JP2007127572A - Apparatus for detecting state on specular surface, and moisture detector - Google Patents

Apparatus for detecting state on specular surface, and moisture detector Download PDF

Info

Publication number
JP2007127572A
JP2007127572A JP2005321905A JP2005321905A JP2007127572A JP 2007127572 A JP2007127572 A JP 2007127572A JP 2005321905 A JP2005321905 A JP 2005321905A JP 2005321905 A JP2005321905 A JP 2005321905A JP 2007127572 A JP2007127572 A JP 2007127572A
Authority
JP
Japan
Prior art keywords
light
mirror
optical fiber
mirror surface
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005321905A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kanai
良之 金井
Kazumasa Ibata
一雅 井端
Shigeki Shoji
成樹 東海林
Masaki Takechi
昌樹 武智
Zentaro Nakamura
善太郎 中村
Masahiro Komatsu
雅弘 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2005321905A priority Critical patent/JP2007127572A/en
Publication of JP2007127572A publication Critical patent/JP2007127572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for detecting the state of a specular surface for promoting miniaturization and improving working efficiency in assembly work, and to provide a moisture detector. <P>SOLUTION: A column-shaped heat sink 18 is mounted on a heating surface 2-2 of a thermoelectric cooling element 2, and a stainless-steel tube 17 whose upper end section is bent to be J-shaped, is disposed along the heat sink 18. The tube 17 is fixed to the heat sink (body section) 18 at its straight section 17B coupled with the J-shaped bent end 17A. The tube 17 contains an optical fiber 17-1 for emitting light and an optical fiber 17-2 for receiving light. The head planes of the J-shaped bent ends (light emitting section, light receiving section) of the optical fiber 17-1 for emitting light and the optical fiber 17-2 for receiving light are brought to face the specular surface 10-1 of a mirror 10 so as to be tilted to the specular surface 10-1 at prescribed tilt angles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、鏡面上の状態を検出する鏡面上状態検出装置および鏡面上に生じる被測定気体に含まれる水分を検出する水分検出装置に関するものである。   The present invention relates to an on-mirror state detection device that detects a state on a mirror surface and a moisture detection device that detects moisture contained in a gas to be measured generated on the mirror surface.

従来より、湿度測定法として、被測定気体の温度を低下させ、その被測定気体に含まれる水蒸気の一部を結露させたときの温度を測定することにより露点を検出する露点検出法が知られている。例えば、非特許文献1には、寒剤、冷凍機、電子冷却器などを用いて鏡を冷却し、この冷却した鏡の鏡面上の反射光の強度の変化を検出し、この時の鏡面の温度を測定することによって、被測定気体中の水分の露点を検出する鏡面冷却式露点計について説明されている。   Conventionally, as a humidity measurement method, a dew point detection method is known in which a dew point is detected by measuring the temperature when the temperature of a gas to be measured is reduced and a part of water vapor contained in the gas to be measured is condensed. ing. For example, in Non-Patent Document 1, a mirror is cooled using a cryogen, a refrigerator, an electronic cooler, or the like, a change in the intensity of reflected light on the mirror surface of the cooled mirror is detected, and the temperature of the mirror surface at this time is detected. A mirror-cooled dew point meter that detects the dew point of the moisture in the gas to be measured is described.

この鏡面冷却式露点計には、利用する反射光の種類によって、2つのタイプがある。1つは、正反射光を利用する正反射光検出方式(例えば、特許文献1参照)、もう1つは、散乱光を利用する散乱光検出方式(例えば、特許文献2参照)である。   There are two types of mirror-cooled dew point meters depending on the type of reflected light used. One is a specularly reflected light detection method that uses specularly reflected light (see, for example, Patent Document 1), and the other is a scattered light detection method that uses scattered light (see, for example, Patent Document 2).

〔正反射光検出方式〕
図7に正反射光検出方式を採用した従来の鏡面冷却式露点計の要部を示す。この鏡面冷却式露点計101は、被測定気体が流入されるチャンバ1と、このチャンバ1の内部に設けられた熱電冷却素子(ペルチェ素子)2を備えている。熱電冷却素子2の冷却面2−1には銅製ブロック3を介してボルト4が取り付けられており、熱電冷却素子2の加熱面2−2には放熱フィン5が取り付けられている。銅製ブロック3に取り付けられたボルト4の上面4−1は鏡面とされている。銅製ブロック3の側部には巻線式測温抵抗体(温度検出素子)6が埋め込まれている(図9参照)。また、チャンバ1の上部には、ボルト4の上面(鏡面)4−1に対して斜めに光を照射する発光素子7と、この発光素子7から鏡面4−1に対して照射された光の正反射光を受光する受光素子8とが設けられている。熱電冷却素子2の周囲には断熱材9が設けられている。
[Specular reflection detection method]
FIG. 7 shows a main part of a conventional mirror-cooled dew point meter that employs a regular reflection light detection method. The specular cooling dew point meter 101 includes a chamber 1 into which a gas to be measured is introduced and a thermoelectric cooling element (Peltier element) 2 provided inside the chamber 1. Bolts 4 are attached to the cooling surface 2-1 of the thermoelectric cooling element 2 via copper blocks 3, and radiating fins 5 are attached to the heating surface 2-2 of the thermoelectric cooling element 2. An upper surface 4-1 of the bolt 4 attached to the copper block 3 is a mirror surface. A winding type resistance temperature detector (temperature detection element) 6 is embedded in a side portion of the copper block 3 (see FIG. 9). Further, on the upper portion of the chamber 1, a light emitting element 7 that irradiates light obliquely to the upper surface (mirror surface) 4-1 of the bolt 4, and light emitted from the light emitting element 7 to the mirror surface 4-1. A light receiving element 8 for receiving the specularly reflected light is provided. A heat insulating material 9 is provided around the thermoelectric cooling element 2.

この鏡面冷却式露点計101において、チャンバ1内の鏡面4−1は、チャンバ1内に流入される被被測定気体に晒される。鏡面4−1に結露が生じていなければ、発光素子7から照射された光はそのほゞ全量が正反射し、受光素子8で受光される。したがって、鏡面4−1に結露が生じていない場合、受光素子8で受光される反射光の強度は大きい。   In this mirror-cooled dew point meter 101, the mirror surface 4-1 in the chamber 1 is exposed to the gas to be measured that flows into the chamber 1. If there is no condensation on the mirror surface 4-1, almost all of the light emitted from the light emitting element 7 is regularly reflected and received by the light receiving element 8. Therefore, when there is no condensation on the mirror surface 4-1, the intensity of the reflected light received by the light receiving element 8 is high.

熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面4−1に結露し、その水の分子に発光素子7から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子8で受光される反射光(正反射光)の強度が減少する。この鏡面4−1における正反射光の変化を検出することにより、鏡面4−1上の状態の変化、すなわち鏡面4−1上に水分(水滴)が付着したことを知ることができる。さらに、この時の鏡面4−1の温度を温度検出素子6で間接的に測定することにより、被測定気体中の水分の露点を知ることができる。   When the current to the thermoelectric cooling element 2 is increased and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, water vapor contained in the gas to be measured condenses on the mirror surface 4-1, and the water molecules Part of the light emitted from the light emitting element 7 is absorbed or diffusely reflected. Thereby, the intensity of the reflected light (regular reflected light) received by the light receiving element 8 is reduced. By detecting the change in the specularly reflected light on the mirror surface 4-1, it is possible to know the change in the state on the mirror surface 4-1, that is, that moisture (water droplets) has adhered to the mirror surface 4-1. Further, by indirectly measuring the temperature of the mirror surface 4-1 at this time with the temperature detecting element 6, it is possible to know the dew point of moisture in the gas to be measured.

〔散乱光検出方式〕
図8に散乱光検出方式を採用した従来の鏡面冷却式露点計の要部を示す。この鏡面冷却式露点計102は、正反射光検出方式を採用した鏡面冷却式露点計101とほゞ同構成であるが、受光素子8の取り付け位置が異なっている。この鏡面冷却式露点計102において、受光素子8は、発光素子7から鏡面4−1に対して照射された光の正反射光を受光する位置ではなく、散乱光を受光する位置に設けられている。
(Scattered light detection method)
FIG. 8 shows a main part of a conventional mirror-cooled dew point meter employing the scattered light detection method. This mirror-cooled dew point meter 102 has substantially the same configuration as the mirror-cooled dew point meter 101 employing the specular reflection light detection method, but the mounting position of the light receiving element 8 is different. In this mirror-cooled dew point meter 102, the light receiving element 8 is provided at a position for receiving scattered light, not at a position for receiving regular reflection light of light emitted from the light emitting element 7 to the mirror surface 4-1. Yes.

この鏡面冷却式露点計102において、鏡面4−1は、チャンバ1内に流入される被測定気体に晒される。鏡面4−1に結露が生じていなければ、発光素子7から照射された光はそのほゞ全量が正反射し、受光素子8での受光量は極微量である。したがって、鏡面4−1に結露が生じていない場合、受光素子8で受光される反射光の強度は小さい。   In this mirror-cooled dew point meter 102, the mirror surface 4-1 is exposed to the gas to be measured that flows into the chamber 1. If there is no condensation on the mirror surface 4-1, almost all of the light emitted from the light emitting element 7 is regularly reflected, and the amount of light received by the light receiving element 8 is extremely small. Therefore, when no condensation occurs on the mirror surface 4-1, the intensity of the reflected light received by the light receiving element 8 is small.

熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面4−1に結露し、その水の分子に発光素子7から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子8で受光される乱反射された光(散乱光)の強度が増大する。この鏡面4−1における散乱光の変化を検出することにより、鏡面4−1上の状態の変化、すなわち鏡面4−1上に水分(水滴)が付着したことを知ることができる。さらに、この時の鏡面4−1の温度を温度検出素子6で間接的に測定することにより、被測定気体中の水分の露点を知ることができる。   When the current to the thermoelectric cooling element 2 is increased and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, water vapor contained in the gas to be measured condenses on the mirror surface 4-1, and the water molecules Part of the light emitted from the light emitting element 7 is absorbed or diffusely reflected. Thereby, the intensity of the irregularly reflected light (scattered light) received by the light receiving element 8 increases. By detecting the change in the scattered light on the mirror surface 4-1, it is possible to know a change in the state on the mirror surface 4-1, that is, that moisture (water droplets) has adhered to the mirror surface 4-1. Further, by indirectly measuring the temperature of the mirror surface 4-1 at this time with the temperature detecting element 6, it is possible to know the dew point of moisture in the gas to be measured.

なお、上述した露点計においては、鏡面4−1に生じる結露(水分)を検出する例で説明したが、同様の構成によって鏡面4−1に生じる結霜(水分)を検出することも可能である。   In addition, in the dew point meter mentioned above, it demonstrated by the example which detects the dew condensation (water | moisture content) which arises on the mirror surface 4-1, but it is also possible to detect the frost (water | moisture content) which arises on the mirror surface 4-1 with the same structure. is there.

また、図10や図11に示すように構成すれば、すなわち熱電冷却素子2や温度検出素子6などをなくし、チャンバ1内に鏡4のみを設け、チャンバ1上面に開口部を設けた構成とすれば、雨や雪などの降り始めに鏡面4−1に付着する水分を検出する鏡面上状態検出装置(天気計)として使用することも可能である。この天気計103や104では、雨や雪などがチャンバ1内に引き込まれ、鏡4の鏡面4−1に付着すると、その付着が受光素子8で受光される反射光の強度に基づいて検出される。   10 and FIG. 11, that is, the thermoelectric cooling element 2 and the temperature detection element 6 are eliminated, only the mirror 4 is provided in the chamber 1, and the opening is provided on the upper surface of the chamber 1. Then, it can be used as an on-mirror state detection device (weather meter) that detects moisture adhering to the mirror surface 4-1 at the beginning of rain or snow. In the weather gauges 103 and 104, when rain or snow is drawn into the chamber 1 and adheres to the mirror surface 4-1 of the mirror 4, the adhesion is detected based on the intensity of the reflected light received by the light receiving element 8. The

特開昭61−75235号公報JP-A-61-75235 特公平7−104304号公報Japanese Examined Patent Publication No. 7-104304 工業計測ハンドブック、昭和51.9.30、朝倉書店、P297。Industrial Measurement Handbook, Showa 51.9.30, Asakura Shoten, P297.

しかしながら、上述した従来の鏡面冷却式露点計101や102、天気計103や104によると、発光素子7と受光素子8とを所定の位置関係を保つように傾斜角を変えて別々に設置しているため、チャンバ1の大型化が避けられず、小型化を促進することができなかった。また、発光素子7と受光素子8とを離して別角度で配置しているため、組立時の発光素子7と受光素子8との位置決めが難しく、作業性が悪かった。   However, according to the above-described conventional mirror-cooled dew point meters 101 and 102 and weather meters 103 and 104, the light emitting element 7 and the light receiving element 8 are installed separately with different inclination angles so as to maintain a predetermined positional relationship. Therefore, the increase in size of the chamber 1 is inevitable, and the reduction in size cannot be promoted. In addition, since the light emitting element 7 and the light receiving element 8 are separated from each other and arranged at different angles, it is difficult to position the light emitting element 7 and the light receiving element 8 during assembly, and workability is poor.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、小型化を促進することができ、かつ組立時の作業性をよくすることができる鏡面上状態検出装置および水分検出装置を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to detect a state on the mirror surface that can promote downsizing and improve workability during assembly. It is in providing an apparatus and a moisture detection apparatus.

このような目的を達成するために本発明は、鏡の鏡面に対して斜めに光を照射する発光手段と、この発光手段の光軸とその光軸がほゞ平行とされ、また隣接してほゞ同一の傾斜角とされ、発光手段から鏡面に対して照射された光の散乱光を受光する受光手段と、この受光手段が受光する散乱光に基づいて鏡面上の状態を検出する手段と、鏡を支承する胴部とを設け、発光手段および受光手段をJ字型に湾曲された端部の先端面を鏡面に向けて配置した光ファイバとし、この光ファイバをそのJ字型に湾曲された端部につながる直線部で胴部に固定したものである。   In order to achieve such an object, the present invention provides a light emitting means for irradiating light obliquely to a mirror surface of a mirror, an optical axis of the light emitting means and the optical axis thereof being substantially parallel, and adjacent to each other. A light receiving means for receiving scattered light of light emitted from the light emitting means to the mirror surface, and a means for detecting a state on the mirror surface based on the scattered light received by the light receiving means; The optical fiber is provided with a body portion for supporting the mirror, and the light emitting means and the light receiving means are arranged in an optical fiber with the tip surface of the end curved in a J shape facing the mirror surface, and the optical fiber is curved in the J shape. It is fixed to the trunk with a straight line connected to the end.

この発明によれば、J字型に湾曲された光ファイバの端部の先端面から鏡の鏡面に対して斜めに光が照射され、この照射された光の鏡面からの散乱光が照射した光とほゞ同一の位置で受光され、この受光される散乱光に基づいて鏡面上の状態(例えば、雨や雪の付着)が検出される。
なお、発光手段および受光手段とされる光ファイバを、その直線部の軸方向に摺動可能に胴部に固定すれば、光ファイバのJ字型に湾曲された端部の先端面の鏡面に対する上下方向の位置や回転方向の位置の微調整が可能となる。
According to this invention, light is obliquely applied to the mirror surface of the mirror from the end surface of the end portion of the optical fiber bent in a J-shape, and the light irradiated by the scattered light from the mirror surface of the irradiated light The light is received at substantially the same position as that, and the state on the mirror surface (for example, attachment of rain or snow) is detected based on the received scattered light.
In addition, if the optical fiber used as the light emitting means and the light receiving means is fixed to the trunk portion so as to be slidable in the axial direction of the linear portion, the end face of the end portion of the optical fiber curved in a J-shape is in relation to the mirror surface. Fine adjustment of the vertical position and rotational position is possible.

また、本発明の水分検出装置は、鏡面が被測定気体に晒される鏡と、鏡を冷却する冷却手段と、鏡面に対して斜めに光を照射する発光手段と、この発光手段の光軸とその光軸がほゞ平行とされ、また隣接してほゞ同一の傾斜角とされ、発光手段から鏡面に対して照射された光の散乱光を受光する受光手段と、この受光手段が受光する散乱光に基づいて冷却手段によって冷却された鏡の鏡面上に生じる水分を検出する手段と、鏡を冷却手段を介して支承する胴部とを設け、発光手段および受光手段をJ字型に湾曲された端部の先端面を鏡面に向けて配置した光ファイバとし、この光ファイバをそのJ字型に湾曲された端部につながる直線部で胴部に固定したものである。   Further, the moisture detection device of the present invention includes a mirror whose mirror surface is exposed to the gas to be measured, a cooling means for cooling the mirror, a light emitting means for irradiating light obliquely with respect to the mirror surface, and an optical axis of the light emitting means. A light receiving means for receiving the scattered light of the light irradiated from the light emitting means to the mirror surface, and the light receiving means for receiving the light. A means for detecting moisture generated on the mirror surface of the mirror cooled by the cooling means based on the scattered light and a body portion for supporting the mirror via the cooling means are provided, and the light emitting means and the light receiving means are curved in a J-shape. The optical fiber is arranged with the end surface of the end portion facing the mirror surface, and this optical fiber is fixed to the trunk portion with a straight portion connected to the end portion bent in a J-shape.

この発明によれば、J字型に湾曲された光ファイバの端部の先端面から鏡の鏡面に対して斜めに光が照射され、この照射された光の鏡面からの散乱光が照射した光とほゞ同一の位置で受光され、この受光される散乱光に基づいて、冷却手段によって冷却された鏡の鏡面上に生じる水分(例えば、結露や結霜)が検出される。
なお、発光手段および受光手段とされる光ファイバを、その直線部の軸方向に摺動可能に胴部(例えば、ヒートシンク)に固定すれば、光ファイバのJ字型に湾曲された端部の先端面の鏡面に対する上下方向の位置や回転方向の位置の微調整が可能となる。
According to this invention, light is obliquely applied to the mirror surface of the mirror from the end surface of the end portion of the optical fiber bent in a J-shape, and the light irradiated by the scattered light from the mirror surface of the irradiated light Based on the received scattered light, moisture (for example, condensation or frost) generated on the mirror surface of the mirror cooled by the cooling means is detected.
In addition, if the optical fiber used as the light emitting means and the light receiving means is fixed to the trunk portion (for example, a heat sink) so as to be slidable in the axial direction of the linear portion, the end portion of the optical fiber curved in a J-shape Fine adjustment of the position in the vertical direction and the position in the rotation direction with respect to the mirror surface of the tip surface is possible.

本発明において、受光手段の光軸を発光手段の光軸とほゞ平行にかつほゞ同一の傾斜角で隣接するという構成には、発光側の光ファイバの端部と受光側の光ファイバの端部とを単に並設する構成だけではなく、発光側の光ファイバと受光側の光ファイバとをチューブに収容し、このチューブ内で発光側の光ファイバの端部と受光側の光ファイバの端部とを並設させる構成なども含まれる。   In the present invention, the configuration in which the optical axis of the light receiving means is adjacent to the optical axis of the light emitting means and substantially parallel to each other at the same inclination angle, the end of the light emitting side optical fiber and the optical fiber of the light receiving side are arranged. In addition to the configuration in which the end portions are simply arranged in parallel, the light-emitting side optical fiber and the light-receiving side optical fiber are accommodated in a tube, and the end of the light-emitting side optical fiber and the light-receiving side optical fiber are accommodated in the tube. A configuration in which the end portion is arranged in parallel is also included.

本発明によれば、受光手段の光軸を発光手段の光軸とほゞ平行にかつほゞ同一の傾斜角で隣接させるべく、発光手段および受光手段をJ字型に湾曲された端部の先端面を鏡面に向けて配置した光ファイバとし、この光ファイバをそのJ字型に湾曲された端部につながる直線部で胴部に固定するようにしたので、発光手段と受光手段の取り付け部を1箇所にまとめ、小型化を促進することができる。また、発光側の光ファイバと受光側の光ファイバを並置するのでみでよく、位置決めが容易になり、組立時の作業性がよくなる。
また、発光手段および受光手段とされる光ファイバを、その直線部の軸方向に摺動可能に胴部に固定することにより、光ファイバのJ字型に湾曲された端部の先端面の鏡面に対する上下方向の位置や回転方向の位置の微調整が可能となり、光ファイバの交換も可能となる。
According to the present invention, the light emitting means and the light receiving means are arranged at the end of the J-shaped curve so that the optical axis of the light receiving means is substantially parallel to the optical axis of the light emitting means and adjacent to each other at substantially the same inclination angle. Since the optical fiber is arranged with the tip surface facing the mirror surface, and this optical fiber is fixed to the body portion with a straight portion connected to the end portion curved in the J-shape, the light emitting means and the light receiving means mounting portion Can be integrated into one place to promote downsizing. Further, it is only necessary to arrange the light-emitting side optical fiber and the light-receiving side optical fiber in parallel, positioning becomes easy, and workability during assembly is improved.
In addition, by fixing the optical fiber as the light emitting means and the light receiving means to the trunk portion so as to be slidable in the axial direction of the linear portion, the mirror surface of the tip surface of the end portion of the optical fiber curved in a J-shape It is possible to finely adjust the position in the vertical direction and the position in the rotation direction with respect to the optical fiber, and it is possible to exchange the optical fiber.

以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1:鏡面冷却式露点計〕
図1はこの発明に係る水分検出装置の一実施の形態を示す鏡面冷却式露点計の概略構成図である。この鏡面冷却式露点計201はセンサ部201Aとコントロール部201Bとを有している。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1: Mirror surface cooling type dew point meter]
FIG. 1 is a schematic configuration diagram of a mirror-cooled dew point meter showing an embodiment of a moisture detection apparatus according to the present invention. The mirror-cooled dew point meter 201 has a sensor unit 201A and a control unit 201B.

センサ部201Aでは、熱電冷却素子(ペルチェ素子)2の冷却面2−1に鏡10を取り付けている。鏡10は、例えばシリコンチップとされ、その表面10−1が鏡面とされている。また、鏡10と熱電冷却素子2の冷却面2−1との接合面に、例えば白金による薄膜測温抵抗体(温度検出素子)11を形成している。また、熱電冷却素子2の加熱面2−2に円柱状のヒートシンク18を取り付け、このヒートシンク18に沿って、その上端部をJ字型に湾曲させたステンレス製のチューブ17を設けている。なお、チューブ17は、J字型に湾曲された端部17Aにつながる直線部17Bで、ヒートシンク(胴部)18に固定されている。   In the sensor unit 201 </ b> A, the mirror 10 is attached to the cooling surface 2-1 of the thermoelectric cooling element (Peltier element) 2. The mirror 10 is a silicon chip, for example, and the surface 10-1 is a mirror surface. Further, a thin film resistance temperature detector (temperature detection element) 11 made of, for example, platinum is formed on the joint surface between the mirror 10 and the cooling surface 2-1 of the thermoelectric cooling element 2. A cylindrical heat sink 18 is attached to the heating surface 2-2 of the thermoelectric cooling element 2, and a stainless steel tube 17 whose upper end is curved in a J shape is provided along the heat sink 18. The tube 17 is fixed to a heat sink (body portion) 18 by a straight portion 17B connected to an end portion 17A curved in a J-shape.

チューブ17としては図2に示すような光ファイバを収容した種々のチューブPを使用することができる。図2(a)では、チューブP中に、発光側の光ファイバF1と受光側の光ファイバF2とを並設している。チューブP中において、発光側の光ファイバF1と受光側の光ファイバF2の周囲は、ポッテイング剤で満たされている。図2(b)では、チューブP中に、発光側(あるいは受光側)の光ファイバF1と受光側(あるいは発光側)の光ファイバF21〜F24を並行に設けている。図2(c)では、チューブP中の左半分を発光側の光ファイバF1、右半分を受光側の光ファイバF2としている。図2(d)では、チューブP中に、発光側の光ファイバF1と受光側の光ファイバF2とを混在させている。図2(e)では、チューブP中の中心部を発光側(あるいは受光側)の光ファイバF1、光ファイバF1の周囲を受光側(あるいは発光側)の光ファイバF2としている。   As the tube 17, various tubes P accommodating optical fibers as shown in FIG. 2 can be used. In FIG. 2A, in the tube P, the light-emitting side optical fiber F1 and the light-receiving side optical fiber F2 are arranged side by side. In the tube P, the periphery of the light-emitting side optical fiber F1 and the light-receiving side optical fiber F2 is filled with a potting agent. In FIG. 2 (b), the light emitting side (or light receiving side) optical fiber F1 and the light receiving side (or light emitting side) optical fibers F21 to F24 are provided in the tube P in parallel. In FIG. 2C, the left half of the tube P is the light-emitting side optical fiber F1, and the right half is the light-receiving side optical fiber F2. In FIG. 2D, the light emission side optical fiber F <b> 1 and the light reception side optical fiber F <b> 2 are mixed in the tube P. In FIG. 2E, the central portion in the tube P is the light-emitting side (or light-receiving side) optical fiber F1, and the periphery of the optical fiber F1 is the light-receiving side (or light-emitting side) optical fiber F2.

図1に示した鏡面冷却式露点計201では、チューブ17として図2(a)に示されたタイプのチューブPを使用しており、その内部に発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容している。発光側の光ファイバ17−1と受光側の光ファイバ17−2のJ字型に湾曲された端部(発光部、受光部)の先端面は、鏡10の鏡面10−1に向けられ、鏡面10−1に対して所定の傾斜角で傾けられている。この結果、光ファイバ17−1からの光の照射方向(光軸)と光ファイバ17−2での光の受光方向(光軸)とが平行とされ、また隣接して同一の傾斜角とされる。   In the mirror-cooled dew point meter 201 shown in FIG. 1, the tube P of the type shown in FIG. 2 (a) is used as the tube 17, and an optical fiber 17-1 on the light emitting side and a light receiving side on the inside thereof. The optical fiber 17-2 is accommodated. The distal end surfaces of the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 curved in a J shape (light emitting part, light receiving part) are directed to the mirror surface 10-1 of the mirror 10. It is inclined at a predetermined inclination angle with respect to the mirror surface 10-1. As a result, the irradiation direction (optical axis) of the light from the optical fiber 17-1 and the light receiving direction (optical axis) of the light from the optical fiber 17-2 are made parallel, and the same inclination angle is set adjacently. The

コントロール部201Bには、露点温度表示部12と、結露検知部13と、ペルチェ出力制御部14と、信号変換部15とが設けられている。露点温度表示部12には温度検出素子11が検出する鏡10の温度が表示される。結露検知部13は、光ファイバ17−1の先端面より鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させるとともに、光ファイバ17−2を介して受光される反射パルス光(散乱光)の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度に応じた信号S1をペルチェ出力制御部14へ送る。ペルチェ出力制御部14は、結露検知部13からの信号S1を受けて、反射パルス光の強度と予め定められている閾値とを比較し、反射パルス光の強度が閾値に達していない場合には、熱電冷却素子2への電流を信号S1の値に応じて増大させる制御信号S2を、反射パルス光の強度が閾値を超えている場合には、熱電冷却素子2への電流を信号S1の値に応じて減少させる制御信号S2を信号変換部15へ出力する。信号変換部15は、ペルチェ出力制御部14からの制御信号S2で指示される電流S3を熱電冷却素子2へ供給する。   The control unit 201B is provided with a dew point temperature display unit 12, a dew condensation detection unit 13, a Peltier output control unit 14, and a signal conversion unit 15. The dew point temperature display unit 12 displays the temperature of the mirror 10 detected by the temperature detection element 11. The dew condensation detector 13 irradiates the mirror surface 10-1 of the mirror 10 obliquely with a predetermined period from the front end surface of the optical fiber 17-1 at a predetermined period, and receives light reflected through the optical fiber 17-2. The difference between the upper limit value and the lower limit value of the pulsed light (scattered light) is obtained as the intensity of the reflected pulsed light, and a signal S 1 corresponding to the intensity of the reflected pulsed light is sent to the Peltier output control unit 14. The Peltier output control unit 14 receives the signal S1 from the dew condensation detection unit 13, compares the intensity of the reflected pulse light with a predetermined threshold value, and if the intensity of the reflected pulse light has not reached the threshold value. The control signal S2 for increasing the current to the thermoelectric cooling element 2 according to the value of the signal S1, and when the intensity of the reflected pulse light exceeds the threshold value, the current to the thermoelectric cooling element 2 is set to the value of the signal S1. The control signal S <b> 2 that decreases in response to the signal is output to the signal converter 15. The signal conversion unit 15 supplies the thermoelectric cooling element 2 with a current S3 indicated by the control signal S2 from the Peltier output control unit 14.

この鏡面冷却式露点計201において、センサ部201Aは被測定気体中に置かれる。また、結露検知部13は、光ファイバ17−1の先端面より、鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させる(図3(a)参照)。鏡面10−1は被測定気体に晒されており、鏡面10−1に結露が生じていなければ、光ファイバ17−1の先端面から照射されたパルス光はそのほゞ全量が正反射し、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(散乱光)の量は極微量である。したがって、鏡面10−1に結露が生じていない場合、光ファイバ17−2を介して受光される反射パルス光の強度は小さい。   In this mirror-cooled dew point meter 201, the sensor unit 201A is placed in the gas to be measured. Further, the dew condensation detection unit 13 irradiates the mirror surface 10-1 of the mirror 10 with pulsed light obliquely at a predetermined cycle from the tip surface of the optical fiber 17-1 (see FIG. 3A). When the mirror surface 10-1 is exposed to the gas to be measured and no condensation occurs on the mirror surface 10-1, almost all of the pulsed light irradiated from the tip surface of the optical fiber 17-1 is regularly reflected. The amount of reflected pulsed light (scattered light) from the mirror surface 10-1 received through the optical fiber 17-2 is extremely small. Accordingly, when no condensation occurs on the mirror surface 10-1, the intensity of the reflected pulse light received through the optical fiber 17-2 is small.

結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、反射パルス光の強度に応じた信号S1をペルチェ出力制御部14へ送る。この場合、反射パルス光の強度はほゞ零であり、閾値に達していないので、ペルチェ出力制御部14は、熱電冷却素子2への電流を増大させる制御信号S2を信号変換部15へ送る。これにより、信号変換部15からの熱電冷却素子2への電流S3が増大し、熱電冷却素子2の冷却面2−1の温度が下げられて行く。   In the dew condensation detection unit 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received through the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and the signal S1 corresponding to the intensity of the reflected pulse light is obtained from the Peltier. This is sent to the output control unit 14. In this case, since the intensity of the reflected pulse light is almost zero and has not reached the threshold value, the Peltier output control unit 14 sends a control signal S2 for increasing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Thereby, the current S3 from the signal converter 15 to the thermoelectric cooling element 2 increases, and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered.

熱電冷却素子2の冷却面2−1の温度、すなわち鏡10の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡10の鏡面10−1に結露し、その水の分子に光ファイバ17−1の先端面から照射されたパルス光の一部が吸収されたり、乱反射したりする。これにより、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(散乱光)の強度が増大する。   When the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, that is, the temperature of the mirror 10, the water vapor contained in the gas to be measured is condensed on the mirror surface 10-1 of the mirror 10, and the water molecules are optical fiber. Part of the pulsed light irradiated from the tip surface of 17-1 is absorbed or irregularly reflected. Thereby, the intensity | strength of the reflected pulsed light (scattered light) from the mirror surface 10-1 light-received via the optical fiber 17-2 increases.

結露検知部13は、受光される反射パルス光の1パルス毎に、その1パルスの上限値と下限値との差を求め、これを反射パルス光の強度とする。すなわち、図3(b)に示すように、反射パルス光の1パルスの上限値Lmaxと下限値Lminとの差ΔLを求め、このΔLを反射パルス光の強度とする。この結露検知部13での処理により、反射パルス光に含まれる外乱光ΔXが除去され、外乱光による誤動作が防止される。この結露検知部13でのパルス光を用いた外乱光による誤動作防止の処理方式をパルス変調方式と呼ぶ。この処理によって、この鏡面冷却式露点計201では、センサ部201Aからチャンバをなくすことができている。   The dew condensation detection unit 13 obtains the difference between the upper limit value and the lower limit value of each pulse of the received reflected pulse light, and uses this difference as the intensity of the reflected pulse light. That is, as shown in FIG. 3B, a difference ΔL between the upper limit value Lmax and the lower limit value Lmin of one pulse of the reflected pulse light is obtained, and this ΔL is used as the intensity of the reflected pulse light. By the process in the dew condensation detection unit 13, the disturbance light ΔX included in the reflected pulse light is removed, and malfunction due to the disturbance light is prevented. A processing method for preventing malfunction by disturbance light using pulsed light in the dew condensation detection unit 13 is referred to as a pulse modulation method. With this process, the mirror cooled dew point meter 201 can eliminate the chamber from the sensor unit 201A.

ここで、光ファイバ17−2を介して受光される反射パルス光の強度が閾値を超えると、ペルチェ出力制御部14は、熱電冷却素子2への電流を減少させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2の冷却面2−1の温度の低下が抑えられ、結露の発生が抑制される。この結露の抑制により、光ファイバ17−2を介して受光される反射パルス光の強度が小さくなり、閾値を下回ると、ペルチェ出力制御部14から熱電冷却素子2への電流を増大させる制御信号S2が信号変換部15へ送られる。この動作の繰り返しによって、光ファイバ17−2を介して受光される反射パルス光の強度が閾値とほゞ等しくなるように、熱電冷却素子2の冷却面2−1の温度が調整される。この調整された温度、すなわち鏡面10−1に生じた結露が平衡状態に達した温度(露点温度)が、露点温度として露点温度表示部12に表示される。   Here, when the intensity of the reflected pulse light received through the optical fiber 17-2 exceeds the threshold value, the Peltier output control unit 14 transmits the control signal S2 for reducing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Send to. Thereby, the fall of the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is suppressed, and generation | occurrence | production of dew condensation is suppressed. By suppressing the condensation, the intensity of the reflected pulse light received through the optical fiber 17-2 is reduced, and when the intensity falls below the threshold, the control signal S2 increases the current from the Peltier output control unit 14 to the thermoelectric cooling element 2. Is sent to the signal converter 15. By repeating this operation, the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is adjusted so that the intensity of the reflected pulse light received through the optical fiber 17-2 is approximately equal to the threshold value. The adjusted temperature, that is, the temperature at which the dew condensation that has occurred on the mirror surface 10-1 has reached an equilibrium state (dew point temperature) is displayed on the dew point temperature display unit 12 as the dew point temperature.

この鏡面冷却式露点計201では、発光側の光ファイバ17−1と受光側の光ファイバ17−2の取り付け部が1箇所にまとめられており、検出部201Aの小型化に貢献している。また、発光側の光ファイバ17−1と受光側の光ファイバ17−2とがチューブ17に収容されているので、発光側の光ファイバ17−1と受光側の光ファイバ17−2との間での位置決めは必要なく、組立時の作業性がよくなる。   In this mirror-cooled dew point meter 201, the attachment portions of the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are gathered in one place, which contributes to the downsizing of the detection unit 201A. Further, since the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are accommodated in the tube 17, the space between the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2. There is no need for positioning at this point, and the workability during assembly is improved.

また、この鏡面冷却式露点計201では、センサ部201Aからチャンバをなくし、吸引ポンプや吸引用チューブ、排気用チューブ、流量計など省略することができているので、部品点数が削減され、センサ部201Aのさらなる小型化が図られ、組立性が向上し、コストもダウンする。また、吸引ポンプや吸引用チューブ、排気用チューブ、流量計などを装着しなくてもよいので、測定雰囲気中への設置も容易となる。また、センサ部201Aには吸引ポンプや吸引用チューブ、排気用チューブ、流量計などの装着が伴わず、センサ部201Aとコントロール部201Bとの2つの構成となるので、持ち運びが容易となる。   Further, in this mirror-cooled dew point meter 201, the chamber is eliminated from the sensor unit 201A, and the suction pump, the suction tube, the exhaust tube, the flow meter, and the like can be omitted. Further downsizing of 201A is achieved, the assembling property is improved, and the cost is also reduced. Further, since it is not necessary to attach a suction pump, a suction tube, an exhaust tube, a flow meter, etc., installation in a measurement atmosphere is facilitated. The sensor unit 201A is not accompanied by a suction pump, a suction tube, an exhaust tube, a flow meter, or the like, and has two configurations of the sensor unit 201A and the control unit 201B.

なお、この鏡面冷却式露点計201では、センサ部201Aにおいて発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容したチューブ17を用いたが、発光側の光ファイバ17−1と受光側の光ファイバ17−2とをチューブ17に収容せずに、別々にヒートシンク18に並置して固定するようにしてもよい。発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容したチューブ17をヒートシンク18に固定することは、実質的に発光側の光ファイバ17−1と受光側の光ファイバ17−2をヒートシンク18に固定していることに相当する。   In this mirror-cooled dew point meter 201, the tube 17 containing the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 is used in the sensor unit 201A, but the light-emitting side optical fiber 17- 1 and the optical fiber 17-2 on the light receiving side may be fixed in parallel with the heat sink 18 without being accommodated in the tube 17. Fixing the tube 17 containing the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 to the heat sink 18 substantially means that the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17. -2 is fixed to the heat sink 18.

また、図4に示すように、発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容したチューブ17の直線部17Bをヒートシンク18とブラケット19とで挟み、ネジ20で締め付けて固定するようにしてもよい。これにより、チューブ17がその直線部17Bの軸方向に摺動可能にヒートシンク18に固定されるものとなり、光ファイバ17−1,17−2のJ字型に湾曲された端部の先端面の鏡面10−1に対する上下方向の位置や回転方向の位置の微調整が可能となり、光ファイバ17−1,17−2の交換も可能となる。   Further, as shown in FIG. 4, the straight portion 17B of the tube 17 accommodating the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 is sandwiched between the heat sink 18 and the bracket 19 and tightened with the screws 20. May be fixed. As a result, the tube 17 is fixed to the heat sink 18 so as to be slidable in the axial direction of the linear portion 17B, and the end surfaces of the end portions of the optical fibers 17-1 and 17-2 that are curved in a J-shape. Fine adjustment of the position in the vertical direction and the rotational direction with respect to the mirror surface 10-1 becomes possible, and the optical fibers 17-1 and 17-2 can be exchanged.

また、上述した実施の形態では、鏡面10−1に生じる結露(水分)を検出するものとしたが、同様の構成によって鏡面10−1に生じる結霜(水分)を検出することも可能である。
また、上述した実施の形態では、鏡10を冷却する冷却手段として熱電冷却素子(ペルチェ素子)2を用いたが、ヘリウム冷凍機などを用いてもよい。
In the above-described embodiment, the condensation (moisture) generated on the mirror surface 10-1 is detected. However, it is also possible to detect the frost (water) generated on the mirror surface 10-1 with the same configuration. .
In the embodiment described above, the thermoelectric cooling element (Peltier element) 2 is used as the cooling means for cooling the mirror 10, but a helium refrigerator or the like may be used.

〔実施の形態2:天気計〕
図5はこの発明に係る鏡面上状態検出装置の他の実施の形態を示す天気計の概略構成図である。この天気計202はセンサ部202Aと雨検知部202Bとを有している。センサ部202Aは、鏡10と、この鏡10を支承する胴部21を設けた構成とし、実施の形態1と同様にして、上端部をJ字型に湾曲させたチューブ17を胴部21に固定している。
[Embodiment 2: Weather meter]
FIG. 5 is a schematic block diagram of a weather meter showing another embodiment of the on-mirror state detection device according to the present invention. The weather meter 202 includes a sensor unit 202A and a rain detection unit 202B. The sensor unit 202A includes a mirror 10 and a body part 21 that supports the mirror 10, and in the same manner as in the first embodiment, a tube 17 whose upper end is curved in a J-shape is formed in the body part 21. It is fixed.

この天気計202において、雨検知部202Bは、発光側の光ファイバ17−1より鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させるとともに、受光側の光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度と予め定められている閾値とを比較し、反射パルス光の強度が閾値を超えると雨が降り始めた(鏡面10−1に雨が付着した)と判断する。   In this weather meter 202, the rain detection unit 202B irradiates the mirror surface 10-1 of the mirror 10 obliquely with a predetermined cycle from the light-emitting optical fiber 17-1 at a predetermined cycle, and the light-receiving optical fiber 17. The difference between the upper limit value and lower limit value of the reflected pulse light received via -2 is obtained as the intensity of the reflected pulse light, the intensity of this reflected pulse light is compared with a predetermined threshold value, and the reflected pulse light When the intensity exceeds the threshold, it is determined that it has started to rain (rain has been attached to the mirror surface 10-1).

なお、この例では、鏡面10−1上に付着する雨を検出するようにしたが、同様の構成によって鏡面10−1上に付着する雪を検出することも可能である。また、同様の構成によって、雨や雪だけではなく、塵なども検出することが可能である。   In this example, rain attached on the mirror surface 10-1 is detected, but snow attached on the mirror surface 10-1 can also be detected by the same configuration. In addition, with the same configuration, it is possible to detect not only rain and snow but also dust and the like.

また、この実施の形態2においても、実施の形態1と同様、図6に示すように、発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容したチューブ17の直線部17Bを胴部21とブラケット19とで挟み、ネジ20で締め付けて固定するようにしてもよい。また、発光側の光ファイバ17−1と受光側の光ファイバ17−2とをチューブ17に収容せずに、別々に並置して取り付けるようにしてもよい。   Also in the second embodiment, as in the first embodiment, as shown in FIG. 6, as shown in FIG. 6, the straight portion of the tube 17 that houses the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2. 17B may be sandwiched between the body portion 21 and the bracket 19 and fastened with screws 20 to be fixed. Alternatively, the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 may be separately juxtaposed and attached without being accommodated in the tube 17.

本発明に係る水分検出装置の一実施の形態(実施の形態1)を示す鏡面冷却式露点計の概略構成図である。1 is a schematic configuration diagram of a mirror-cooled dew point meter showing an embodiment (Embodiment 1) of a moisture detection device according to the present invention. 発光側の光ファイバと受光側の光ファイバとを1つのチューブ中に並行して設ける構成を例示する図である。It is a figure which illustrates the structure which provides the optical fiber by the side of light emission, and the optical fiber by the side of light reception in parallel in one tube. 検出面裏面に対して照射されるパルス光および検出面裏面から受光される反射パルス光を示す図である。It is a figure which shows the pulsed light irradiated with respect to a detection surface back surface, and the reflected pulse light received from a detection surface back surface. 光ファイバを収容したチューブの直線部をヒートシンクとブラケットとで挟みネジで締め付けて固定するようにした鏡面冷却式露点計のセンサ部の構成を示す図である。It is a figure which shows the structure of the sensor part of the mirror surface dew-type dew point meter which clamped and fixed the linear part of the tube which accommodated the optical fiber with the heat sink and the bracket. 本発明に係る鏡面上状態検出装置の他の実施の形態(実施の形態2)を示す天気計の概略構成図である。It is a schematic block diagram of the weather meter which shows other embodiment (Embodiment 2) of the on-mirror surface state detection apparatus which concerns on this invention. 光ファイバを収容したチューブの直線部を胴部とブラケットとで挟みネジで締め付けて固定するようにした天気計のセンサ部の構成を示す図である。It is a figure which shows the structure of the sensor part of the weather meter which clamped and fixed the linear part of the tube which accommodated the optical fiber with the trunk | drum and the bracket with the screw | thread. 正反射光検出方式を採用した従来の鏡面冷却式露点計の要部を示す図である。It is a figure which shows the principal part of the conventional mirror surface cooling-type dew point meter which employ | adopted the regular reflection light detection system. 散乱光検出方式を採用した従来の鏡面冷却式露点計の要部を示す図である。It is a figure which shows the principal part of the conventional mirror surface cooling-type dew point meter which employ | adopted the scattered light detection system. 従来の鏡面冷却式露点計における鏡や温度検出素子の取り付け構造を示す斜視図である。It is a perspective view which shows the attachment structure of the mirror and temperature detection element in the conventional mirror surface cooling dew point meter. 正反射光検出方式を採用した従来の天気計の要部を示す図である。It is a figure which shows the principal part of the conventional weather meter which employ | adopted the regular reflection light detection system. 散乱光検出方式を採用した従来の天気計の要部を示す図である。It is a figure which shows the principal part of the conventional weather meter which employ | adopted the scattered light detection system.

符号の説明Explanation of symbols

2…熱電冷却素子(ペルチェ素子)、2−1…冷却面、2−2…加熱面、10…鏡、10−1…鏡面、11…温度検出素子(薄膜測温抵抗体)、12…露点温度表示部、13…結露検知部、14…ペルチェ出力制御部、15…信号変換部、17…チューブ、17−1…発光側の光ファイバ、17−2…受光側の光ファイバ、18…ヒートシンク(胴部)、19…ブラケット、20…ネジ、21…胴部、201…鏡面冷却式露点計、201A…センサ部、201B…コントロール部、202…天気計、202A…センサ部、202B…雨検知部。   DESCRIPTION OF SYMBOLS 2 ... Thermoelectric cooling element (Peltier element), 2-1 ... Cooling surface, 2-2 ... Heating surface, 10 ... Mirror, 10-1 ... Mirror surface, 11 ... Temperature detection element (thin film resistance thermometer), 12 ... Dew point Temperature display unit, 13 ... dew condensation detection unit, 14 ... Peltier output control unit, 15 ... signal conversion unit, 17 ... tube, 17-1 ... light-emitting side optical fiber, 17-2 ... light-receiving side optical fiber, 18 ... heat sink (Torso), 19 ... Bracket, 20 ... Screw, 21 ... Trunk, 201 ... Mirror surface dew point meter, 201A ... Sensor unit, 201B ... Control unit, 202 ... Weather meter, 202A ... Sensor unit, 202B ... Rain detection Department.

Claims (4)

鏡の鏡面に対して斜めに光を照射する発光手段と、
この発光手段の光軸とその光軸がほゞ平行とされ、また隣接してほゞ同一の傾斜角とされ、前記発光手段から前記鏡面に対して照射された光の散乱光を受光する受光手段と、
この受光手段が受光する散乱光に基づいて前記鏡面上の状態を検出する手段と、
前記鏡を支承する胴部とを備えた鏡面上状態検出装置であって、
前記発光手段および前記受光手段は、J字型に湾曲された端部の先端面を前記鏡面に向けて配置された光ファイバとされ、
前記光ファイバは、前記J字型に湾曲された端部ににつながる直線部で、前記胴部に固定されている
ことを特徴とする鏡面上状態検出装置。
A light emitting means for irradiating light obliquely to the mirror surface of the mirror;
The optical axis of the light emitting means and the optical axis thereof are substantially parallel, and are adjacent to each other with substantially the same inclination angle, and receive the scattered light of the light emitted from the light emitting means to the mirror surface. Means,
Means for detecting a state on the mirror surface based on scattered light received by the light receiving means;
A state detection device on a mirror surface provided with a body portion for supporting the mirror,
The light emitting means and the light receiving means are optical fibers arranged with a tip surface of an end curved in a J-shape facing the mirror surface,
The optical fiber is a straight portion connected to the end portion bent in the J-shape, and is fixed to the trunk portion.
請求項1に記載された鏡面上状態検出装置において、
前記光ファイバは、前記直線部の軸方向に摺動可能に前記胴部に固定されている
ことを特徴とする鏡面上状態検出装置。
In the on-mirror state detection device according to claim 1,
The on-mirror surface state detection device, wherein the optical fiber is fixed to the body portion so as to be slidable in the axial direction of the linear portion.
鏡面が被測定気体に晒される鏡と、
前記鏡を冷却する冷却手段と、
前記鏡面に対して斜めに光を照射する発光手段と、
この発光手段の光軸とその光軸がほゞ平行とされ、また隣接してほゞ同一の傾斜角とされ、前記発光手段から前記鏡面に対して照射された光の散乱光を受光する受光手段と、
この受光手段が受光する散乱光に基づいて前記冷却手段によって冷却された前記鏡の鏡面上に生じる水分を検出する手段と、
前記鏡を前記冷却手段を介して支承する胴部とを備えた水分検出装置であって、
前記発光手段および前記受光手段は、J字型に湾曲された端部の先端面を前記鏡面に向けて配置された光ファイバとされ、
前記光ファイバは、前記J字型に湾曲された端部につながる直線部で前記胴部に固定されている
ことを特徴とする水分検出装置。
A mirror whose mirror surface is exposed to the gas to be measured;
Cooling means for cooling the mirror;
A light emitting means for irradiating light obliquely with respect to the mirror surface;
The optical axis of the light emitting means and the optical axis thereof are substantially parallel, and are adjacent to each other with substantially the same inclination angle, and receive the scattered light of the light emitted from the light emitting means to the mirror surface. Means,
Means for detecting moisture generated on the mirror surface of the mirror cooled by the cooling means based on scattered light received by the light receiving means;
A moisture detecting device comprising a body portion for supporting the mirror via the cooling means,
The light emitting means and the light receiving means are optical fibers arranged with a tip surface of an end curved in a J-shape facing the mirror surface,
The said optical fiber is being fixed to the said trunk | drum by the linear part connected to the edge part curved by the said J shape. The moisture detection apparatus characterized by the above-mentioned.
請求項3に記載された水分検出装置において、
前記光ファイバは、前記直線部の軸方向に摺動可能に前記胴部に固定されている
ことを特徴とする水分検出装置。
In the moisture detection apparatus according to claim 3,
The said optical fiber is being fixed to the said trunk | drum so that sliding in the axial direction of the said linear part is a moisture detection apparatus characterized by the above-mentioned.
JP2005321905A 2005-11-07 2005-11-07 Apparatus for detecting state on specular surface, and moisture detector Pending JP2007127572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321905A JP2007127572A (en) 2005-11-07 2005-11-07 Apparatus for detecting state on specular surface, and moisture detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321905A JP2007127572A (en) 2005-11-07 2005-11-07 Apparatus for detecting state on specular surface, and moisture detector

Publications (1)

Publication Number Publication Date
JP2007127572A true JP2007127572A (en) 2007-05-24

Family

ID=38150345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321905A Pending JP2007127572A (en) 2005-11-07 2005-11-07 Apparatus for detecting state on specular surface, and moisture detector

Country Status (1)

Country Link
JP (1) JP2007127572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875152B1 (en) 2007-07-23 2008-12-22 야마타케 코포레이션 Cooled mirror dew-point hygrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110863A (en) * 1996-10-04 1998-04-28 Sekisui Chem Co Ltd Sewage pipe for passing optical fiber cable
JP2002131173A (en) * 2000-10-20 2002-05-09 Sunx Ltd Optical fiber sensor
JP2005283510A (en) * 2004-03-30 2005-10-13 Yamatake Corp Apparatus for detecting state on specular surface, and moisture detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110863A (en) * 1996-10-04 1998-04-28 Sekisui Chem Co Ltd Sewage pipe for passing optical fiber cable
JP2002131173A (en) * 2000-10-20 2002-05-09 Sunx Ltd Optical fiber sensor
JP2005283510A (en) * 2004-03-30 2005-10-13 Yamatake Corp Apparatus for detecting state on specular surface, and moisture detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875152B1 (en) 2007-07-23 2008-12-22 야마타케 코포레이션 Cooled mirror dew-point hygrometer

Similar Documents

Publication Publication Date Title
US7736051B2 (en) Thermoelectric device and mirror surface state detection device
JP5198844B2 (en) Cloudiness detector and mirror-cooled dew point meter
EP2894465B1 (en) Dew-point instrument
US7380980B2 (en) Detector for detecting state on detection surface
US7168850B2 (en) Mirror surface state detection device and moisture detection device
JP3866730B2 (en) Moisture detector
JP4005581B2 (en) Mirror surface dew point meter
JP4504318B2 (en) Mirror surface dew point meter
JP2007127572A (en) Apparatus for detecting state on specular surface, and moisture detector
JP4005580B2 (en) Mirror surface dew point meter
JP4504290B2 (en) Moisture detector
JP4012166B2 (en) Mirror surface dew point meter
JP4025308B2 (en) Mirror surface cooling type sensor
JP4231009B2 (en) Moisture detector
JP2006284485A (en) Mirror surface cooling type sensor
JP4571537B2 (en) Mirror surface cooling type sensor
JP4224032B2 (en) Moisture detector
JP4685513B2 (en) Mirror surface cooling type sensor
JP4054002B2 (en) Mirror surface cooling type sensor
JP3999758B2 (en) Cooling device and mirror cooled sensor
CN209055082U (en) Crosslinked cable eccentric measurer
JP5643603B2 (en) Mirror surface cooling type sensor
JP2006126093A (en) Mirror surface cooling type sensor
JP4541956B2 (en) Mirror surface cooling type sensor
KR100875152B1 (en) Cooled mirror dew-point hygrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A02