JPS6241735A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS6241735A
JPS6241735A JP18104485A JP18104485A JPS6241735A JP S6241735 A JPS6241735 A JP S6241735A JP 18104485 A JP18104485 A JP 18104485A JP 18104485 A JP18104485 A JP 18104485A JP S6241735 A JPS6241735 A JP S6241735A
Authority
JP
Japan
Prior art keywords
flame
optical fiber
burner
glass
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18104485A
Other languages
Japanese (ja)
Inventor
Satoshi Kawashima
敏 川島
Takashi Uetake
孝 植竹
Kazunori Senda
千田 和憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T GIJUTSU ITEN KK
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
N T T GIJUTSU ITEN KK
Nippon Telegraph and Telephone Corp
NTT Technology Transfer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T GIJUTSU ITEN KK, Nippon Telegraph and Telephone Corp, NTT Technology Transfer Corp filed Critical N T T GIJUTSU ITEN KK
Priority to JP18104485A priority Critical patent/JPS6241735A/en
Publication of JPS6241735A publication Critical patent/JPS6241735A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce an optical fiber having desired refractive index distribution, stably, by radiating ultraviolet radiation to flame stream during the synthesis of an optical fiber preform, measuring the fluorescence emitted from the flame and controlling the condition of the synthesis based on the result of measurement. CONSTITUTION:Hydrogen gas 8 and oxygen gas 9 are introduced into the burner 1, and the oxyhydrogen flame is supplied with the glass raw material 10 and the dopant raw material 11 to synthesize glass soot 6 containing dopant. An optical fiber preform is produced by depositing the soot 6 successively on the growing surface of a sintered glass 2 which is shifted upward at a specific speed under rotation. Ultraviolet radiation 4 radiated from the light source 3 is irradiated to the oxyhydrogen flame and the emitted fluorescent light is detected by a video camera 7. The signal transmitted from the camera is operated by the signal processing system 14 and the computer 15, and the calculated dopant distribution on the porous preform is compared with the prescribed refractive index distribution signal. The distribution of the dopant in the flame, the flow of the flame and the position of the burner 1 are controlled according to the difference by the aid of the flow-controlling system 12 and the burner- position controlling system 16 to effect the synthesis of a porous preform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気相連続軸付法CVAD法)にもとづく、光フ
ァイバ用母材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an optical fiber preform based on a continuous vapor deposition method (CVAD method).

光通信用伝送媒体として用いられる光ファイバは、一般
に光7了イバの母材を予め合成し、この母材を加熱溶融
して得られる。この際に使用する母材は、既知(7) 
VAD法(特許1o2otlIto号)やMOVD法(
特状昭j−3−221A23 )、ovpo法(特開昭
≠6−乙lA23または特開昭≠?−733コλ)等に
よって製造されている。この光ファイバを用いて伝送で
きる情報量は伝送帯域に依存しておシ、この伝送帯域は
、光ファイバ中心部の屈折率分布によって制限されてい
る。
Optical fibers used as transmission media for optical communications are generally obtained by pre-synthesizing an optical fiber base material and heating and melting this base material. The base material used in this case is known (7)
VAD method (patent number 1o2otlIto) and MOVD method (
They are manufactured by the OVPO method (Japanese Patent Application Laid-Open No. 6-733A23 or Japanese Patent Application Laid-open No. 6-733). The amount of information that can be transmitted using this optical fiber depends on the transmission band, and this transmission band is limited by the refractive index distribution at the center of the optical fiber.

このため、光ファイバ中心部の屈折率が高く、周辺部の
屈折率が低くなるように、また、2乗分布に近い屈折率
分布になるように、光ファイバコア部を制御する必要が
ある。
Therefore, it is necessary to control the optical fiber core portion so that the refractive index at the center of the optical fiber is high and the refractive index at the peripheral portion is low, and so that the refractive index distribution is close to a square distribution.

(従来の技術) 従来のMC!VD法や0vPO法は、ガラス原料中のド
ーパント量を半径方向について変化させ、成分の異なっ
たガラス層を多数半径方向に合成することによって屈折
率分布を制御している。
(Conventional technology) Conventional MC! In the VD method and the 0vPO method, the refractive index distribution is controlled by changing the amount of dopant in the glass raw material in the radial direction and synthesizing a large number of glass layers with different components in the radial direction.

VAD法では、MOVD法や0VPO法と異なり、ドー
パントを含んだガラス原料を高温に加熱し、酸化反応及
び加水分解反応によって、ガラス微粒子を生成し、かつ
各々のガス流量、バーナの設置条件を変えることにより
、半径方向の屈折率分布を瞬間的に形成しながら、軸方
向に連続的に光ファイバ母材2金成している。
In the VAD method, unlike the MOVD method and the 0VPO method, glass raw materials containing dopants are heated to high temperatures, glass particles are generated through oxidation reactions and hydrolysis reactions, and the flow rate of each gas and burner installation conditions are changed. As a result, the two-metal optical fiber base material is formed continuously in the axial direction while instantaneously forming a refractive index distribution in the radial direction.

(発明が解決しようとする問題点) このようなVAD法は、高速でガラス焼結体?生成する
ことができるという大きな特徴を有しているが、酸化反
応及び加水分解反応を利用しているので、バーナのガス
流量条件の変動、バーナ設置条件の変動によって、得ら
れる屈折率分布も所望の分布と異なってしまう。その結
果5伝送帯域が狭くなるという問題があった。
(Problems to be solved by the invention) Can such a VAD method produce glass sintered bodies at high speed? However, since it uses oxidation and hydrolysis reactions, the desired refractive index distribution can be obtained by changing the burner gas flow conditions and burner installation conditions. The distribution differs from that of As a result, there was a problem that the 5 transmission band became narrower.

また、VAD法によシ光ファイバ母材を合成する場合、
バーナは酸水素炎による熱と合成時に生ずる塩酸(HO
I)等によシ徐々に汚染され、しばしば取りはずし洗浄
しなければならず、再びバーナ?以前の状態VC戻すた
めには微粒子の合成ガラス化、線引き、屈折率分布の測
定を何回も繰り返す必要があった。
In addition, when synthesizing the optical fiber base material by the VAD method,
The burner uses heat from an oxyhydrogen flame and hydrochloric acid (HO) generated during synthesis.
I) etc., the burner becomes gradually contaminated and often has to be removed and cleaned, and then the burner is removed again. In order to return the VC to its previous state, it was necessary to repeat the synthetic vitrification of fine particles, drawing, and measuring the refractive index distribution many times.

この解決策として、ガラス焼結体表面の温度分布を61
11定して屈折率をコントロールする方法(特開昭!6
−g?♂34t)、あるいはガラス焼結体成長面に紫外
線を照射し、ガラス焼結体に含まれている元素が紫外線
照射によって発する螢光を検出する方法(特開昭j7−
/♂bり3)が提案されているが、この温度分布を制御
したりガラス焼結体の屈折率分布を検出するだけでは屈
折率を完全には制御できない。
As a solution to this problem, the temperature distribution on the surface of the glass sintered body was
11 Method of controlling the refractive index at a constant rate (Unexamined Japanese Patent Publication No. 6)
-g? ♂34t) or a method of irradiating the growth surface of a glass sintered body with ultraviolet rays and detecting the fluorescence emitted by elements contained in the glass sintered body due to the ultraviolet irradiation (Japanese Unexamined Patent Publication No. 7-7-
/♂bri3) has been proposed, but the refractive index cannot be completely controlled simply by controlling this temperature distribution or detecting the refractive index distribution of the glass sintered body.

(問題点を解決するための手段) 本発明は、これらの問題を解決するためになされたもの
で、ガラス焼結体を形成させるための原   −料金含
んだ酸水素炎に紫外縁?照射し、火炎中に含まれている
元素(主にドーパント)の流れをガラス微粒子の螢光を
観測し、この観測結果を、最適なバーナ設置条件、ガス
流量条件となるようにフィードバック制御することを特
徴としたものであシ、その目的は所望の屈折率分布を有
する光7アイバ母材を安定に製造することである。
(Means for Solving the Problems) The present invention has been made to solve these problems, and uses an oxyhydrogen flame containing a raw material for forming a glass sintered body in the ultraviolet range? irradiate the flame, observe the flow of elements (mainly dopants) contained in the flame, and observe the fluorescence of glass particles, and feedback control the observation results to optimize the burner installation conditions and gas flow conditions. The purpose is to stably produce a Hikari 7-Iver base material having a desired refractive index distribution.

(製造装置) 図は本発明の一実施例の構成図であって、/はバーナ、
コはガラス焼結体、3は紫外線の光源あるいは紫外線ラ
イトガイド、4tは紫外線、夕はガラス焼結体表面、乙
は原料及びガラス微粒子流を含んだ酸水素炎、7はビデ
オカメラ、rは水素ガス、りは酸素ガス、lOはガラス
原料、//はドーパント原料、/−はr−//の流量制
御系、/3はモニタ、/lLtは信号処理系、/jはコ
ンピュータ、及び/6はバーナ位置制御系である。
(Manufacturing equipment) The figure is a configuration diagram of an embodiment of the present invention, / is a burner,
C is a glass sintered body, 3 is an ultraviolet light source or an ultraviolet light guide, 4t is an ultraviolet light, evening is the glass sintered body surface, O is an oxyhydrogen flame containing raw materials and a flow of glass particles, 7 is a video camera, and r is a hydrogen gas, ri is oxygen gas, lO is glass raw material, // is dopant raw material, /- is r-// flow rate control system, /3 is monitor, /lLt is signal processing system, /j is computer, and / 6 is a burner position control system.

本発明の特徴は、ビデオカメラで捕えた火炎中に含まれ
る元素(例えば()e)の含有量に応じた螢光強度を信
号処理系によシ処理し、その出力信号をコンピュータに
よシ所望の屈折率分布信号と比較処理し、その結果の出
力から、バ〜すから放出する原料を制御すると共に、バ
ーナ位置を制御し、最適条件のもとてガラス焼結体の屈
折率分布を制御することにある。
A feature of the present invention is that a signal processing system processes the fluorescence intensity according to the content of an element (for example, ()e) contained in a flame captured by a video camera, and the output signal is sent to a computer. Compare and process the desired refractive index distribution signal, and from the resulting output, control the raw material released from the burner, control the burner position, and adjust the refractive index distribution of the glass sintered body under optimal conditions. It's about controlling.

つぎに本発明の動作について述べると、バーナ/に水素
ガス♂と酸素ガスタを導入し燃焼させる。
Next, the operation of the present invention will be described. Hydrogen gas (♂) and oxygen gas are introduced into the burner and burned.

このバーナにガラス原料10.  ドーパント原料//
を供給して、高温火炎中で酸化反応及び加水分解反応に
よって、ドーパントを含むガラスの微粒子Aを合成する
。この微粒子は回転しながら、かつ成長速度と同期して
上方に引き上げられているガラス焼結体コの成長面!の
表面に酸水素炎によって運ばれ堆積する。
Glass raw material 10. Dopant raw material //
is supplied, and dopant-containing glass particles A are synthesized through oxidation and hydrolysis reactions in a high-temperature flame. The growth surface of the glass sintered body where these fine particles are rotated and pulled upward in synchronization with the growth rate! is carried and deposited on the surface by the oxyhydrogen flame.

一方、光源3から発した紫外縁をこの火炎流に照射する
On the other hand, the flame stream is irradiated with ultraviolet light emitted from the light source 3.

紫外線に照射された火炎中の元素(例えばoeなど)は
、その元素に応じた螢光を発光するが、その螢光の強度
は、元素の含有量に応じて変化する、 この螢光をビデオカメラ7により検出し、信号処理系/
4及びコンピュータ/jによシ、多孔質母材上のドーパ
ント分布を算出し、予め用意した所望の屈折率分布信号
と比較し、その差分に応じた信号を流量制御系/2へフ
ィードバンクし、火炎流中のドーパント分布及び火炎の
流れを制御して多孔質母材?合成する。
Elements in a flame that are irradiated with ultraviolet light (such as OE) emit fluorescent light depending on the element, but the intensity of the fluorescent light changes depending on the content of the element. Detected by camera 7, signal processing system/
4 and computer/j, calculate the dopant distribution on the porous base material, compare it with a desired refractive index distribution signal prepared in advance, and feed-bank the signal corresponding to the difference to the flow rate control system/2. , dopant distribution in the flame flow and porous matrix by controlling the flame flow? Synthesize.

また、コンピュータ/J″は、バーナ位置制御系/乙へ
、出力信号をフィードバックし、バーナ/の位置、例え
ばガラス焼結体λの表面jに対するバーナの角度、バー
ナのガラス焼結体に対する相対位置を自動的にコントロ
ールし、多孔質母材全合成する。
In addition, the computer /J'' feeds back output signals to the burner position control system /B, and determines the position of the burner, for example, the angle of the burner with respect to the surface j of the glass sintered body λ, and the relative position of the burner with respect to the glass sintered body. automatically controls and completely synthesizes porous base materials.

つぎに、本発明の具体的な実施例について述べる。Next, specific examples of the present invention will be described.

(実施例) バーナ/中に10%の四塩化ゲルマニウム(oecx、
 ) tドーパントとして含む四塩化けい素(5iCI
4 ) ’I!:毎分、200 cc流し、半径3o−
のガラス焼結体、2を合成速度1.0g1分で合成した
。この際、火炎流を照射する紫外線の光源として水銀ラ
ンプを用いた。
(Example) 10% germanium tetrachloride (OECX,
) Silicon tetrachloride (5iCI) included as a t-dopant
4) 'I! : per minute, 200 cc flow, radius 3o-
Glass sintered body 2 was synthesized at a synthesis rate of 1.0 g and 1 minute. At this time, a mercury lamp was used as the ultraviolet light source for irradiating the flame stream.

火炎中のガラス微粒子に含まれてbる二酸化ゲルマニウ
ム(Ge02)は、波長0.24tμm −0,31μ
mのところに吸収帯を有しており、この吸収によって波
長0.4t2 itm近傍において螢光を発した。この
螢光をカメラで記録し、その強度分布を基準データと比
較し、データと一致するよう火炎流を調節した。
Germanium dioxide (Ge02) contained in glass particles in the flame has a wavelength of 0.24 tμm - 0.31μ
It has an absorption band at m, and this absorption causes it to emit fluorescence at a wavelength of around 0.4t2 itm. This fluorescence was recorded with a camera, its intensity distribution was compared with reference data, and the flame flow was adjusted to match the data.

このようにして、意識的にバーナをj回に渡り取りはず
し、洗浄後バーナを取り付け、ガラス微粒子の合成、透
明ガラス化を行い、コア部の直径が、f OAm 、外
径が/2Jrμmの光ファイバとなるように、゛光ファ
イバ母材の表面に市販の石英管をかぶせて寸法会わせを
し、10km〜30km 長の光ファイバを線引き、屈
折率の測定を行った結果。
In this way, the burner was consciously removed j times, the burner was reinstalled after cleaning, and the glass particles were synthesized and made into transparent vitrification to create an optical fiber with a core diameter of f OAm and an outer diameter of /2Jrμm. The results were obtained by covering the surface of the optical fiber base material with a commercially available quartz tube, adjusting the dimensions, drawing an optical fiber with a length of 10 km to 30 km, and measuring the refractive index.

屈折率分布係数αは、いずれもAり!〜ユoo あった
All refractive index distribution coefficients α are A! ~Yuoo There it was.

これらの光ファイバの伝送帯域を波長7.3μmの半導
体レーザを光源として、ベースバンドスィーブ法によっ
て測定したところ、A dB低下、帯域周波数の平均値
は/ GHz−kmであり、最低でもO17GHz−k
mであった。
When the transmission band of these optical fibers was measured by the baseband sweep method using a semiconductor laser with a wavelength of 7.3 μm as a light source, the average value of the band frequency was /GHz-km with an A dB drop, and the lowest value was O17GHz-km. k
It was m.

(発明の効果) 以上説明し念ように、本発明の方法によると、光ファイ
バ母材合成中の火炎流を、火炎に含まれる元素に紫外線
?照射して発する螢光を観測し、火炎中のドーパント分
布、火炎の流れ、及びバーナの位置をフィードバック制
御することで、所望の屈折率分布に制御することが可能
であるので、伝送帯域の広い光ファイバの母材を再現性
よく合成できる利点がある。
(Effects of the Invention) As explained above, according to the method of the present invention, the flame flow during synthesis of the optical fiber base material can be applied to elements contained in the flame. By observing the fluorescent light emitted by irradiation and feedback controlling the dopant distribution in the flame, the flame flow, and the burner position, it is possible to control the refractive index distribution to the desired value, resulting in a wide transmission band. It has the advantage of being able to synthesize optical fiber base materials with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の構成図である。 /・・・バーナ、2・・・ガラス焼結体、3・・・紫外
線の光源、弘・・紫外線、!・・・ガラス焼結体表面、
乙・・・酸水素炎及びガラス微粒子流、7・・・ビデオ
カメラ、ど・・・水素ガス、り・・・酸素ガス、10・
・・ガラス原料、//・・・ドーパント原料、/2・・
・流量制御系、/3・・・モニタ、/IIL・・・信号
処理系、/!・・・コンビ二−タ、/乙・・・バーナ位
置制御系。
The figure is a configuration diagram of an embodiment of the present invention. /...burner, 2...glass sintered body, 3...ultraviolet light source, Hiroshi...ultraviolet light,! ...Glass sintered body surface,
B...Oxyhydrogen flame and glass particle flow, 7...Video camera, D...Hydrogen gas, R...Oxygen gas, 10.
...Glass raw material, //...Dopant raw material, /2...
・Flow rate control system, /3...Monitor, /IIL...Signal processing system, /! ...Combinator, /B...Burner position control system.

Claims (1)

【特許請求の範囲】 バーナで酸水素を燃焼し、この酸水素火炎中にガラス成
分を含む原料ガスを導いてガラス化反応を起し、ガラス
焼結体を種棒下端に堆積させ、順次種棒を上方に移動さ
せてガラス焼結体を長さ方向に成長させるようにした光
ファイバ用母材の製造方法において、 ガラス焼結体成長面に沿って流れる火炎流に紫外線を照
射し、火炎中に含まれている元素が、紫外線照射によっ
て発する螢光を観測し、ガラス焼結体に含まれる元素の
濃度分布を最適になるように、ガラス原料、ドーパント
原料、酸素ガス及び水素ガス等の供給流量、ならびにバ
ーナ位置を調整することを特徴とする光ファイバ母材の
製造方法。
[Claims] Oxygen hydrogen is burned in a burner, a raw material gas containing a glass component is introduced into the oxyhydrogen flame to cause a vitrification reaction, and a glass sintered body is deposited at the lower end of the seed rod. In a method for manufacturing an optical fiber base material in which a rod is moved upward to grow a glass sintered body in the longitudinal direction, ultraviolet rays are irradiated onto a flame stream flowing along the growth surface of the glass sintered body, and the flame is By observing the fluorescence emitted by the elements contained in the glass sintered body when irradiated with ultraviolet rays, the glass raw materials, dopant raw materials, oxygen gas, hydrogen gas, etc. A method for manufacturing an optical fiber preform, characterized by adjusting the supply flow rate and burner position.
JP18104485A 1985-08-20 1985-08-20 Production of optical fiber preform Pending JPS6241735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18104485A JPS6241735A (en) 1985-08-20 1985-08-20 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18104485A JPS6241735A (en) 1985-08-20 1985-08-20 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS6241735A true JPS6241735A (en) 1987-02-23

Family

ID=16093780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18104485A Pending JPS6241735A (en) 1985-08-20 1985-08-20 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS6241735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209129A2 (en) * 2000-11-24 2002-05-29 Heraeus Quarzglas GmbH & Co. KG Process and apparatus for producing a quartz glass article
EP1300369A2 (en) * 2001-10-08 2003-04-09 Schott Glas Apparatus for producing quartz glass articles of uniform refractive index

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209129A2 (en) * 2000-11-24 2002-05-29 Heraeus Quarzglas GmbH & Co. KG Process and apparatus for producing a quartz glass article
EP1209129A3 (en) * 2000-11-24 2004-07-28 Heraeus Quarzglas GmbH & Co. KG Process and apparatus for producing a quartz glass article
EP1300369A2 (en) * 2001-10-08 2003-04-09 Schott Glas Apparatus for producing quartz glass articles of uniform refractive index
EP1300369A3 (en) * 2001-10-08 2004-08-11 Schott Glas Apparatus for producing quartz glass articles of uniform refractive index

Similar Documents

Publication Publication Date Title
CA1091928A (en) Continuous optical fiber preform fabrication method
US4135901A (en) Method of manufacturing glass for optical waveguide
US4224046A (en) Method for manufacturing an optical fiber preform
KR20010053022A (en) Method and apparatus for manufacturing a rare earth metal doped optical fiber preform
US4294601A (en) Apparatus and process for automatic control of the production of optical fiber
US6542690B1 (en) Chalcogenide doping of oxide glasses
JPS6241735A (en) Production of optical fiber preform
AU4993900A (en) Chalcogenide doping of oxide glasses
US4341541A (en) Process for the production of optical fiber
JP2005075682A (en) Method of manufacturing porous glass preform
JPS6327296B2 (en)
JPS63222035A (en) Production of preform for optical fiber
JPS6044258B2 (en) synthesis torch
JPH01286932A (en) Production of optical fiber preform
US4236905A (en) Method for continuously monitoring the composition of glass particulate during the production of optical fiber
JPH0952719A (en) Production of synthetic quartz glass preform
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPS62162638A (en) Production of preform for optical fiber
JPS6081035A (en) Manufacture of base material for optical fiber
JP3675581B2 (en) Method for synthesizing optical fiber base material and method for adjusting synthesis condition
JPS60221332A (en) Manufacture of optical fiber base material
JP3071235B2 (en) Method of manufacturing preform for single mode optical fiber
JPS6081036A (en) Manufacture of base material for optical fiber
JPS5851896B2 (en) Method for controlling refractive index of optical fiber base material
JPS60264336A (en) Manufacture of optical glass preform