2009-08-20 Seiko Instruments Inc Mirror surface cooling dew point meter
CN110425094A (en) * 2019-08-14 2019-11-08 中国华能集团有限公司 A kind of wind power generation unit blade based on optical principle congeals detection device and method

Also Published As

Publication number Publication date
JP2005283510A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP5198844B2 (en) Cloudiness detector and mirror-cooled dew point meter
US7736051B2 (en) Thermoelectric device and mirror surface state detection device
WO2005098404A1 (en) Detector for detecting state on detection surface
US20070171955A1 (en) Cooled mirror dew-point hygrometer
US20070211781A1 (en) Moisture Detection Device
JP4005581B2 (en) Mirror surface dew point meter
US7168850B2 (en) Mirror surface state detection device and moisture detection device
JP4504318B2 (en) Mirror surface dew point meter
JP4005580B2 (en) Mirror surface dew point meter
JP5643602B2 (en) Mirror surface cooling type sensor
EP1398617A1 (en) Exhaust gas sensor
JP4012166B2 (en) Mirror surface dew point meter
JP4504290B2 (en) Moisture detector
JP2007127572A (en) Apparatus for detecting state on specular surface, and moisture detector
JP4231009B2 (en) Moisture detector
JP4224032B2 (en) Moisture detector
JP4025308B2 (en) Mirror surface cooling type sensor
JP4571537B2 (en) Mirror surface cooling type sensor
WO2002025254A1 (en) Concentration measurer
JP4685513B2 (en) Mirror surface cooling type sensor
JP5643603B2 (en) Mirror surface cooling type sensor
KR100875152B1 (en) Cooled mirror dew-point hygrometer
JP2003194756A (en) Mirror-surface condensing dew-point instrument
JP4054002B2 (en) Mirror surface cooling type sensor
JP2005195502A (en) Optical fiber type temperature measuring apparatus and temperature measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

R150 Certificate of patent or registration of utility model

Ref document number: 4005581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees