JPS6327296B2 - - Google Patents

Info

Publication number
JPS6327296B2
JPS6327296B2 JP56071949A JP7194981A JPS6327296B2 JP S6327296 B2 JPS6327296 B2 JP S6327296B2 JP 56071949 A JP56071949 A JP 56071949A JP 7194981 A JP7194981 A JP 7194981A JP S6327296 B2 JPS6327296 B2 JP S6327296B2
Authority
JP
Japan
Prior art keywords
sintered body
glass
glass sintered
refractive index
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56071949A
Other languages
Japanese (ja)
Other versions
JPS57188423A (en
Inventor
Kazunori Senda
Motohiro Nakahara
Masaharu Horiguchi
Shoichi Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7194981A priority Critical patent/JPS57188423A/en
Publication of JPS57188423A publication Critical patent/JPS57188423A/en
Publication of JPS6327296B2 publication Critical patent/JPS6327296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は気相連続軸付法(VAD法)により、
光フアイバ用母材を製造するようにした方法に関
する。
[Detailed description of the invention] The present invention uses the vapor phase continuous axial attachment method (VAD method) to
The present invention relates to a method for producing a base material for optical fiber.

光通信用伝送媒体として用いられる光フアイバ
は、一般に光フアイバの母材をあらかじめ合成
し、この母材を加熱溶融して線引きして得られ
る。この際に使用する母材は、既知のVAD法や
MCVD法、OVPO法等によつて製造されている。
Optical fibers used as transmission media for optical communications are generally obtained by synthesizing an optical fiber base material in advance, heating and melting this base material, and drawing the base material. The base material used in this case is the known VAD method or
Manufactured by MCVD method, OVPO method, etc.

この光フアイバを用いて伝送できる情報量は伝
送帯域に依存しており、この伝送帯域は光フアイ
バコア部の屈折率分布によつて制限されている。
The amount of information that can be transmitted using this optical fiber depends on the transmission band, and this transmission band is limited by the refractive index distribution of the optical fiber core.

このため、光フアイバ中心部の屈折率が高く、
周辺部の屈折率が低くなるように、また2乗分布
に近い屈折率分布となるように、光フアイバコア
部を制御する必要がある。
Therefore, the refractive index at the center of the optical fiber is high,
It is necessary to control the optical fiber core portion so that the refractive index of the peripheral portion is low and the refractive index distribution is close to a square distribution.

MCVD法やOVPO法は、ガラス原料中のドー
パント(一般にGeCl4やPCl3は屈折率を高め、
BBr3やBCl3は屈折率を低下させる)量を半径方
向について変化させ、成分の異なつたガラス層を
多数半径方向に合成することによつて屈折率分布
を制御している。
In the MCVD method and OVPO method, dopants in the glass raw materials (generally GeCl 4 and PCl 3 increase the refractive index,
The refractive index distribution is controlled by varying the amount of BB r3 and BCl 3 (which lower the refractive index) in the radial direction and by synthesizing many glass layers with different components in the radial direction.

VAD法では、MCVD法やOVPO法とは異な
り、ドーパントを含んだガラス原料を高温に加熱
し、酸化反応および加水分解反応によつて、ガラ
ス微粒子を生成し、かつ各々のガス流量、バーナ
の設置条件等を変えることにより、半径方向の屈
折率分布を瞬間的に形成しながら、軸方向に連続
的に光フアイバ母材を合成している。
Unlike the MCVD method and OVPO method, in the VAD method, glass raw materials containing dopants are heated to high temperatures, and glass fine particles are generated through oxidation and hydrolysis reactions. By changing the conditions, etc., the optical fiber base material is synthesized continuously in the axial direction while instantaneously forming the refractive index distribution in the radial direction.

このため、高速でガラス焼結体を生成すること
ができるという大きな特徴を有しているが、酸化
反応および加水分解反応を利用しているので、バ
ーナのガス流量条件の変動、バーナ設置条件の設
定変動によつて、得られる屈折率分布も所望の分
布と異なつてしまう。その結果、伝送帯域が狭く
なるという問題があつた。
For this reason, it has the great feature of being able to produce glass sintered bodies at high speed, but since it uses oxidation reactions and hydrolysis reactions, it is possible to change the burner gas flow conditions and the burner installation conditions. Due to setting variations, the obtained refractive index distribution also differs from the desired distribution. As a result, there was a problem that the transmission band became narrow.

本発明はこれらの問題を解決するためになされ
たもので、ガラス焼結体の成長面に紫外線を照射
し、ガラス焼結体中に含まれている元素(主にド
ーパント)の螢光を検出することによつて屈折率
分布を検出し、該分布を所望の分布と一致するよ
うに、製造条件を制御することを特徴としたもの
であり、その目的は所望の屈折率分布を有する光
フアイバ母材を製造することにある。
The present invention was made to solve these problems, and the growth surface of the glass sintered body is irradiated with ultraviolet rays, and the fluorescence of the elements (mainly dopants) contained in the glass sintered body is detected. It is characterized by detecting the refractive index distribution by detecting the refractive index distribution and controlling the manufacturing conditions so that the distribution matches the desired distribution.The purpose is to manufacture an optical fiber having the desired refractive index distribution. The purpose is to manufacture the base material.

第1図は本発明の一実施例の構成図であつて、
1はバーナ、2はガラス焼結体、3は紫外線の光
源、4は偏向器、5はガラス焼結体成長面、6は
カメラ、7は紫外線、10はガラス原料、11は
ドーパント原料、12は酸素ガス、13は水素ガ
ス、30は10,11,12,13の流量制御
系、14はガラスとドーパントの微粒子、20は
信号処理系、21は屈折率分布信号発生器、22
は演算機である。
FIG. 1 is a configuration diagram of an embodiment of the present invention,
1 is a burner, 2 is a glass sintered body, 3 is an ultraviolet light source, 4 is a deflector, 5 is a glass sintered body growth surface, 6 is a camera, 7 is an ultraviolet ray, 10 is a glass raw material, 11 is a dopant raw material, 12 is oxygen gas, 13 is hydrogen gas, 30 is a flow rate control system for 10, 11, 12, and 13, 14 is glass and dopant fine particles, 20 is a signal processing system, 21 is a refractive index distribution signal generator, 22
is a computing machine.

つぎにこれを動作するには、バーナ1に水素ガ
ス13と酸素ガス12を導入して燃焼させる。こ
の中にガラス原料10、ドーパント原料11を供
給して、高温火炎中で酸化反応および加水分解反
応によつて、ガラスとドーパントの微粒子14を
合成する。
Next, to operate this, hydrogen gas 13 and oxygen gas 12 are introduced into the burner 1 and burned. A glass raw material 10 and a dopant raw material 11 are supplied into this, and glass and dopant fine particles 14 are synthesized by an oxidation reaction and a hydrolysis reaction in a high-temperature flame.

この微粒子は回転しながら、かつ成長速度と同
期して上方に引き上げられているガラス焼結体2
の成長面5に堆積する。
The fine particles are rotated and pulled upward in synchronization with the growth rate of the glass sintered body 2.
is deposited on the growth surface 5 of.

一方、光源3から発した紫外線7を偏向器4で
ガラスの焼結体の成長面5の直径上を走査するよ
うに偏向する。
On the other hand, the ultraviolet light 7 emitted from the light source 3 is deflected by a deflector 4 so as to scan the diameter of the growth surface 5 of the glass sintered body.

紫外線に照射されたガラス焼結体中の元素は、
その元素に応じた螢光を発光するが、その螢光の
強度は、元素の含有量に応じて変化する。
The elements in the glass sintered body exposed to ultraviolet light are
It emits fluorescent light depending on the element, and the intensity of the fluorescent light changes depending on the content of the element.

この螢光をカメラ6で記録し、信号処理系20
で半径方向の元素含有量に変換し、屈折率分布を
算出する。
This fluorescence is recorded by the camera 6, and the signal processing system 20
Convert to the element content in the radial direction and calculate the refractive index distribution.

ついで、屈折率分布信号発生器21で発生させ
た所望の屈折率分布信号と信号処理系20の出力
信号を演算機22で比較し、その差分に応じた信
号を流量制御系30へフイードバツクする。
Next, the desired refractive index distribution signal generated by the refractive index distribution signal generator 21 and the output signal of the signal processing system 20 are compared by the calculator 22, and a signal corresponding to the difference is fed back to the flow rate control system 30.

この実施例は以上説明した構成となつているの
で、ガラス焼結体を合成しながら、その半径方向
の屈折率分布を所望の値に調整することができ
る。
Since this embodiment has the configuration described above, the refractive index distribution in the radial direction can be adjusted to a desired value while synthesizing the glass sintered body.

つぎに、本発明の具体的な実施例について述べ
る。
Next, specific examples of the present invention will be described.

バーナ1中に10%の四塩化ゲルマニウムをドー
パントとして含む四塩化けい素を毎分300c.c.流し、
半径60mmφのガラス焼結体2を合成速度25g/分
で合成した。この際、ガラス焼結体の成長面を照
射する光線として、ヘリウム・カドミウム(He
−Cd)レーザから発する波長0.325μmの紫外線
を用いた。
Flowing silicon tetrachloride containing 10% germanium tetrachloride as a dopant into burner 1 at a rate of 300 c.c./min.
A glass sintered body 2 having a radius of 60 mmφ was synthesized at a synthesis rate of 25 g/min. At this time, helium cadmium (He
-Cd) Ultraviolet light with a wavelength of 0.325 μm emitted from a laser was used.

この紫外線はガラス焼結体の直径を走査するよ
うに、ガルバノメータ型偏向器を用いて調整し
た。
This ultraviolet light was adjusted using a galvanometer type deflector so as to scan the diameter of the glass sintered body.

ガラス焼結体中にドーパントとして含まれてい
る二酸化ゲルマニウム(GeO2)は、波長0.24μm
〜0.38μmの所に吸収帯を有しており、この吸収
によつて波長0.42μm近傍において螢光を発した。
この螢光をビデオカメラで記憶し、その強度分布
を測定し、屈折率分布に換算した。
Germanium dioxide (GeO 2 ) contained as a dopant in the glass sintered body has a wavelength of 0.24 μm.
It has an absorption band at ~0.38 μm, and this absorption causes it to emit fluorescence at a wavelength of around 0.42 μm.
This fluorescence was recorded with a video camera, and its intensity distribution was measured and converted into a refractive index distribution.

0.325μmの紫外線は、GeO2の存在によつて螢
光を発し、ガラスの主成分SiO2では観察できな
かつた。このようにして測定した屈折率分布の測
定結果と、同一ガラス焼結体から透明ガラス化に
よつて得られた光フアイバ母材を干渉顕微鏡法に
よつて求めた屈折率分布と比較した結果、屈折率
差の測定精度は±2×10-4程度であつた。
Ultraviolet rays of 0.325 μm emitted fluorescence due to the presence of GeO 2 and could not be observed with SiO 2 , the main component of the glass. As a result of comparing the measurement results of the refractive index distribution measured in this way with the refractive index distribution determined by interference microscopy of an optical fiber base material obtained by transparent vitrification from the same glass sintered body, The measurement accuracy of the refractive index difference was approximately ±2×10 −4 .

ついで、流量制御系30を用いて所望の屈折率
分布となるように、フイードバツクしながら合成
したガラス焼結体を透明ガラス化した。
Next, the synthesized glass sintered body was made into transparent glass while feedback was provided using the flow rate control system 30 so as to obtain a desired refractive index distribution.

コア部の直径が50μm、外径が125μmの光フア
イバとなるように、光フアイバ母材の表面に市販
の石英管をかぶせて寸法合わせをし、10Km〜50Km
長の光フアイバに線引きした。
A commercially available quartz tube is placed over the surface of the optical fiber base material to adjust the dimensions so that the core diameter is 50 μm and the outer diameter is 125 μm.
A line was drawn on the long optical fiber.

これらの光フアイバの伝送帯域を波長1.3μmの
半導体レーザを光源として、ベースバンドスイー
プ法によつて測定したところ、6dB低下帯域周波
数の平均値は2GHz・Kmであり、最低でも1.5G
Hz・Kmであつた。
When the transmission band of these optical fibers was measured by the baseband sweep method using a semiconductor laser with a wavelength of 1.3 μm as a light source, the average value of the band frequency with a 6 dB decrease was 2 GHz Km, which was at least 1.5 G.
It was hot in Hz/Km.

以上説明したように、本発明の方法によると、
光フアイバ母材合成中の屈折率分布をオンライン
で測定しながら、所望の屈折率分布に制御するこ
とが可能であるので、伝送帯域の広い光フアイバ
の母材を合成できる利点がある。
As explained above, according to the method of the present invention,
Since it is possible to control the refractive index distribution to a desired one while measuring the refractive index distribution online during synthesis of the optical fiber base material, there is an advantage that it is possible to synthesize an optical fiber base material with a wide transmission band.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の構成図である。 1……バーナ、2……ガラス焼結体、3……紫
外線の光源、4……偏向器、5……ガラス焼結体
成長面、6……カメラ、7……紫外線、10……
ガラス原料、11……ドーパント原料、12……
酸素ガス、13……水素ガス、14……ガラスと
ドーパントの微粒子、20……信号処理系、21
……屈折率分布信号発生器、22……演算機、3
0……10,11,12,13の流量制御系。
The figure is a configuration diagram of an embodiment of the present invention. 1... Burner, 2... Glass sintered body, 3... Ultraviolet light source, 4... Deflector, 5... Glass sintered body growth surface, 6... Camera, 7... Ultraviolet light, 10...
Glass raw material, 11... Dopant raw material, 12...
Oxygen gas, 13...Hydrogen gas, 14...Glass and dopant particles, 20...Signal processing system, 21
... Refractive index distribution signal generator, 22 ... Computing machine, 3
0...10, 11, 12, 13 flow rate control system.

Claims (1)

【特許請求の範囲】 1 バーナで酸水素を燃焼し、この酸水素火炎中
にガラス成分を含む原料ガスを導いてガラス化反
応を起こし、ガラス焼結体を種棒下端に堆積さ
せ、順次種棒を上方に移動させてガラス焼結体を
長さ方向に成長させるようにした光フアイバ用母
材の製造方法において、 ガラス焼結体成長面に紫外線を照射し、ガラス
焼結体に含まれている元素が紫外線照射によつて
発する螢光を検出することによつて、ガラス焼結
体に含まれている元素の分布を測定し、該分布と
所望の分布が一致するように、ガラス原料、ドー
パント原料、酸素ガスおよび水素ガスの供給流量
を調整することを特徴とする光フアイバ母材の製
造方法。
[Claims] 1 Oxygen hydrogen is burned in a burner, and a raw material gas containing a glass component is introduced into the oxyhydrogen flame to cause a vitrification reaction, and a glass sintered body is deposited at the lower end of the seed rod, and the seed rod is sequentially heated. In a method for manufacturing an optical fiber base material in which a rod is moved upward to grow a glass sintered body in the lengthwise direction, ultraviolet rays are irradiated onto the growth surface of the glass sintered body to remove particles contained in the glass sintered body. The distribution of the elements contained in the glass sintered body is measured by detecting the fluorescence emitted by the elements contained in the glass sintered body when exposed to ultraviolet irradiation, and the glass raw materials are adjusted so that the distribution matches the desired distribution. A method for producing an optical fiber base material, which comprises adjusting the supply flow rates of a dopant raw material, oxygen gas, and hydrogen gas.
JP7194981A 1981-05-13 1981-05-13 Manufacture of base material for optical fiber Granted JPS57188423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7194981A JPS57188423A (en) 1981-05-13 1981-05-13 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7194981A JPS57188423A (en) 1981-05-13 1981-05-13 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS57188423A JPS57188423A (en) 1982-11-19
JPS6327296B2 true JPS6327296B2 (en) 1988-06-02

Family

ID=13475239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7194981A Granted JPS57188423A (en) 1981-05-13 1981-05-13 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS57188423A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650135A (en) * 1979-09-26 1981-05-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650135A (en) * 1979-09-26 1981-05-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material

Also Published As

Publication number Publication date
JPS57188423A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
CA1091928A (en) Continuous optical fiber preform fabrication method
US4224046A (en) Method for manufacturing an optical fiber preform
US5676725A (en) Method of manufacturing single-mode optical fiber
US4419116A (en) Process for producing optical fiber preform and apparatus therefor
JP3007510B2 (en) Manufacturing method of synthetic quartz glass member
JP3053320B2 (en) Method for producing porous glass preform for optical fiber
US4230473A (en) Method of fabricating optical fibers
JPS6327296B2 (en)
US6923024B2 (en) VAD manufacture of optical fiber preforms with improved deposition control
JPH0832572B2 (en) Method for manufacturing base material for optical fiber
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPS6241735A (en) Production of optical fiber preform
JPH01111747A (en) Production of optical fiber preform
JPS6044258B2 (en) synthesis torch
JPH0761830A (en) Production of single mode optical fiber preform
US4804393A (en) Methods for producing optical fiber preform and optical fiber
JP2003277069A (en) Method for manufacturing porous preform
JPS5575934A (en) Production of focusing type optical fiber base material
JP2003300746A (en) Method for manufacturing optical fiber preform
JPH0733467A (en) Production of porous glass preform for optical fiber
JPS60264336A (en) Manufacture of optical glass preform
JPH06239624A (en) Production of transparent glass preform
JP2938605B2 (en) Method of manufacturing preform for single mode optical fiber
JPH04295024A (en) Production of base material for single-mode optical fiber
JPH04349147A (en) Radiation-resistant optical fiber and its production