JPH0349378Y2 - - Google Patents

Info

Publication number
JPH0349378Y2
JPH0349378Y2 JP8556185U JP8556185U JPH0349378Y2 JP H0349378 Y2 JPH0349378 Y2 JP H0349378Y2 JP 8556185 U JP8556185 U JP 8556185U JP 8556185 U JP8556185 U JP 8556185U JP H0349378 Y2 JPH0349378 Y2 JP H0349378Y2
Authority
JP
Japan
Prior art keywords
radiator
heat
tank
evaporative cooling
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8556185U
Other languages
Japanese (ja)
Other versions
JPS61201319U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8556185U priority Critical patent/JPH0349378Y2/ja
Publication of JPS61201319U publication Critical patent/JPS61201319U/ja
Application granted granted Critical
Publication of JPH0349378Y2 publication Critical patent/JPH0349378Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、蒸発冷却式変圧器の冷却性能の向
上に関するものである。
[Detailed description of the invention] [Field of industrial application] This invention relates to improving the cooling performance of an evaporative cooling transformer.

〔従来の技術〕[Conventional technology]

従来からフロロカーボン等の蒸発性冷媒を鉄心
や巻線に散布して冷却する蒸発冷却式変圧器があ
る。これは散布された冷媒が鉄心や巻線に触れて
蒸発する際の蒸発潜熱を利用して冷却するもので
蒸発した冷媒は放熱器に導びかれて放熱すると同
時に凝縮液化して再び散布液として使われる。
Conventionally, there is an evaporative cooling type transformer that cools an iron core or windings by spraying an evaporative refrigerant such as fluorocarbon onto the core or windings. This uses the latent heat of evaporation when the sprayed refrigerant touches the iron core and windings to evaporate.The evaporated refrigerant is led to a radiator and radiates heat, and at the same time condenses and liquefies and becomes the sprayed liquid again. used.

第2図は従来の蒸発冷却式変圧器の概略構成図
であり、図において、1は鉄心、2はこの鉄心1
に巻回された巻線、3は鉄心1や巻線2を収納し
た気密タンク、4はタンク3の側壁に連通して結
合された放熱器、5はタンク3の底部に溜められ
たフロロカーボンC8F16O等の冷媒で、ポンプ6
により配管7を通してくみ上げられ鉄心1や巻線
2に上部から散布される。なお、タンク3内の空
間Aには絶縁ガスが封入されており、この絶縁ガ
スとしてはSF6のような非凝縮性ガスが使用され
る。
Figure 2 is a schematic diagram of a conventional evaporative cooling transformer. In the figure, 1 is an iron core, and 2 is this iron core
3 is an airtight tank containing the iron core 1 and the winding 2; 4 is a heat sink connected to the side wall of tank 3; 5 is fluorocarbon C stored at the bottom of tank 3; 8 With refrigerant such as F 16 O, pump 6
It is pumped up through piping 7 and sprayed onto iron core 1 and winding 2 from above. Note that the space A within the tank 3 is filled with an insulating gas, and a non-condensable gas such as SF 6 is used as the insulating gas.

次にその作用について説明する。加熱された鉄
心1や巻線2に散布された冷媒のフロロカーボン
液5はその熱によつて蒸発する際に鉄心1や巻線
2の熱損失を蒸発溜熱として奪つて蒸発する。こ
の気化したフロロカーボン蒸気は、絶縁ガスであ
るSF6ガスより比重が重いため、タンクの下方に
集まり、放熱器4内にも下部の連通部から入る。
放熱器4内に入つたフロロカーボン蒸気は放熱し
て冷やされ、再び凝縮し液化する。一方絶縁ガス
はタンク3及び放熱器4の上方に集まつて滞溜
し、冷却には殆んど寄与しない。
Next, its effect will be explained. When the refrigerant fluorocarbon liquid 5 sprayed on the heated iron core 1 and winding 2 evaporates due to the heat, it absorbs the heat loss of the iron core 1 and the winding 2 as accumulated heat of evaporation and evaporates. Since this vaporized fluorocarbon vapor has a higher specific gravity than SF 6 gas, which is an insulating gas, it gathers at the bottom of the tank and enters the radiator 4 through the lower communication section.
The fluorocarbon vapor that has entered the heat radiator 4 radiates heat, is cooled, and is condensed and liquefied again. On the other hand, the insulating gas collects and stagnates above the tank 3 and the radiator 4, and hardly contributes to cooling.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

従来の蒸発冷却式変圧器は以上のように構成さ
れているので、放熱器4内のフロロカーボンが入
つてくる部分のみで放熱が行なわれ、放熱器上部
の絶縁ガスが滞溜する部分では放熱器4の伝熱面
への熱の供給がなくなる。従つてこのような構成
の蒸発冷却式変圧器では放熱器上部が放熱効果が
極めて悪いため冷却性能が悪く、これを補うため
放熱器をフロロカーボン蒸気の入つてくる下方に
多く取付けたり、ブロワーを使用してフロロカー
ボン蒸気を強制的に放熱器上部に移動させたりす
る方法がとられてきたが、それぞれ放熱器設置ス
ペースが増加したり、補機が増加するなどの問題
点があつた。
Since the conventional evaporative cooling transformer is configured as described above, heat is radiated only in the part of the radiator 4 where the fluorocarbon enters, and in the part above the radiator where the insulating gas accumulates. 4. Heat is no longer supplied to the heat transfer surface. Therefore, in an evaporative cooling type transformer with such a configuration, the heat dissipation effect at the top of the radiator is extremely poor, resulting in poor cooling performance. Methods have been used in which the fluorocarbon vapor is forcibly moved to the upper part of the radiator, but each method has problems such as increasing the space for installing the radiator and increasing the number of auxiliary equipment.

この考案は上記のような問題点を解消するため
になされたもので、設置スペースや補機を増やさ
ずに冷却性能を高めることのできる蒸発冷却式変
圧器を得ることを目的とする。
This idea was made to solve the above problems, and the purpose is to provide an evaporative cooling transformer that can improve cooling performance without increasing installation space or auxiliary equipment.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係る蒸発冷却式変圧器は、放熱器下
部と上部との間で熱輸送を行うヒートパイプを設
けて、放熱器上部の伝熱面を有効に利用したもの
である。
The evaporative cooling type transformer according to this invention is provided with a heat pipe for transferring heat between the lower part and the upper part of the radiator, and effectively utilizes the heat transfer surface of the upper part of the radiator.

〔作用〕[Effect]

この考案におけるヒートパイプは、その一端が
放熱器下部に取付けられ、他端が放熱器上部に取
付けられており、放熱器内の下部に入つたフロロ
カーボン蒸気によつて放熱された熱の一部は上記
ヒートパイプを通じて放熱器上部に送られ、器外
の空気への放熱は放熱器全体で行なわれるため、
冷却性能が著しく向上する。
The heat pipe in this invention has one end attached to the bottom of the radiator and the other end attached to the top of the radiator, and part of the heat radiated by the fluorocarbon vapor that enters the bottom of the radiator. The heat is sent to the top of the radiator through the heat pipe, and the heat is radiated to the air outside the device through the entire radiator.
Cooling performance is significantly improved.

〔実施例〕〔Example〕

以下この考案の一実施例を図について説明す
る。第1図において、1〜7は上記第2図のもの
と全く同様である。8はヒートパイプで、一端を
放熱器4の下部に、他端を放熱器4の上部に配置
し、放熱器4と熱交換を行なうように取付けられ
ている。そしてこのヒートパイプ8は放熱器4の
放熱板に少なくとも1本以上装着されている。な
お、放熱器4とタンク3とを連通する部分は、下
部についてはタンク3の側壁に設けているが、上
部については必ずしも側壁に設ける必要はなく、
図のようにタンク天井部より連通させてもよい。
このようにすれば、放熱器高さを高くでき、ヒー
トパイプの効果をより有効に利用できると共に放
熱器の設置平面スペースを縮小できる効果もあ
る。
An embodiment of this invention will be described below with reference to the drawings. In FIG. 1, 1 to 7 are exactly the same as those in FIG. 2 above. Reference numeral 8 denotes a heat pipe, one end of which is disposed below the radiator 4 and the other end thereof above the radiator 4, and is attached so as to exchange heat with the radiator 4. At least one heat pipe 8 is attached to the heat sink of the heat sink 4. Note that the lower part of the part that communicates between the radiator 4 and the tank 3 is provided on the side wall of the tank 3, but the upper part does not necessarily need to be provided on the side wall.
As shown in the figure, communication may be made from the tank ceiling.
In this way, the height of the radiator can be increased, the effect of the heat pipe can be used more effectively, and the space in which the radiator is installed can be reduced.

次にその作用について説明する。鉄心1や巻線
2に散布されたフロロカーボン液5は従来と同様
に鉄心1や巻線2の熱損失を奪つて蒸発する。こ
の気化したフロロカーボン蒸気はSF6ガスより重
いためタンク下部に集まり、タンク下部の連通管
より放熱器4に送られる。そこで放熱器4の下部
では入つてきたフロロカーボンとの熱交換が行な
われ、フロロカーボンは凝縮液化し、再びタンク
底部に戻る。フロロカーボンとの熱交換によつて
温ためられた放熱器下部はその熱の一部を空気中
へ放熱し、残りはヒートパイプ8によつて放熱器
上部に熱輸送され、放熱器上部から空気中へその
熱を放熱する。その結果、フロロカーボンから放
熱器への伝熱面積は従来と変わらないが、放熱器
から空気への伝熱面積がヒートパイプを用いるこ
とによつて大幅に増加することになる。一般にフ
ロロカーボンの凝縮によつて行なわれるフロロカ
ーボンから放熱器への熱伝達は、放熱器から空気
への熱伝達に比べて熱伝達率が大きいので、放熱
器の冷却性能は空気側の伝熱面積によつて大きく
左右される。従つてヒートパイプを使用すること
により、空気側の伝熱面積を増加させることがで
きることは放熱器の冷却性能を増加させる大きな
要因となる。
Next, its effect will be explained. The fluorocarbon liquid 5 spread over the iron core 1 and the winding 2 absorbs heat loss from the iron core 1 and the winding 2 and evaporates as in the conventional case. Since this vaporized fluorocarbon vapor is heavier than SF 6 gas, it collects at the bottom of the tank and is sent to the radiator 4 through a communication pipe at the bottom of the tank. At the bottom of the radiator 4, heat is exchanged with the incoming fluorocarbon, the fluorocarbon is condensed and liquefied, and returned to the bottom of the tank. The lower part of the radiator heated by heat exchange with the fluorocarbon radiates a part of the heat into the air, and the rest is transported to the upper part of the radiator by the heat pipe 8, and is released from the upper part of the radiator into the air. Dissipates heat from the navel. As a result, although the heat transfer area from the fluorocarbon to the radiator remains the same as before, the heat transfer area from the radiator to the air is significantly increased by using the heat pipe. Heat transfer from the fluorocarbon to the radiator, which is generally performed by condensation of the fluorocarbon, has a higher heat transfer coefficient than heat transfer from the radiator to the air, so the cooling performance of the radiator depends on the heat transfer area on the air side. It depends greatly on the situation. Therefore, by using a heat pipe, the heat transfer area on the air side can be increased, which is a major factor in increasing the cooling performance of the radiator.

なお、上記実施例では、ヒートパイプを放熱器
の外側に装着したものを示したが、放熱器の内側
に装着してもよい。
In the above embodiment, the heat pipe is shown as being attached to the outside of the radiator, but it may be attached to the inside of the radiator.

〔考案の効果〕[Effect of idea]

以上のようにこの考案によれば、蒸発冷却式変
圧器の放熱器にヒートパイプを装着して、放熱器
下部より上部に熱輸送し、放熱器上部を伝熱面と
して有効に利用するようにしたので、設置スペー
スや補機を増やさずに冷却性能を向上させること
ができる効果がある。
As described above, according to this invention, a heat pipe is attached to the radiator of an evaporative cooling transformer, heat is transported from the bottom of the radiator to the top, and the upper part of the radiator is effectively used as a heat transfer surface. This has the effect of improving cooling performance without increasing installation space or auxiliary equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例による蒸発冷却式
変圧器の構成を示す概略断面図、第2図は従来の
蒸発冷却式変圧器の構成を示す概略断面図であ
る。 図中、1は鉄心、2は巻線、3はタンク、4は
放熱器、5は冷媒、6はポンプ、7は配管、8は
ヒートパイプである。尚、図中同一符号は同一ま
たは相当部分を示す。
FIG. 1 is a schematic sectional view showing the structure of an evaporative cooling type transformer according to an embodiment of this invention, and FIG. 2 is a schematic sectional view showing the structure of a conventional evaporative cooling type transformer. In the figure, 1 is an iron core, 2 is a winding, 3 is a tank, 4 is a radiator, 5 is a refrigerant, 6 is a pump, 7 is a pipe, and 8 is a heat pipe. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 鉄心と巻線を収納したタンク内に蒸発潜熱に
より鉄心や巻線の熱を奪う冷却媒体及び絶縁ガ
スを封入し、かつ上記タンクの上下部にそれぞ
れ連通して併設された放熱器を備えた蒸発冷却
式変圧器において、一端を上記放熱器の下部
に、他端を上記放熱器の上部に取付けたヒート
パイプを備えたことを特徴とする蒸発冷却式変
圧器。 (2) ヒートパイプは放熱器の外側に沿つて取付け
られている実用新案登録請求の範囲第1項記載
の蒸発冷却式変圧器。 (3) タンクの天井部と放熱器とを連通するように
した実用新案登録請求の範囲第1項または第2
項記載の蒸発冷却式変圧器。
[Scope of Claim for Utility Model Registration] (1) A cooling medium and insulating gas that removes heat from the core and windings by latent heat of vaporization are sealed in a tank housing the iron core and windings, and are communicated with the upper and lower parts of the tank, respectively. An evaporative cooling type transformer equipped with a radiator attached to the radiator, characterized in that it is equipped with a heat pipe having one end attached to the lower part of the radiator and the other end attached to the upper part of the radiator. transformer. (2) The evaporative cooling transformer according to claim 1, wherein the heat pipe is installed along the outside of the radiator. (3) Utility model registration claim paragraph 1 or 2 in which the ceiling of the tank and the radiator are communicated with each other.
Evaporative cooling transformer as described in Section 1.
JP8556185U 1985-06-04 1985-06-04 Expired JPH0349378Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8556185U JPH0349378Y2 (en) 1985-06-04 1985-06-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8556185U JPH0349378Y2 (en) 1985-06-04 1985-06-04

Publications (2)

Publication Number Publication Date
JPS61201319U JPS61201319U (en) 1986-12-17
JPH0349378Y2 true JPH0349378Y2 (en) 1991-10-22

Family

ID=30636072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8556185U Expired JPH0349378Y2 (en) 1985-06-04 1985-06-04

Country Status (1)

Country Link
JP (1) JPH0349378Y2 (en)

Also Published As

Publication number Publication date
JPS61201319U (en) 1986-12-17

Similar Documents

Publication Publication Date Title
US5924482A (en) Multi-mode, two-phase cooling module
JPS6159521B2 (en)
JPS5863111A (en) Electromagnetic induction device
JPS59103318A (en) Apparatus for cooling machine or equipment
JPH0349378Y2 (en)
JP2557811B2 (en) Heat dissipation wall member
JPH0688893A (en) System of removing decay heat of reactor
JPH0897338A (en) Cooler for power semiconductor device
JPH0644088Y2 (en) Evaporative cooling electric equipment
JPS6032334B2 (en) transformer
JPS61131553A (en) Immersion liquid cooling apparatus
JPS59103359A (en) Cooling device for heating element
JPS5844639Y2 (en) Electronics
JPS6014492B2 (en) electromagnetic induction equipment
JPS6215655Y2 (en)
JPS58101407A (en) Vaporizative-cooling type transformer
JPS6033290B2 (en) transformer
JPS62291106A (en) Coller for oil-filled transformer
JPS61271807A (en) Transformer
JPS6011422Y2 (en) evaporative cooling equipment
JPH03113255A (en) Evaporation cooling type electric equipment
JPS60102715A (en) Evaporative cooling type gas insulating electrical apparatus
JPH0365004B2 (en)
JPS61136478A (en) Method and device for preventing dissipation of solvent vapor in organic solvent vapor washer
JPS6014493B2 (en) electromagnetic induction equipment