JPS63272022A - Gas insulated transformer - Google Patents

Gas insulated transformer

Info

Publication number
JPS63272022A
JPS63272022A JP10458887A JP10458887A JPS63272022A JP S63272022 A JPS63272022 A JP S63272022A JP 10458887 A JP10458887 A JP 10458887A JP 10458887 A JP10458887 A JP 10458887A JP S63272022 A JPS63272022 A JP S63272022A
Authority
JP
Japan
Prior art keywords
gas
cooler
coolant
liquid
coolant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10458887A
Other languages
Japanese (ja)
Inventor
Yukio Ohashi
幸夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10458887A priority Critical patent/JPS63272022A/en
Publication of JPS63272022A publication Critical patent/JPS63272022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To condense coolant gas containing noncondensing insulating gas efficiently, suppress the pressure rise in an outer shell and maintain excellent cooling performance by a method wherein the noncondensing insulating gas and the condensing coolant gas filling the outer shell are blown into a cooler or the low temperature coolant liquid in a reservoir. CONSTITUTION:In a gas insulated transformer constituted by an outer shell 3 in which a core 1 and a coil 2 are housed and which is filled with noncondensing insulating gas and condensing and electrically insulating coolant, an outside cooler 4 or a reservoir in the outer shell 3 which is filled with the coolant liquid 9 and a means 5 by which the coolant liquid 9 in the cooler 4 or in the reservoir is cooled are produced. Further, pipes 15 and 17 and a blower 16 by which mixed gas 8 of the non-condensed coolant gas and the noncondensing insulating gas in the outer shell 3 is supplied into the cooler 4 or into the coolant liquid 9 in the reservoir and a pump 12 and pipes 11 and 13 by which the coolant liquid 9 in the cooler 4 or in the liquid sink is sucked and supplied to the upper parts of the core 1 and the coil 2 are provided.

Description

【発明の詳細な説明】 [清明の目的] (産業上の利用分野) 本発明は、変圧器運転温度範囲で不凝縮性を有する絶縁
ガスと、同温度範囲で凝縮性を有し、かつ絶縁性も有し
た冷却媒体とを外囲容器内に充満したガス絶縁変圧器に
関する。
Detailed Description of the Invention [Purpose of Clarification] (Field of Industrial Application) The present invention provides an insulating gas that is non-condensable in the operating temperature range of a transformer, and an insulating gas that is condensable in the same temperature range. The present invention relates to a gas insulated transformer in which an envelope is filled with a cooling medium that also has properties.

(従来の技術) 従来変圧器は絶縁ガスあるいは絶縁油を充満して電気絶
縁及び冷却を行なってきた。しかし、変圧器の大G−1
化と共に鉄心及びコイルから范生する損失熱は美大とな
り、絶縁ガス9)場合は遁壊流速を上げる事により冷却
性能を維持しよつとするが、流速金玉げると循」R動力
が増大するので限界がある。又、絶、縁曲の1廿は絶縁
ガスよりは、この制約が緩いが絶縁油の比直はガスに比
べて若しく大きい為変圧6重1が過大になってしまう。
(Prior Art) Conventionally, transformers have been filled with insulating gas or insulating oil for electrical insulation and cooling. However, the large G-1 of the transformer
As the heat loss increases, the loss of heat generated from the iron core and coil increases, and in the case of insulating gas9), attempts are made to maintain cooling performance by increasing the flow rate, but as the flow rate increases, the circulating power increases. Therefore, there are limits. Furthermore, although this restriction is less strict than that of insulating gas for insulation and edge bending, the specific ratio of insulating oil is slightly larger than that of gas, so the transformer 6-layer 1 becomes excessive.

そこで、f&近は上記問題点を解決する為に従来用いて
いる41!3f&ガス例えばSF、ガスに7JOえて、
変圧器運転温度範囲内で蒸沌あるいは凝縮し、かつ絶縁
特性も優れている冷却媒体例えばフロンを外囲容器内に
充満させて運転するものがある。これは−鉄心及びコイ
ルに冷却媒体を散布したり冷却媒体液中に浸なす事によ
って冷却媒体′I&:i発させ。
Therefore, in order to solve the above problems, f&Kin has added 7JO to the conventionally used 41!3f&gas such as SF and gas.
Some transformers are operated by filling an envelope with a cooling medium that is vaporous or condensed within the operating temperature range of the transformer and has excellent insulation properties, such as fluorocarbons. This is done by - emitting a cooling medium by spraying the core and coils with a cooling medium or by immersing them in a cooling medium liquid.

その時の気化潜熱を利用して鉄心及びコイルから傷生す
る損失熱を効率良(奪い、蒸発してガスになった冷却#
&体を外部冷却器等で凝縮させ熱を大気に捨てるもので
ある。
Using the latent heat of vaporization at that time, the loss heat generated by damage from the iron core and coil is efficiently removed, and the cooling that evaporates and becomes gas.
& The body is condensed using an external cooler, etc., and the heat is discarded into the atmosphere.

この櫨の従来変圧器の一列を第4図に示す。鉄心1及び
コイル2が外囲容43内に収められ、かつコイル2は冷
却媒体液9が満たされた内部容器10内に浸されている
。又、内部容器10の上面は解放され冷却媒体液9が溢
れ出た冷却媒体液9は外囲各13の底部に溜り、配置1
1を介してポンプ12で吸込°まれ配管13全介して鉄
心1及びコイル2の上部に設けられたノズル14によっ
て散布される。鉄心1及びコイル2の発生する損失熱に
よって蒸発した冷却媒体はガスとなって外囲容器3円に
充満し、もともと充満しである不凝縮性の絶縁ガスと共
に混合ガスBを形成する。この混合ガス8は配管7を介
して図示していないブロアによって吸込まれ冷却器4に
供給される。ここで冷却器4には配管5によって冷却水
が供給され。
A row of this conventional transformer is shown in FIG. The iron core 1 and the coil 2 are housed in an outer enclosure 43, and the coil 2 is immersed in an inner container 10 filled with a coolant liquid 9. Further, the upper surface of the inner container 10 is opened and the coolant liquid 9 overflows and collects at the bottom of each of the outer enclosures 13,
1 and is sucked in by a pump 12 and sprayed through a nozzle 14 provided above the iron core 1 and coil 2 through the entire piping 13. The cooling medium evaporated by the heat loss generated by the iron core 1 and the coil 2 becomes a gas and fills the surrounding container 3, forming a mixed gas B together with the non-condensable insulating gas that was originally filled. This mixed gas 8 is sucked through a pipe 7 by a blower (not shown) and supplied to the cooler 4. Here, cooling water is supplied to the cooler 4 through a pipe 5.

ここで混合ガス8のうち冷却媒体のガスの一部のみ凝縮
し′c、液になり外囲容器3の底部に戻る。以上によっ
て鉄心1及びコイル2で発生した損失熱を冷却器4から
大気へと捨てている。
Here, only a part of the cooling medium gas in the mixed gas 8 is condensed, becomes a liquid, and returns to the bottom of the surrounding container 3. As described above, the heat loss generated in the iron core 1 and the coil 2 is discarded from the cooler 4 to the atmosphere.

ところが−役に凝縮性のガスの中に少暇でも不凝縮性の
ガスが含まれていると/@縮効率は著しく低下する事が
知られている。即ち第5図に示すように横軸に不凝縮性
のガスの含まれる開会をとり。
However, it is known that if a non-condensable gas is contained even briefly in a condensable gas, the condensation efficiency is significantly reduced. That is, as shown in FIG. 5, the horizontal axis represents the opening containing non-condensable gas.

縦軸に不凝縮性ガスが含まれた時の凝縮熱伝達率αの含
まれない時の値α。に対する比をとると。
The vertical axis is the condensing heat transfer coefficient α when non-condensable gas is included, and the value α when non-condensable gas is not included. Taking the ratio to .

熱伝達率は手直の不凝縮性ガスによって172〜115
にまで低下してしまう。従って損失熱を充分除去する為
には冷却器が大型になったり、充分除去できない時には
外囲容器3内部の圧力が上昇するという問題が生ずる。
The heat transfer coefficient is 172-115 depending on the non-condensable gas used.
It will drop to . Therefore, in order to sufficiently remove the lost heat, a problem arises in that the cooler becomes large in size, and when the lost heat cannot be removed sufficiently, the pressure inside the envelope 3 increases.

(発明が解決しようとする問題点〕 上記従来技術では不凝縮性ガスの為に冷却媒体が#!縮
し難くなり、その結果冷却性能が著しく低下して外囲容
器内部の圧力が上昇したり、冷却性能を維持する為に冷
却器やその運転動力が太き(なったりした。本発明は上
記欠点を改良し良好な冷却性能を有したガス絶縁変圧器
を提供する事を目的とする。
(Problems to be Solved by the Invention) In the above conventional technology, the cooling medium becomes difficult to condense due to the non-condensable gas, and as a result, the cooling performance is significantly reduced and the pressure inside the envelope increases. In order to maintain cooling performance, the cooler and its operating power have become thicker.The object of the present invention is to improve the above-mentioned drawbacks and provide a gas insulated transformer with good cooling performance.

〔発明の構成〕[Structure of the invention]

(問題点を解決する為の手段) 本発明に係わる変圧器では、外囲容器内に充満された不
凝縮性の絶縁ガスと凝縮性の冷却媒体ガスをブロアで冷
却器内あるいは液溜部の低温の冷却媒体液に吹込む事に
よって問題点を解決する。
(Means for Solving the Problems) In the transformer according to the present invention, the non-condensable insulating gas and the condensable cooling medium gas filled in the envelope are pumped into the cooler or the liquid reservoir using a blower. The problem is solved by blowing into the coolant liquid.

(作用) 不凝縮性ガスt−富んだ冷却媒体ガスを冷えた冷却媒体
の液中に吹込んで両者t−直接接触させる為、凝縮効率
を向上させる事ができる。その結果冷却性能が向上し外
囲容器内の圧力上昇を抑さえ、良好な冷却性能を維持で
きる。
(Function) Since the non-condensable gas-rich refrigerant gas is blown into the cooled refrigerant liquid and the two are brought into direct contact with each other, the condensation efficiency can be improved. As a result, cooling performance is improved, pressure rise within the envelope can be suppressed, and good cooling performance can be maintained.

(実施例) 本発明の第1の実I&列を第1図に、本発明の第2の実
権列を第2因に、本発明の第3の実施例を第3図に示す
。なお、第1図、92図、第3図において第4図と同じ
構成要素には同一番号を符し説明を省略する。
(Example) A third embodiment of the present invention is shown in FIG. 3, with the first real I& column of the present invention being shown in FIG. 1 and the second real power column of the present invention being the second factor. Note that in FIGS. 1, 92, and 3, the same components as in FIG. 4 are designated by the same numbers, and explanations thereof will be omitted.

本発明の第1の実施例では第1図に示すように。In a first embodiment of the present invention, as shown in FIG.

外囲容器3内に充滴している不凝縮性の絶縁ガスと凝縮
性の冷却媒体ガスとの混合ガス8を配管15を介してブ
ロア16によって吸込み配管17を介して冷却器4内の
冷却媒体液9内に吹込む。ここで、混合ガス8に含まれ
た冷却媒体ガスは冷えた冷却媒体液9と直接接触するの
でIi!縮し易い。又。
A mixed gas 8 of a non-condensable insulating gas and a condensable cooling medium gas, which is filled in the outer container 3, is drawn in by a blower 16 through a pipe 15 and cooled in the cooler 4 through a suction pipe 17. Blow into the medium liquid 9. Here, the coolant gas contained in the mixed gas 8 comes into direct contact with the cooled coolant liquid 9, so Ii! Easy to shrink. or.

不凝縮性の稀緑ガス及び凝縮しきれなかった冷却媒体ガ
スも効率良く冷却された後配管19と1示されていない
ブロアによって外囲停器3内に戻される。鉄心l及びコ
イル2で除去された損失熱は配管5の冷却等によって大
気に捨てられる。一方。
The non-condensable rare green gas and the uncondensed cooling medium gas are also efficiently cooled and returned to the outer enclosure 3 by the piping 19 and the blower 1 (not shown). The loss heat removed by the iron core 1 and the coil 2 is discarded into the atmosphere by cooling the piping 5 or the like. on the other hand.

冷却a4内では冷却媒体ガスが凝縮した分だけ冷却媒体
液の歌が増加していくので、その分外囲各基3の底部に
戻す為の配管18が設けられている。
In the cooling a4, the volume of the cooling medium liquid increases by the amount of condensation of the cooling medium gas, so piping 18 is provided to return the cooling medium to the bottom of each outer enclosure 3 accordingly.

本発明の第2の実権列は!7M2図に示すように。The second real power column of the present invention is! As shown in Figure 7M2.

外囲8器3の底部に溜った冷却媒体液9を配−i¥20
を介してポンプ21で吸込み配−1122t−介して冷
却器4内に供給し冷却する。更に冷却器4から配管23
を介してポンプ24によって吸込まれ配管25.ノズル
14を介して鉄心1及びコイル2の上部に散布する。本
実施例は基本的には第1図の実施例と同じであるが、低
温の冷却媒体液を散布する事ができる。又1図示してい
ないが第1図に示す第1の実施例のように冷却媒体液9
を外囲容器3の底部に戻す配管18を設けても良い。
Distribute the cooling medium liquid 9 collected at the bottom of the outer enclosure 8 container 3 - i ¥20
It is supplied to the cooler 4 via the suction pipe 1122t by the pump 21 and cooled. Further, from the cooler 4 to the pipe 23
It is sucked in by the pump 24 through the piping 25. It is sprayed onto the upper part of the iron core 1 and the coil 2 through the nozzle 14. This embodiment is basically the same as the embodiment shown in FIG. 1, but a low-temperature cooling medium liquid can be sprayed. Although not shown in the figure, as in the first embodiment shown in FIG.
A pipe 18 may be provided for returning the water to the bottom of the surrounding container 3.

本発明の第3の実施例は1g3図に示すように。A third embodiment of the present invention is shown in Figure 1g3.

外囲容器3の底部に形成される液溜部26に配管28に
よって冷水を供給して冷却媒体液を冷却し。
Cold water is supplied via piping 28 to a liquid reservoir 26 formed at the bottom of the surrounding container 3 to cool the cooling medium liquid.

外囲σ器3内の混会ガス8は配−1915を介してブロ
ア16によって吸込まれ配f27t−介してfy、′f
Ii部26の冷却媒体中に吹込まれ、凝縮及び冷却され
る。な2.配管27は小孔が多数開いた[!!となって
2つ、気泡が配f28に衝突しながら上昇するので更に
冷却効率が良い。又1本実施列では外部冷却器を新たに
設ける心安が無い。
The mixed gas 8 in the surrounding σ reactor 3 is sucked in by the blower 16 through the distribution line 1915, and is fed to fy, 'f through the distribution line f27t-.
It is blown into the cooling medium of section Ii 26, where it is condensed and cooled. 2. Piping 27 has many small holes [! ! Since the two air bubbles rise while colliding with the distribution f28, the cooling efficiency is further improved. In addition, in the case of one row, there is no need to worry about installing a new external cooler.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、不凝縮性の絶縁ガスt−さんだ冷却媒
体ガスも効率良(凝縮でき外囲容器内部の圧力上昇を抑
え、良好な冷却性能な維持できる。
According to the present invention, the non-condensable insulating gas T-gas and the cooling medium gas can be efficiently condensed, suppressing the pressure rise inside the envelope, and maintaining good cooling performance.

その結果大容暖の変圧器に2いても良好な冷却性能を有
した変圧器を提供する事ができ、変圧器の経済性を高め
る事ができる。
As a result, it is possible to provide a transformer with good cooling performance even if it is used in a large-capacity heating transformer, and the economical efficiency of the transformer can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施列を示す概略図。 第2図は本発明の第2の実施列を示す、概略図、第3図
は本発明の第3のi4.施例を示す概略図、第4図は従
来の変圧器の一列を示す概略図、第5図は11m特性の
不凝呻性ガスによる影響を示す図である。 l・・・鉄心、2・−コイル、3・・・外囲容器、4・
・・冷却器、5・・・冷水配管、8・・・1曾ガス、9
・・・冷却媒体液、10・・・内部浮器、12・・・ポ
ンプ、14・・・ノズル、16・・・ブロア、15・・
・1廿ガス吸込み配f。 17・・・混合ガス吹込み配管、18・・・冷却媒体液
戻り配′11.19・・・混合ガス戻り配管、26・・
・e、溜部。 27・・・混合ガス吹込み配管、28・・・冷水配管。 代理人 弁理士  則 近 憲 佑 同        松  山  光  2第1図 /   f14 第2図
FIG. 1 is a schematic diagram showing a first embodiment of the invention. FIG. 2 shows a schematic diagram of a second embodiment of the invention, and FIG. 3 shows a third i4. FIG. 4 is a schematic diagram showing a row of conventional transformers, and FIG. 5 is a diagram showing the influence of non-condensing gas having 11 m characteristics. l...iron core, 2...coil, 3...envelope, 4...
...Cooler, 5...Cold water piping, 8...1 Gas, 9
...Cooling medium liquid, 10...Internal float, 12...Pump, 14...Nozzle, 16...Blower, 15...
・1 meter gas intake arrangement. 17...Mixed gas blowing pipe, 18...Cooling medium liquid return pipe'11.19...Mixed gas return pipe, 26...
・e, Tamabe. 27...Mixed gas blowing piping, 28...Cold water piping. Agent Patent Attorney Nori Ken Yudo Hikaru Matsuyama 2 Figure 1/ f14 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 外囲容器内に鉄心及びコイルを収め、不凝縮性の絶縁ガ
スと電気絶縁性及び凝縮性を有した冷却媒体とを充満し
たガス絶縁変圧器において、凝縮した前記冷却媒体液を
満たした外部冷却器あるいは前記外囲容器内の液溜部と
、前記冷却器内あるいは前記液溜部の前記冷却媒体液を
冷却する為の手段と、前記冷却器内あるいは前記液溜部
の前記冷却媒体液内に前記外囲容器内の凝縮していない
前記冷却媒体のガスと前記不凝縮性の絶縁ガスとの混合
ガスとを供給する為の配管及びブロアと、前記冷却器内
あるいは前記液溜部に溜った前記冷却媒体液を吸込んで
鉄心及びコイルの上部に前記冷却媒体液を供給する為の
ポンプ及び配管とからなる事を特徴とするガス絶縁変圧
器。
In a gas-insulated transformer in which an iron core and a coil are housed in an envelope and filled with a non-condensing insulating gas and a cooling medium having electrical insulation and condensing properties, external cooling is performed by filling the condensed cooling medium liquid. a liquid reservoir in the cooler or the liquid reservoir; a means for cooling the coolant liquid in the cooler or in the liquid reservoir; and a means for cooling the coolant liquid in the cooler or in the liquid reservoir. piping and a blower for supplying a mixed gas of the uncondensed cooling medium gas in the outer container and the non-condensable insulating gas to the cooling medium; A gas insulated transformer comprising a pump and piping for sucking in the coolant liquid and supplying the coolant liquid to the upper part of the iron core and the coil.
JP10458887A 1987-04-30 1987-04-30 Gas insulated transformer Pending JPS63272022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10458887A JPS63272022A (en) 1987-04-30 1987-04-30 Gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10458887A JPS63272022A (en) 1987-04-30 1987-04-30 Gas insulated transformer

Publications (1)

Publication Number Publication Date
JPS63272022A true JPS63272022A (en) 1988-11-09

Family

ID=14384594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458887A Pending JPS63272022A (en) 1987-04-30 1987-04-30 Gas insulated transformer

Country Status (1)

Country Link
JP (1) JPS63272022A (en)

Similar Documents

Publication Publication Date Title
US3024298A (en) Evaporative-gravity cooling systems
JPS58111307A (en) Gas-insulated transformer
US20050099775A1 (en) Pumped liquid cooling for computer systems using liquid metal coolant
JPH0563954B2 (en)
JPS5863111A (en) Electromagnetic induction device
EP0117349B1 (en) Cooling apparatus for an electrical transformer
JPS63272022A (en) Gas insulated transformer
CA1119682A (en) Precolation cooled transformers
US2774807A (en) Vaporization-forced liquid cooled transformer
US2400192A (en) Refrigeration
JPS56137086A (en) Condenser for boiling type cooling apparatus
US4502032A (en) Ebullition cooled transformer
JPS5860512A (en) Evaporation cooling induction electric appliance
JPS6011422Y2 (en) evaporative cooling equipment
JP2553157B2 (en) Stationary induction equipment
JPS61131553A (en) Immersion liquid cooling apparatus
JPS61272909A (en) Vapor-cooling type gas-insulated electric machine
JPS6032334B2 (en) transformer
JPS62259411A (en) Stational induction machine
US2648204A (en) Absorption refrigeration system
JPH0362291B2 (en)
JPS596506A (en) Stationary induction apparatus
JPS59124109A (en) Stationary induction electric apparatus
JPS593906A (en) Gas insulation transformer
JPH0349378Y2 (en)