JP2003194756A - Mirror-surface condensing dew-point instrument - Google Patents
Mirror-surface condensing dew-point instrumentInfo
- Publication number
- JP2003194756A JP2003194756A JP2001394327A JP2001394327A JP2003194756A JP 2003194756 A JP2003194756 A JP 2003194756A JP 2001394327 A JP2001394327 A JP 2001394327A JP 2001394327 A JP2001394327 A JP 2001394327A JP 2003194756 A JP2003194756 A JP 2003194756A
- Authority
- JP
- Japan
- Prior art keywords
- light
- mirror
- dew point
- light source
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高い露点(結露温
度)を有する気体の露点を正確に測定できる鏡面冷却式
露点計に関する。
【0002】
【従来の技術】気体の湿度測定機器としては、乾湿計、
塩化リチウム露点計、静電容量式湿度センサ、鏡面冷却
式露点計などが知られている。これらの湿度測定機器類
中では、気体の露点を直接測定する一次検出方式である
鏡面冷却式露点計が、測定精度が高く、信頼性に優れて
いる。
【0003】公知の鏡面冷却式露点計は、被測定気体流
路を形成するハウジング内に、光源素子と受光素子とか
らなる参照用光測定系、ペルチェ素子などの温度制御手
段により温度制御される反射鏡、および反射鏡に近接し
て配置された光源素子と受光素子とからなる測定用光測
定系を主要構成要素とする構造を有している。この形式
の露点計は、反射鏡表面温度が測定対象である気体の露
点(或いは霜点)を下回ると、結露による反射鏡表面の光
学的反射率が低下するので、参照用光測定系の受光素子
による受光量と測定用光測定系の受光素子による受光量
とを比較して、露点を決定するという原理によるもので
ある。
【0004】しかしながら、公知の鏡面冷却式露点計に
は、反射鏡に近接して配置される光源素子(例えば、発
光ダイオード)および受光素子(例えば、フォトトランジ
スター)の耐久温度による制約があり、測定可能な露点
の上限は、100℃程度である。すなわち、鏡面冷却式露
点計は、その原理上、鏡面部およびその近傍の温度を測
定対象気体の露点温度と一致させる必要がある。従っ
て、測定対象気体の露点温度が、光源素子および受光素
子の可使温度よりも高い場合には、当該気体の露点測定
は不可能である。
【0005】
【発明が解決しようとする課題】従って、本発明は、高
い露点を有する気体の露点を正確に測定できる鏡面冷却
式露点計を提供することを主な目的とする。
【0006】
【課題を解決するための手段】本発明者は、上記の課題
を解決するために、鋭意研究を行なった結果、鏡面冷却
式露点計の被測定気体流路を形成するハウジング外の常
温/常圧環境に光源素子と受光素子とを設置することに
より、その目的を達成しうることを見出した。
【0007】すなわち、本発明は、下記の鏡面冷却式露
点計を提供する。
1.測定気体流路を形成するハウジング内に反射鏡を配
置した鏡面冷却式露点計において、第一の光源部および
該光源部からの直進光を受ける第一の受光部からなる対
照光測定系と、反射鏡へ光を送る第二の光源部および反
射鏡からの反射光を受ける第二の受光部からなる反射光
測定系とをハウジング外に配置することにより、2つの
光測定系に対する被測定気体の影響を排除したことを特
徴とする鏡面冷却式露点計。
【0008】
【発明の実施の形態】以下、本発明の一実施形態の概略
を示す模式的な断面図を参照しつつ、本発明をより詳細
に説明する。
【0009】図1に示す様に、本発明による鏡面冷却式
露点計(以下単に「露点計」という)においては、公知の
露点計におけると同様に、ハウジング内に測定対象気体
の流路が形成されており、この気体と直接接触する位置
に反射鏡の鏡面が配置されている。
【0010】対照光は、ハウジング外に配設された第一
の光源部乃至光源素子(例えば、発光ダイオード)から、
プローブとしての光ファイバーを経て、ハウジング内の
測定用光路を直進した後、再び光ファイバーを経てハウ
ジング外に配設された第一の受光部乃至受光素子に至
る。
【0011】測定光は、ハウジング外に配設された第二
の光源部乃至光源素子(例えば、発光ダイオード)から光
ファイバーを経て、反射鏡の鏡面に入射され、鏡面で反
射された後、再び光ファイバーを経てハウジング外に配
設された第二の受光部乃至受光素子に至る。
【0012】反射鏡は、ヒートポンプを備えており、後
述する様に、ヒートポンプ制御用回路により、温度制御
されている。
【0013】ハウジング内の気体流路に導入された測定
対象気体が反射鏡に接触して、鏡面に露または霜が形成
されると、第二の受光部に到達する反射光の量が減少す
る。従って、ヒートポンプ制御用回路に組み込まれた比
較/演算回路において、第一の受光部での光量と第二の
受光部での光量とを比較し、その演算結果に基づいて、
鏡面上での結露量或いは結霜量が一定となる様にヒート
ポンプの冷却能力を制御することにより、鏡面の温度を
調整する。鏡面の温度データは、測温体を経て温度計測
用回路で処理されて、温度が表示される。この様にし
て、結露量或いは結霜量が一定となった時の鏡面温度が
露点或いは霜点となる。
【0014】なお、図1においては、ハウジング内の光
ファイバー先端部に集光レンズを取り付けて、光学的結
合を向上させた装置を図示したが、集光レンズは、使用
しなくても良好な結果が得られる場合には、省略するこ
とも可能である。
【0015】また、光ファイバー先端部或いは集光レン
ズをハウジング内まで延長させることなく、ハウジング
壁部に取り付けることも可能である。
【0016】
【発明の効果】本発明によれば、常温/常圧環境に光源
素子と受光素子とを設置するので、測定対象気体の露点
の上限が、これら光学的素子類の可使温度に制約される
ことはない。
【0017】従って、光ファイバープローブの耐熱温
度、ヒートポンプの耐熱温度などを考慮して、300℃以
上の露点測定が可能となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mirror-cooled dew point meter capable of accurately measuring the dew point of a gas having a high dew point (condensation temperature). [0002] Gas humidity measuring devices include a psychrometer,
Lithium chloride dew point meters, capacitance type humidity sensors, mirror surface cooled dew point meters, and the like are known. Among these humidity measuring instruments, a mirror-cooled dew point meter, which is a primary detection method for directly measuring the dew point of a gas, has high measurement accuracy and high reliability. In a known mirror-cooled dew point meter, the temperature is controlled by temperature control means such as a Peltier element or a reference light measuring system including a light source element and a light receiving element in a housing forming a gas flow path to be measured. It has a structure in which a main component is a measuring light measuring system including a reflecting mirror and a light source element and a light receiving element arranged close to the reflecting mirror. This type of dew point meter uses a light measuring system for the reference light measurement system because if the surface temperature of the reflecting mirror falls below the dew point (or frost point) of the gas to be measured, the optical reflectance of the reflecting mirror surface decreases due to condensation. This is based on the principle that the dew point is determined by comparing the amount of light received by the element and the amount of light received by the light receiving element of the measuring light measurement system. However, the known mirror-cooled dew point meter is limited by the endurance temperature of a light source element (for example, a light emitting diode) and a light receiving element (for example, a phototransistor) arranged close to a reflecting mirror. The upper limit of the possible dew point is around 100 ° C. That is, in principle, the mirror-cooled dew point meter requires that the temperature of the mirror surface portion and its vicinity be matched with the dew point temperature of the gas to be measured. Therefore, when the dew point temperature of the gas to be measured is higher than the usable temperatures of the light source element and the light receiving element, the dew point measurement of the gas cannot be performed. Accordingly, an object of the present invention is to provide a mirror-cooled dew point meter capable of accurately measuring the dew point of a gas having a high dew point. Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the outside of a housing forming a gas flow path to be measured of a mirror-cooled dew point meter has been studied. It has been found that the object can be achieved by installing a light source element and a light receiving element in a normal temperature / normal pressure environment. That is, the present invention provides the following mirror-cooled dew point meter. 1. In a mirror-cooled dew point meter in which a reflecting mirror is arranged in a housing forming a measurement gas flow path, a first light source unit and a reference light measurement system including a first light receiving unit that receives straight light from the light source unit, By arranging, outside the housing, a second light source unit for transmitting light to the reflecting mirror and a reflected light measuring system including a second light receiving unit for receiving reflected light from the reflecting mirror, the gas to be measured for the two light measuring systems A mirror-cooled dew point meter characterized by eliminating the effects of Hereinafter, the present invention will be described in more detail with reference to a schematic sectional view schematically showing an embodiment of the present invention. As shown in FIG. 1, in a mirror-cooled dew point meter (hereinafter simply referred to as "dew point meter") according to the present invention, a flow path of a gas to be measured is formed in a housing as in a known dew point meter. The mirror surface of the reflecting mirror is arranged at a position where it is in direct contact with the gas. [0010] The control light is emitted from a first light source unit or a light source element (for example, a light emitting diode) provided outside the housing.
After going straight through the optical path for measurement in the housing via the optical fiber as a probe, the light reaches the first light receiving portion or the light receiving element arranged outside the housing again via the optical fiber. The measuring light is incident on the mirror surface of the reflecting mirror via the optical fiber from the second light source unit or the light source element (for example, light emitting diode) provided outside the housing, is reflected by the mirror surface, and is again reflected on the optical fiber. Through the second light receiving portion and the light receiving element disposed outside the housing. The reflecting mirror has a heat pump, and the temperature is controlled by a heat pump control circuit as described later. When the gas to be measured introduced into the gas flow path in the housing comes into contact with the reflecting mirror and dew or frost is formed on the mirror surface, the amount of reflected light reaching the second light receiving portion decreases. . Therefore, in the comparison / arithmetic circuit incorporated in the heat pump control circuit, the light amount at the first light receiving unit is compared with the light amount at the second light receiving unit, and based on the calculation result,
The temperature of the mirror surface is adjusted by controlling the cooling capacity of the heat pump so that the amount of dew or frost on the mirror surface is constant. The temperature data of the mirror surface is processed by a temperature measurement circuit through a temperature measuring element, and the temperature is displayed. In this way, the mirror surface temperature when the amount of dew or frost is constant becomes the dew point or frost point. Although FIG. 1 shows a device in which a converging lens is attached to the tip of the optical fiber in the housing to improve optical coupling, good results can be obtained without using a converging lens. Can be omitted when is obtained. It is also possible to attach the optical fiber tip or the condenser lens to the housing wall without extending it into the housing. According to the present invention, since the light source element and the light receiving element are installed in a normal temperature / normal pressure environment, the upper limit of the dew point of the gas to be measured is limited to the usable temperature of these optical elements. You are not restricted. Therefore, the dew point of 300 ° C. or more can be measured in consideration of the heat resistant temperature of the optical fiber probe and the heat pump.
【図面の簡単な説明】
【図1】本発明の一実施形態の概略を示す断面図であ
る。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view schematically showing an embodiment of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 和明 大阪府池田市緑丘1丁目8番31号 独立行 政法人産業技術総合研究所関西センター内 Fターム(参考) 2G040 AA04 AB03 BA23 BB04 CA12 CA23 DA01 EA01 HA05 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuaki Yasuda 1-8-3 Midorioka, Ikeda-shi, Osaka Independent line AIST Kansai Center F term (reference) 2G040 AA04 AB03 BA23 BB04 CA12 CA23 DA01 EA01 HA05
Claims (1)
反射鏡を配置した鏡面冷却式露点計において、第一の光
源部および該光源部からの直進光を受ける第一の受光部
からなる対照光測定系と、反射鏡へ光を送る第二の光源
部および反射鏡からの反射光を受ける第二の受光部から
なる反射光測定系とをハウジング外に配置することによ
り、2つの光測定系に対する被測定気体の影響を排除し
たことを特徴とする鏡面冷却式露点計。Claims: 1. A mirror-cooled dew point meter in which a reflecting mirror is arranged in a housing forming a gas flow path to be measured, a first light source unit and a second light source receiving straight light from the light source unit. A reference light measuring system including one light receiving unit and a reflected light measuring system including a second light source unit for transmitting light to the reflecting mirror and a second light receiving unit receiving reflected light from the reflecting mirror are disposed outside the housing. The mirror-cooled dew point meter eliminates the influence of the gas to be measured on the two optical measurement systems.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001394327A JP2003194756A (en) | 2001-12-26 | 2001-12-26 | Mirror-surface condensing dew-point instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001394327A JP2003194756A (en) | 2001-12-26 | 2001-12-26 | Mirror-surface condensing dew-point instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003194756A true JP2003194756A (en) | 2003-07-09 |
Family
ID=27601093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001394327A Pending JP2003194756A (en) | 2001-12-26 | 2001-12-26 | Mirror-surface condensing dew-point instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003194756A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007192715A (en) * | 2006-01-20 | 2007-08-02 | Yamatake Corp | Mirror surface cooling-type dew-point hygrometer |
WO2008123313A1 (en) | 2007-04-04 | 2008-10-16 | Espec Corp. | Hygrometer, and dew-point instrument |
JP2010107338A (en) * | 2008-10-30 | 2010-05-13 | Daiichi Kagaku:Kk | Mirror surface cooling type dew point meter |
JP2012177553A (en) * | 2011-02-25 | 2012-09-13 | Hioki Ee Corp | Mirror surface cooling dew point recorder |
-
2001
- 2001-12-26 JP JP2001394327A patent/JP2003194756A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007192715A (en) * | 2006-01-20 | 2007-08-02 | Yamatake Corp | Mirror surface cooling-type dew-point hygrometer |
JP4504318B2 (en) * | 2006-01-20 | 2010-07-14 | 株式会社山武 | Mirror surface dew point meter |
WO2008123313A1 (en) | 2007-04-04 | 2008-10-16 | Espec Corp. | Hygrometer, and dew-point instrument |
US8348500B2 (en) | 2007-04-04 | 2013-01-08 | Espec Corp. | Hygrometer and dew-point instrument |
US8851745B2 (en) | 2007-04-04 | 2014-10-07 | Espec Corp. | Hygrometer and dew-point instrument |
EP2894465A1 (en) | 2007-04-04 | 2015-07-15 | Espec Corp. | Dew-point instrument |
EP3051279A1 (en) | 2007-04-04 | 2016-08-03 | Espec Corp. | Hygrometer and dew-point instrument |
US9778216B2 (en) | 2007-04-04 | 2017-10-03 | Espec Corp. | Hygrometer and dew-point instrument |
JP2010107338A (en) * | 2008-10-30 | 2010-05-13 | Daiichi Kagaku:Kk | Mirror surface cooling type dew point meter |
JP2012177553A (en) * | 2011-02-25 | 2012-09-13 | Hioki Ee Corp | Mirror surface cooling dew point recorder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9778216B2 (en) | Hygrometer and dew-point instrument | |
US7393135B2 (en) | Moisture detection device | |
JP5198844B2 (en) | Cloudiness detector and mirror-cooled dew point meter | |
JP2020517093A (en) | Advanced advanced optical sensor, system and method for etching process monitoring | |
WO2009014866A1 (en) | Optical property sensor | |
US7380980B2 (en) | Detector for detecting state on detection surface | |
CA2572862A1 (en) | Device for determining the dew-point temperature of a test gas | |
JPH11511242A (en) | Method and apparatus for measuring dew point of wet gas | |
JP2000065566A (en) | Device for measuring distance or incident angle of beam | |
JP2009515159A (en) | Laser radiation source | |
JP2003194756A (en) | Mirror-surface condensing dew-point instrument | |
WO1992001927A1 (en) | Apparatus for determining the dewpoint | |
JP4005581B2 (en) | Mirror surface dew point meter | |
JPS58113839A (en) | Detector for dew point | |
JP3421922B2 (en) | Alignment fluctuation measurement device | |
JP2009139216A (en) | Mirror surface cooling type dew point recorder | |
JP4012166B2 (en) | Mirror surface dew point meter | |
JP2009186440A (en) | Mirror surface cooling dew point meter | |
JPH01262443A (en) | Dew point measuring instrument | |
JPH08334327A (en) | Inclination angle sensor | |
RU2356039C2 (en) | Hydrodeik | |
RU2219532C2 (en) | Hygrometer | |
WO2023148528A1 (en) | Particle analysis | |
SU819592A1 (en) | Colorimeter for optical analysis of liquid phase in gas-liquid flows | |
CN115060682A (en) | Back-hole type on-chip integrated miniature infrared gas sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060118 |
|
A521 | Written amendment |
Effective date: 20060308 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070328 |